1887
Volume 25, Issue 3
  • ISSN: 1354-0793
  • E-ISSN:

Abstract

Hydrogen storage in porous geological formations is a potential option to mitigate offsets between power demand and generation in an energy system largely based on renewables. Incorporating hydrogen storage into the energy network requires the consideration of multiple scenarios for storage settings and potential loading cycles, causing a high computational effort. Therefore, homogenous replacement models are constructed by applying different spatial averaging methods for permeability and linearized relative permeability to an ensemble of heterogeneous reservoir representations of a potential hydrogen storage site. The applicability of these replacement models for approximating storage characteristics, such as well flow rates, pressure changes and power rates, is investigated by comparing their results to the results of the full heterogeneous ensemble. It is found that using the arithmetic mean to estimate the lateral and the harmonic mean for the vertical permeability in the homogeneous replacement models provides an approximation to the median of the heterogeneous ensemble for pressure changes, storage flow rate, gas in place and power output. Basic time-dependent effects of reducing well flow, and thus the power rates, during an extraction cycle can also be represented by these homogeneous replacement models. Using geometric means is found not to yield a valid representation of the storage behaviour.

Companion
This article is accompanied by the following content:
Introducing the Energy Geoscience Series
Companion
This article is accompanied by the following content:
Introducing the Energy Geoscience Series
Loading

Article metrics loading...

/content/journals/10.1144/petgeo2018-101
2019-02-27
2020-01-29
Loading full text...

Full text loading...

