1887
Volume 26, Issue 3
  • ISSN: 1354-0793
  • E-ISSN:

Abstract

Rock physics analyses of data from a wildcat well 7117/9-1 drilled in the Senja Ridge area, located in the Norwegian Barents Sea, reveal changes in stiffness within the fine-grained Paleogene Sotbakken Group sediments, caused by the transformation of opal-A to opal-CT, and opal-CT to quartz. These changes manifest as flat spots on 2D seismic profiles. These flat spots were mistaken as hydrocarbon–water contacts, which led to the drilling of well 7117/9-1. Rock physics analyses on this well combined with a second well (7117/9-2) drilled further NW and updip on the Senja Ridge indicate overpressure within the opal-CT-rich zones overlying the opal-CT to quartz transformation zones in the two wells. The absence of opal-A–opal-CT and opal-CT–quartz flat spots on seismic in the second well is attributed to differences in the temperature and timing of uplift. Amplitude v. angle (AVA) modelling indicates both the opal-A–opal-CT and opal-CT–quartz interface points plot on the wet trend, whereas modelled gas–brine, oil–brine and gas–oil contacts fall within quadrant-I. These findings will be useful in understanding the nature of compaction of biogenic silica-rich sediments where flat spots could be misinterpreted as hydrocarbon-related contacts in oil and gas exploration.

Loading

Article metrics loading...

/content/journals/10.1144/petgeo2018-122
2019-07-24
2024-04-25
Loading full text...

Full text loading...

References

  1. Aase, N.E., Bjorkum, P.A. & Nadeau, P.H.
    1996. The effect of grain-coating microquartz on preservation of reservoir porosity. AAPG Bulletin, 80, 1654–1673.
    [Google Scholar]
  2. Baig, I., Faleide, J.I., Jahren, J. & Mondol, N.H.
    2016. Cenozoic exhumation on the southwestern Barents Shelf: Estimates and uncertainties constrained from compaction and thermal maturity analyses. Marine and Petroleum Geology, 73, 105–130, https://doi.org/10.1016/j.marpetgeo.2016.02.024
    [Google Scholar]
  3. Barker, C.E. & Pawlewicz, M.J.
    1994. Calculation of Vitrinite Reflectance from Thermal Histories and Peak Temperatures: A Comparison of Methods. ACS Publications, Washington, DC.
    [Google Scholar]
  4. Bjørlykke, K.
    2015. Petroleum Geoscience: From Sedimentary Environments to Rock Physics. 2nd edn. Springer, Berlin.
    [Google Scholar]
  5. Castagna, J.P. & Swan, H.W.
    1997. Principles of AVO crossplotting. The Leading Edge, 16, 337–344, https://doi.org/10.1190/1.1437626
    [Google Scholar]
  6. Castagna, J.P., Batzle, M.L. & Eastwood, R.L.
    1985. Relationships between compressional-wave and shear-wave velocities in clastic silicate rocks. Geophysics, 50, 571–581, https://doi.org/10.1190/1.1441933
    [Google Scholar]
  7. Castagna, J.P., Swan, H.W. & Foster, D.J.
    1998. Framework for AVO gradient and intercept interpretation. Geophysics, 63, 948–956, https://doi.org/10.1190/1.1444406
    [Google Scholar]
  8. Corcoran, D. & Clayton, G.
    1999. Interpretation of vitrinite reflectance profiles in the Central Irish Sea area: implications for the timing of organic maturation. Journal of Petroleum Geology, 22, 261–286, https://doi.org/10.1111/j.1747-5457.1999.tb00987.x
    [Google Scholar]
  9. Dalland, A.
    , Worsely, D. & Ofstad, K. (eds). 1988. A Lithostratigraphic Scheme for the Mesozoic and Cenozoic Succession Offshore Mid- and Northern Norway. Norwegian Petroleum Directorate Bulletin, 4.
    [Google Scholar]
  10. Davies, R.J. & Cartwright, J.
    2002. A fossilized Opal A to Opal C/T transformation on the northeast Atlantic margin: Support for a significantly elevated palaeogeothermal gradient during the Neogene?Basin Research, 14, 467–486, https://doi.org/10.1046/j.1365-2117.2002.00184.x
    [Google Scholar]
  11. Davies, R.J., Goulty, N.R. & Meadows, D.
    2008. Fluid flow due to the advance of basin-scale silica reaction zones. Geological Society of America Bulletin, 120, 195–206, https://doi.org/10.1130/B26099.1
    [Google Scholar]
  12. Faleide, J.I., Gudlaugsson, S.T. & Jacquart, G.
    1984. Evolution of the western Barents Sea. Marine and Petroleum Geology, 1, 123–150, https://doi.org/10.1016/0264-8172(84)90082-5
    [Google Scholar]
  13. Faleide, J.I., Vågnes, E. & Gudlaugsson, S.T.
    1993. Late Mesozoic–Cenozoic evolution of the south-western Barents Sea in a regional rift-shear tectonic setting. Marine and Petroleum Geology, 10, 186–214, https://doi.org/10.1016/0264-8172(93)90104-Z
    [Google Scholar]
  14. French, M.W., Worden, R.H., Mariani, E., Larese, R.E., Mueller, R.R. & Kliewer, C.E.
    2012. Microcrystalline quartz generation and the preservation of porosity in sandstones: Evidence from the Upper Cretaceous of the Subhercynian Basin, Germany. Journal of Sedimentary Research, 82, 422–434, https://doi.org/10.2110/jsr.2012.39
    [Google Scholar]
  15. Gabrielsen, R.H., Færseth, R.R., Jensen, L.N., Kalheim, J.E. & Riis, F.
    1990. Structural Elements of the Norwegian Continental Shelf. Part 1: The Barents Sea Region. Norwegian Petroleum Directorate Bulletin, 6.
    [Google Scholar]
  16. Gassmann, F.
    1951. Über die elastizität poröser medien. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zurich, 96, 1–23 (paper translation athttp://sepwww.stanford.edu/sep/berryman/PS/gassmann.pdf)
    [Google Scholar]
  17. Greenberg, M.L. & Castagna, J.P.
    1992. Shear-wave velocity estimation in porous rocks: Theoretical formulation, preliminary verification and applications. Geophysical Prospecting, 40, 195–209, https://doi.org/10.1111/j.1365-2478.1992.tb00371.x