References

  1. Artus, V. & Noettinger, B.
    2004. Up-scaling two-phase flow in heterogeneous reservoirs: current trends. Oil & Gas Science and Technology – Revue de l'IFP, 59, 185–195, https://doi.org/10.2516/ogst:2004014
    [Google Scholar]
  2. Ataie-Ashiani, B., Hassanizadeh, S.M., Oostrom, M., Celia, M.A. & White, M.D.
    2001. Effective parameters for two-phase flow in a porous medium with periodic heterogeneities. Journal of Contaminant Hydrology, 49, 87–109, https://doi.org/10.1016/S0169-7722(00)00190-X
    [Google Scholar]
  3. Baldschuhn, R., Binot, F., Fleig, S. & Kockel, F.
    2001. Geotektonischer Atlas von Nordwest-Deutschland und dem deutschen Nordsee-Sektor [Tectonic Atlas of Northwest Germany and the German North Sea Sector]. Geologisches Jahrbuch Reihe A, 153.
    [Google Scholar]
  4. Barker, J.W. & Thibeau, S.
    1997. A critical review of the use of pseudorelative permeabilities for upscaling. SPE Reservoir Engineering, 12, 138–143, https://doi.org/10.2118/35491-PA
    [Google Scholar]
  5. Battermann, K.
    1989. The Rhaetian (upper Keuper) in eastern Lower Saxony. Zeitschrift der Deutschen Geologischen Gesellschaft, 140, 101–116.
    [Google Scholar]
  6. Bauer, S., Class, H. et al.
    2012. Modeling, parameterization and evaluation of monitoring methods for CO2 storage in deep saline formations: the CO2–MoPa project. Environmental Earth Sciences, 67, 351–367, https://doi.org/10.1007/s12665-012-1707-y
    [Google Scholar]
  7. Bauer, S., Beyer, C. et al.
    2013. Impacts of the use of the geological subsurface for energy storage: an investigation concept. Environmental Earth Sciences, 70, 3935–3943, https://doi.org/10.1007/s12665-013-2883-0
    [Google Scholar]
  8. Bear, J.
    1972. Dynamics of Fluids in Porous Media. Dover Publications, Mineola, NY.
    [Google Scholar]
  9. Benisch, K. & Bauer, S.
    2013. Short- and long-term regional pressure build-up during CO2 injection and its application for site monitoring. International Journal of Greenhouse Gas Control, 19, 220–233, https://doi.org/10.1016/j.ijggc.2013.09.002
    [Google Scholar]
  10. BMWi
    (ed.). 2016. The energy of the future - Fifth “Energy Transition” Monitoring Report. Federal Ministry for Economic Affairs and Energie (BMWi), Berlin.
  11. Büchi, F.N., Hofer, M. et al.
    2014. Towards re-electrification of hydrogen obtained from the power-to-gas process by highly efficient H2/O2 polymer electrolyte fuel cells. Royal Society of Chemistry Advances, 4, 56  139–56  146, https://doi.org/10.1039/c4ra11868e
    [Google Scholar]
  12. Carden, P.O. & Paterson, L.
    1979. Physical, chemical and energy aspects of underground hydrogen storage. International Journal of Hydrogen Energy, 4, 559–569, https://doi.org/10.1016/0360-3199(79)90083-1
    [Google Scholar]
  13. Cardwell, W.T., Jr & Parsons, R.L.
    1945. Average permeabilities of heterogeneous oil sands. Transactions of the AIME, 160, 34–42.
    [Google Scholar]
  14. Christie, M.A.
    2001. Flow in porous media – scale up of multiphase flow. Current Opinion in Colloid & Interface Science, 6, 236–241, https://doi.org/10.1016/S1359-0294(01)00087-5
    [Google Scholar]
  15. Deutsche Stratigraphische Kommission (DSK)
    (ed.). 2005. Stratigraphie von Deutschland IV – Keuper [Stratigraphy of Germany IV – Keuper] . E. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, Germany.
    [Google Scholar]
  16. Doornenbal, J.C. & Stevenson, A.G.
    (eds) 2010. Petroleum Geological Atlas of the Southern Permian Basin Area. EAGE Publications, Houten, The Netherlands.
    [Google Scholar]
  17. Durlofsky, L.J.
    2005. Upscaling and gridding of fine scale geological models for flow simulation. Presented at the8th International Forum on Reservoir Simulation, 20–24 June 2005, Stresa, Italy.
    [Google Scholar]
  18. Evans, D.J. & West, J.M.
    2008. An Appraisal of Underground Gas Storage Technologies and Incidents, for the Development of Risk Assessment Methodology. Research Report RR605. British Geological Survey, Nottingham, UK.
    [Google Scholar]
  19. Fahrion, H. & Betz, D.
    1991. Geologischer Rahmen, Fund- und Fördergeschichte [Geologic setting, Finding and Development History]. In: Achilles, H. & Ahrendt, H. (eds) Das Gasfeld Thönse in Niedersachsen, ein Unikat [The gasfield Thönse in Lower Saxony, One of a Kind].Schweizerbart Science Publishers, Stuttgart, Germany, 7–10.
    [Google Scholar]
  20. Feldmann, F., Hagemann, B., Ganzer, L. & Panfilov, M.
    2016. Numerical simulation of hydrodynamic and gas mixing processes in underground hydrogen storages. Environmental Earth Sciences, 75, 1165, https://doi.org/10.1007/s12665-016-5948-z
    [Google Scholar]
  21. Foh, S., Novin, M., Rockar, E. & Randolph, P.
    1979. Underground Hydrogen Storage. Report BNL 57275. Institute of Gas Technology, Chicago, IL.