    [Google Scholar]
  18. Hein, J.R., Scholl, D.W., Barron, J.A., Jones, M.G. & Miller, J.
    1978. Diagenesis of late Cenozoic diatomaceous deposits and formation of the bottom simulating reflector in the southern Bering Sea. Sedimentology, 25, 155–181, https://doi.org/10.1111/j.1365-3091.1978.tb00307.x
    [Google Scholar]
  19. Henriksen, E., Bjørnseth, H.M. et al.
    2011. Uplift and erosion of the greater Barents Sea: impact on prospectivity and petroleum systems. In: Spencer, A.M., Embry, A.F., Gautier, D.L., Stoupakova, A.V. & Sørensen, K. (eds) Arctic Petroleum Geology. Geological Society, London, Memoirs, 35, 271–281, https://doi.org/10.1144/M35.17
    [Google Scholar]
  20. Ireland, M.T., Goulty, N.R. & Davies, R.J.
    2010. Influence of pore water chemistry on silica diagenesis: evidence from the interaction of diagenetic reaction zones with polygonal fault systems. Journal of the Geological Society, London, 167, 273–279, https://doi.org/10.1144/0016-76492009-049
    [Google Scholar]
  21. Isaacs, C.M.
    1981. Porosity reduction during diagenesis of the Monterey Formation, Santa Barbara coastal area, California. In: Garrison, R.E. & Douglas, R.G. (eds) The Monterey Formation and Related Siliceous Rocks of California. Society of Economic Petrologists and Paleontologists, Pacific Section, Special Publications, 15, 257–271.
    [Google Scholar]
  22. 1982. Influence of rock composition on kinetics of silica phase changes in the Monterey Formation, Santa Barbara area, California. Geology, 10, 304–308, https://doi.org/10.1130/0091-7613(1982)10<304:IORCOK%3E2.0.CO;2
    [Google Scholar]
  23. Ishii, E., Sanada, H., Iwatsuki, T., Sugita, Y. & Kurikami, H.
    2011. Mechanical strength of the transition zone at the boundary between opal-A and opal-CT zones in siliceous rocks. Engineering Geology, 122, 215–221, https://doi.org/10.1016/j.enggeo.2011.05.007
    [Google Scholar]
  24. Jahren, J. & Ramm, M.
    2000. The porosity-preserving effects of microcrystalline quartz coatings in arenitic sandstones: Examples from the Norwegian continental shelf. Quartz Cementation in Sandstones, 29, 271–280, https://doi.org/10.1002/9781444304237.ch18
    [Google Scholar]
  25. Kastner, M., Keene, J.B. & Gieskes, J.M.
    1977. Diagenesis of siliceous oozes – I. Chemical controls on the rate of opal-A to opal-CT transformation – an experimental study. Geochimica et Cosmochimica Acta, 41, 1041–1059, https://doi.org/10.1016/0016-7037(77)90099-0
    [Google Scholar]
  26. Ktenas, D., Henriksen, E., Meisingset, I., Nielsen, J.K. & Andreassen, K.
    2017. Quantification of the magnitude of net erosion in the southwest Barents Sea using sonic velocities and compaction trends in shales and sandstones. Marine and Petroleum Geology, 88, 826–844, https://doi.org/10.1016/j.marpetgeo.2017.09.019
    [Google Scholar]
  27. Marcussen, Ø, Thyberg, B.I., Peltonen, C., Jahren, J., Bjørlykke, K. & Faleide, J.I.
    2009. Physical properties of Cenozoic mudstones from the northern North Sea: Impact of clay mineralogy on compaction trends. AAPG Bulletin, 93, 127–150, https://doi.org/10.1306/08220808044
    [Google Scholar]
  28. NPD
    . 2014. Norwegian Petroleum Directorate Lithostratigraphic Chart. Norwegian Barents Sea . Norwegian Petroleum Directorate, Stavanger, Norway, http://www.npd.no/Global/Engelsk/2-Topics/Geology/Lithostratigraphy/BH-OD1409003.pdf
  29. . 2018. Norwegian Petroleum Directorate Fact-Pages . Norwegian Petroleum Directorate, Stavanger, Norway, http://www.npd.no/engelsk/cwi/pbl/en/index.htm
  30. Ohm, S.E., Karlsen, D.A. & Austin, T.J.F.
    2008. Geochemically driven exploration models in uplifted areas: Examples from the Norwegian Barents Sea. AAPG Bulletin, 92, 1191–1223, https://doi.org/10.1306/06180808028
    [Google Scholar]
  31. Peltonen, C., Marcussen, Ø, Bjørlykke, K. & Jahren, J.
    2008. Mineralogical control on mudstone compaction: a study of Late Cretaceous to Early Tertiary mudstones of the Vøring and Møre basins, Norwegian Sea. Petroleum Geoscience, 14, 127–138, https://doi.org/10.1144/1354-079308-758
    [Google Scholar]
  32. Riis, F.
    1996. Quantification of Cenozoic vertical movements of Scandinavia by correlation of morphological surfaces with offshore data. Global and Planetary Change, 12, 331–357, https://doi.org/10.1016/0921-8181(95)00027-5
    [Google Scholar]
  33. Riis, F. & Fjeldskaar, W.
    1992. On the magnitude of the Late Tertiary and Quaternary erosion and its significance for the uplift of Scandinavia and the Barents Sea. In: Larsen, R.M., Brekke, H., Larsen, B.T. & Talleraas, E. (eds) Structural and Tectonic Modelling and its Application to Petroleum Geology. Norwegian Petroleum Society (NPF), Special Publications, 1, 163–185, https://doi.org/10.1016/B978-0-444-88607-1.50016-4
    [Google Scholar]
  34. Roaldset, E. & He, W.
    1995. Silica-Phase Transformation of Opal-A to Opal-CT to Quartz – An Experimental Approach. Report. Department of Geology and Mineral Resources Engineering, Norwegian Institute of Technology, Trondheim, Norway.
    [Google Scholar]
  35. Rutherford, S.R. & Williams, R.H.
    1989. Amplitude-versus-offset variations in gas sands. Geophysics, 54, 680–688, https://doi.org/10.1190/1.1442696
    [Google Scholar]
  36. Ryseth, A., Augustson, J.H. et al.
    2003. Cenozoic Stratigraphy and Evolution of the Sørvestsnaget Basin, Southwestern Barents Sea. Norwegian Journal of Geology/Norsk Geologisk Forening, 83.
    [Google Scholar]
  37. Smelror, M., Petrov, O.V., Larssen, G.B. & Werner, S.C.
    (eds). 2009. Geological History of the Barents Sea. Norges geologiske undersøkelse (Geological Survey of Norway), Trondheim, Norway.
    [Google Scholar]
  38. Spencer, A.M., Home, P.C. & Berglund, L.T.
    1984. Tertiary structural development of the western Barents Shelf: Troms to Svalbard. In: Spencer, A.M. (ed.) Petroleum Geology of the North European Margin. Springer, Dordrecht, The Netherlands, 199–209.
    [Google Scholar]
  39. Tada, R. & Iijima, A.
    1983. Petrology and diagenetic changes of Neogene siliceous rocks in northern Japan. Journal of Sedimentary Research, 53, 911–930, https://doi.org/10.1306/212F82E7-2B24-11D7-8648000102C1865D
    [Google Scholar]
  40. Thyberg, B. & Jahren, J.
    2011. Quartz cementation in mudstones: sheet-like quartz cement from clay mineral reactions during burial. Petroleum Geoscience, 17, 53–63, https://doi.org/10.1144/1354-079310-028
    [Google Scholar]
  41. Thyberg, B., Jahren, J., Winje, T., Bjørlykke, K. & Faleide, J.I.
    2009. From mud to shale: Rock stiffening by micro-quartz cementation. First Break, 27, 53–59, https://doi.org/10.3997/1365-2397.2009003
    [Google Scholar]
  42. Thyberg, B., Jahren, J., Winje, T., Bjørlykke, K., Faleide, J.I. & Marcussen, Ø
    . 2010. Quartz cementation in Late Cretaceous mudstones, northern North Sea: changes in rock properties due to dissolution of smectite and precipitation of micro-quartz crystals. Marine and Petroleum Geology, 27, 1752–1764, https://doi.org/10.1016/j.marpetgeo.2009.07.005
    [Google Scholar]
  43. Williams, L.A. & Crerar, D.A.
    1985. Silica diagenesis; II, General mechanisms. Journal of Sedimentary Research, 55, 312–321.
    [Google Scholar]
  44. Wrona, T., Jackson, C.A.-L., Huuse, M. & Taylor, K.G.
    2017. Silica diagenesis in Cenozoic mudstones of the North Viking Graben: physical properties and basin modelling. Basin Research, 29, 556–575, https://doi.org/10.1111/bre.12168
    [Google Scholar]
  45. Zoeppritz, K.
    1919. VII b. Über Reflexion und Durchgang seismischer Wellen durch Unstetigkeitsflächen [On the reflection and propagation of seismic waves]. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch–Physikalische Klasse, 1919, 66–84.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1144/petgeo2018-122
Loading
/content/journals/10.1144/petgeo2018-122
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error