    [Google Scholar]
  22. Gahleitner, G.
    2013. Hydrogen from renewable electricity: An international review of power-to-gas pilot plants for stationary applications. International Journal of Hydrogen Energy, 38, 2039–2061, https://doi.org/10.1016/j.ijhydene.2012.12.010
    [Google Scholar]
  23. Gaupp, R.
    1991. Zur Fazies und Diagenese des Mittelrhät-Hauptsandsteins im Gasfeld Thönse [On the facies and diagenesis of the Mittelräht-Hauptsandstein in the gasfield Thönse]. In: Achilles, H. & Ahrendt, H. (eds) Das Gasfeld Thönse in Niedersachsen, ein Unikat [The Gasfield Thönse in Lower Saxony, One of a Kind]. Schweizerbart Science Publishers, Stuttgart, Germany, 34–55.
    [Google Scholar]
  24. Gregory, D.P. & Pangborn, J.B.
    1976. Hydrogen energy. Annual Review of Energy, 1, 279–310, https://doi.org/10.1146/annurev.eg.01.110176.001431
    [Google Scholar]
  25. Guérillot, D., Rudkiewicz, J.L., Ravenne, C., Renard, G. & Galli, A.
    1990. An integrated model for computer aided reservoir description: from outcrop study to fluid flow simulations. Oil and Gas Science and Technology – Revue de l'IFP, 45, 71–77, https://doi.org/10.2516/ogst:1990005
    [Google Scholar]
  26. Gutjahr, A.L., Gelhar, L.W., Bakr, A.A. & MacMillan, J.R.
    1978. Stochastic analysis of spatial variability in subsurface flows – 2. Evaluation and application. Water Resources Research, 14, 953–959, https://doi.org/10.1029/WR014i005p00953
    [Google Scholar]
  27. Heide, D., Greiner, M., von Bremsen, L. & Hoffmann, C.
    2011. Reduced storage and balancing needs in a fully renewable European power system with excess wind and solar generation. Renewable Energy, 36, 2515–2523, https://doi.org/10.1016/j.renene.2011.02.009
    [Google Scholar]
  28. Hese, F.
    2011. Geological 3D models of the subsurface of Schleswig-Holstein – a contribution to studies focused on the utilisation potential of deep saline aquifers. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 162, 389–404, https://doi.org/10.1127/1860-1804/2011/0162-0389
    [Google Scholar]
  29. 2012. 3D Modellierung und Visualisierung von Untergrundstrukturen für die Nutzung des unterirdischen Raumes in Schleswig-Holstein [3D modelling and visualisation of subsurface structures for the use of the subsurface space of Schleswig-Holstein]. Doctoral dissertation, University of Kiel, Kiel, Germany.
    [Google Scholar]
  30. Holden, L. & Nielsen, B.F.
    2000. Global Upscaling of Permeability in Heterogeneous Reservoirs; The Output Least Squares (OLS) Method. Transport in Porous Media, 40, 115–143, https://doi.org/10.1023/A:1006657515753
    [Google Scholar]
  31. IPCC
    . 2014. Climate Change 2014: Mitigation of Climate Change. Working Group III Contribution to the Fifth Assessment Report on the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.
    [Google Scholar]
  32. Kabuth, A., Dahmke, A. et al.
    2017. Energy storage in the geological subsurface: dimensioning, risk analysis and spatial planning: the ANGUS+ project. Environmental Earth Sciences, 76, 23, https://doi.org/10.1007/s12665-016-6319-5
    [Google Scholar]
  33. King, P.R., Muggeridge, A.H. & Price, W.G.
    1993. Renormalization calculations of immiscible flow. Transport in Porous Media, 12, 237–260, https://doi.org/10.1007/BF00624460
    [Google Scholar]
  34. Klaus, T., Vollmer, C., Werner, K., Lehmann, H. & Müschen, K.
    2010. Energieziel 2050: 100% Strom aus erneuerbaren Quellen [Energy target 2050: 100% renewable energy supply]. Federal Environment Agency, Dessau-Roßlau, Germany.
    [Google Scholar]
  35. Kruck, O., Crotogino, F., Prelicz, R. & Rudolph, T.
    2013. Overview on All Known Underground Storage Technologies for Hydrogen. Project HyUnder – Assessment of the Potential, the Actors and Relevant Business Cases for Large Scale and Seasonal Storage of Renewable Electricity by Hydrogen Underground Storage in Europe. Report D3.1. HyUnder Project, Huesca, Spain.
    [Google Scholar]
  36. Kumar, A.T.A. & Jerauld, G.R.
    1996. Impacts of scale-up on fluid flow from plug to gridblock scale in reservoir rock. Paper SPE-35452 presented at theSPE/DOE Improved Oil Recovery Symposium, 21–24 April 1996, Tulsa, Oklahoma, USA, https://doi.org/10.2118/35452-MS
    [Google Scholar]
  37. Lemmon, E.W., McLinden, M.O. & Friend, D.G.
    2016. Thermophysical properties of fluid systems. In: Linstrom, P.J. & Mallard, W.G. (eds) NIST Chemistry WebBook. NIST Standard Reference Database, 69. National Institute of Standards and Technology, Gaithersburg, MD, http://webbook.nist.gov [accessed 14 March 2016].
    [Google Scholar]
  38. Li, D., Beyer, C. & Bauer, S.
    2018. A unified phase equilibrium model for hydrogen solubility and solution density. International Journal of Hydrogen Energy, 43, 512–529, https://doi.org/10.1016/j.ijhydene.2017.07.228
    [Google Scholar]
  39. MELUR
    . 2018. Energiebilanz und CO2-Bilanzen für Schleswig-Holstein 2015 [Energy balance and CO2-balances for Schleswig-Holstein 2015]. Ministerium für Energiewende, Landwirtschaft, Umwelt und ländliche Räume des Landes Schleswig-Holstein, Kiel, Germany.
    [Google Scholar]
  40. Ogden, J.M.
    1999. Prospects for building a hydrogen energy infrastructure. Annual Review of Energy and the Environment, 24, 227–279, https://doi.org/10.1146/annurev.energy.24.1.227
    [Google Scholar]
  41. Panfilov, M.
    2010. Underground Storage of Hydrogen: In Situ Self-Organisation and Methane Generation. Transport in Porous Media, 85, 841–865, https://doi.org/10.1007/s11242-010-9595-7
    [Google Scholar]
  42. Pfeiffer, W.T. & Bauer, S.
    2015. Subsurface porous media hydrogen storage – scenario development and simulation. Energy Procedia, 76, 565–572, https://doi.org/10.1016/j.egypro.2015.07.872
    [Google Scholar]
  43. Pfeiffer, W.T., al Hagrey, S.A., Köhn, D., Rabbel, W. & Bauer, S.
    2016. Porous media hydrogen storage at a synthetic, heterogeneous field site: numerical simulation of storage operation and geophysical monitoring. Environmental Earth Sciences, 75, 1177, https://doi.org/10.1007/s12665-016-5958-x
    [Google Scholar]
  44. Pfeiffer, W.T., Beyer, C. & Bauer, S.
    2017. Hydrogen storage in a heterogeneous sandstone formation: dimensioning and induced hydraulic effects. Petroleum Geoscience, 23, 315–326, https://doi.org/10.1144/petgeo2016-050
    [Google Scholar]
  45. Pickup, G.E. & Hern, C.Y.
    2002. The Development of Appropriate Upscaling Procedures. Transport in Porous Media, 46, 119–138, https://doi.org/10.1023/A:1015055515059
    [Google Scholar]
  46. Pickup, G.W. & Stephen, K.D.
    2000. An assessment of steady-state scale-up for small-scale geological models. Petroleum Geoscience, 6, 203–210, https://doi.org/10.1144/petgeo.6.3.203
    [Google Scholar]
  47. Pickup, G.E., Stephen, K.D., Ma, J., Zhang, P. & Clark, J.D.
    2005. Multi-Stage Upscaling: Selection of Suitable Methods. Transport in Porous Media, 58, 191–216, https://doi.org/10.1007/s11242-004-5501-5
    [Google Scholar]
  48. Reitenbach, V., Ganzer, L., Albrecht, D. & Hagemann, B.
    2015. Influence of added hydrogen on underground gas storage: a review of key issues. Environmental Earth Sciences, 73, 6927–6937, https://doi.org/10.1007/s12665-015-4176-2
    [Google Scholar]
  49. Renard, P. & de Marsily, G.
    1997. Calculating equivalent permeability: a review. Advances in Water Resources, 20, 253–278, https://doi.org/10.1016/S0309-1708(96)00050-4
    [Google Scholar]
  50. Ringrose, P. & Bentley, M.
    2015. Reservoir Model Design. Springer, Dordrecht.
    [Google Scholar]
  51. Ringrose, P.S., Sorbie, K.S., Corbett, P.W.M. & Jensen, J.L.
    1993. Immiscible flow behaviour in laminated and cross-bedded sandstones. Journal of Petroleum Science and Engineering, 9, 103–124, https://doi.org/10.1016/0920-4105(93)90071-L
    [Google Scholar]
  52. Röckel, T. & Lempp, C.
    2003. Der Spannungszustand im Norddeutschen Becken [The stress field in the North German Basin]. Erdöl Erdgas Kohle, 119, 73–80.
    [Google Scholar]
  53. Schlumberger
    . 2015. ECLIPSE Version 2015.2 – Technical Description. Schlumberger, Houston, TX.
  54. Sedlacek, R.
    1999. Untertage Erdgasspeicherung in Deutschland [Subsurface natural gas storage in Germany]. Erdöl Erdgas Kohle, 114, 526–535.
    [Google Scholar]
  55. Sørensen, B.
    1975. Energy and resources. Science, 189, 255–260, https://doi.org/10.1126/science.189.4199.255
    [Google Scholar]
  56. Sørensen, B., Petersen, A.H. et al.
    2004. Hydrogen as an energy carrier: scenarios for future use of hydrogen in the Danish energy system. International Journal of Hydrogen Energy, 29, 23–32, https://doi.org/10.1016/S0360-3199(03)00049-1
    [Google Scholar]
  57. Thema, M., Sterner, M., Lenck, T. & Götz, P.
    2016. Necessity and impact of power-to-gas on energy transition in Germany. Energy Procedia, 99, 392–400, https://doi.org/10.1016/j.egypro.2016.10.129
    [Google Scholar]
  58. Varone, A. & Ferrari, M.
    2015. Power to liquid and power to gas: An option for the German Energiewende. Renewable and Sustainable Energy Reviews, 45, 207–218, https://doi.org/10.1016/j.rser.2015.01.049
    [Google Scholar]
  59. Wang, B. & Bauer, S.
    2017. Compressed air energy storage in porous formations: a feasibility and deliverability study. Petroleum Geoscience, 23, 306–314, https://doi.org/10.1144/petgeo2016-049
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1144/petgeo2018-101
Loading
/content/journals/10.1144/petgeo2018-101
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error