1887
Volume 25, Issue 4
  • ISSN: 1354-0793
  • E-ISSN:

Abstract

We present the results of a feasibility study for seismic monitoring using conventional surface seismic experiments at the CaMI Field Research Station, Alberta, Canada, where a small volume of gas-phase CO is being injected into a sandstone reservoir at a depth of 300 m. We first apply a careful fluid substitution procedure to the results of reservoir gas saturation and pressure responses obtained from fluid flow simulations. We test different methods to compute the bulk modulus of the fluid for different fluid saturation models. Assuming a semi-patchy model and considering only the replacement of brine with a maximum saturation of 50% CO, we estimate the reduction in P-wave velocity to be 20%. Adding an increase in pore pressure of 2.7 MPa increases the P-wave velocity reduction to 32%. After including a field-based signal-to-noise ratio of 5% to the synthetic seismic data, the time-lapse seismic anomaly should be detectable after one year of injection (266 tonnes of CO).

Companion
This article is accompanied by the following content:
Introducing the Energy Geoscience Series
Loading

Article metrics loading...

/content/journals/10.1144/petgeo2018-135
2019-07-17
2020-07-05
Loading full text...

Full text loading...

References

  1. Arts, R.J., Chadwick, A., Eiken, O., Thibeau, S. & Nooner, S.
    2008. Ten years’ experience of monitoring CO 2 injection in the Utsira Sand at Sleipner, offshore Norway. First Break, 26, 65–72.
    [Google Scholar]
  2. Batzle, M. & Wang, W.
    1992. Seismic properties of pore fluids. Geophysics, 57, 1396–1408, https://doi.org/10.1190/1.1443207
    [Google Scholar]
  3. Brie, A., Pampuri, F., Marsala, A.F. & Meazza, O.
    1995. Shear sonic interpretation in gas-bearing sands. SPE Annual Technical Conference. Society of Petroleum Engineers, 30595, 701–710. https://doi.org/10.2118/30595-MS.
    [Google Scholar]
  4. Brooks, R.H. & Corey, T.
    1964. Hydraulic properties of porous media. Hydrology Papers, Colorado State University, Boulder, Colorado
    [Google Scholar]
  5. Carcione, J.M., Picotti, S., Gei, D. & Rossi, G.
    2006. Physics and seismic modeling for monitoring CO 2 storage. Pure and Applied Geophysics, 163, 175–207. https://doi.org/10.1007/s00024-005-0002-1
    [Google Scholar]
  6. Dongas, J.M.
    2016. Development and characterization of a geostatic model for monitoring shallow CO2 injection. MSc thesis, University of Calgary, Canada.
    [Google Scholar]
  7. Douglas, R.J.W.
    1970. Geology and Economic Minerals of Canada. Geological Survey of Canada, Ottawa, Economic Geology Report.
    [Google Scholar]
  8. Duffaut, K., Landrø, M. & Sollie, R.
    2010. Using Mindlin theory to model friction-dependent shear modulus in granular media. Geophysics, 75, E143–E152, https://doi.org/10.1190/1.3429998
    [Google Scholar]
  9. Dupuy, A., Garambois, S. & Virieux, J.
    2016. Estimation of rock physics properties from seismic attributes. Part 1: strategy and sensitivity analysis. Geophysics, 81, M35–M53, https://doi.org/10.1190/geo2015-0239.1
    [Google Scholar]
  10. Eliasson, P., Ringstad, C., Grimstad, A., Jordan, M. & Romdhane, A.
    2018. Svelvik CO2 Field Lab: upgrade and experimental campaign. In: Fifth CO2 Geological Storage Workshop, 21–23 November 2018, Utrecht, The Netherlands.
    [Google Scholar]
  11. Gassmann, F., Maggiorini, M., Städler, E. & Winkler, W.
    1951. Über die Elastizität poröser Medien. Verteljahrsschrift der Naturforschenden Gesellschaft in Zurich, 96, 1–23.
    [Google Scholar]
  12. Hashin, Z. & Shtrikman, S.
    1963. A variational approach to the elastic behavior of multiphase materials. Journal of the Mechanics and Physics of Solids, 11, 127–140, https://doi.org/10.1016/0022-5096(63)90060-7
    [Google Scholar]
  13. Hill, R.
    1952. The elastic behavior of a crystalline aggregate. Proceedings of the Physical Society Section A, 65, 349–354, https://doi.org/10.1088/0370-1298/65/5/307
    [Google Scholar]
  14. Isaac, J.H. & Lawton, D.C.
    2016. A case study showing the value of multi-offset synthetic seismograms in seismic data interpretation. Interpretation, 4, T455–T459, https://doi.org/10.1190/INT-2016-0036.1
    [Google Scholar]
  15. Ivandic, M., Juhlin, C. et al.
    2015. Geophysical monitoring at the Ketzin pilot site for CO 2 storage: New insights into the plume evolution. International Journal of Greenhouse Gas Control, 32, 90–105, https://doi.org/10.1016/j.ijggc.2014.10.015
    [Google Scholar]
  16. Ivanova, A., Kashubin, A. et al.
    2012. Monitoring and volumetric estimation of injected CO 2 using 4D seismic, petrophysical data, core measurements and well logging: a case study at Ketzin, Germany. Geophysical Prospecting, 60, 957–973, https://doi.org/10.1111/j.1365-2478.2012.01045.x
    [Google Scholar]
  17. Landrø, M.
    2010. 4D seismic. In: Bjørlykke, K. (ed.) Petroleum Geoscience: From sedimentary Environments to Rock Physics. Springer, Berlin, 489–514, https://doi.org/10.1007/978-3-642-02332-3_19
    [Google Scholar]
  18. Landrø, M., Solheim, O.A., Hilde, E., Ekren, B.O. & Strønen, L.K.
    1999. The Gullfaks 4D seismic study. Petroleum Geoscience, 5, 213–226, https://doi.org/10.1144/petgeo.5.3.213
    [Google Scholar]
  19. Lawton, D.C., Osadetz, K. & Saeedfar, A.
    2017. CCS monitoring technology innovation at the CaMI field research station, Alberta, Canada. In: EAGE/SEG Research Workshop 2017, Geophysical Monitoring of CO₂ Injection: CCS and CO₂-EOR, August 2017, Trondheim, Norway. https://doi.org/10.3997/2214-4609.201701930
    [Google Scholar]
  20. Lawton, D.C., Dongas, J., Osadetz, K., Saeedfar, A. & Macquet, M.
    2019. Development and analysis of a geostatic model for shallow CO2 injection at the Field Research Station, Southern Alberta, Canada. In: Davis, T.L., Landro, M. & Wilson, M. (eds) Geophysics and Geosequestration. Cambridge University Press, Cambridge, 280–296.
    [Google Scholar]
  21. Li, K. & Horne, R.N.
    2006. Comparison of methods to calculate relative permeability from capillary pressure in consolidated water-wet porous media. Water Resources Research, 42, W06405, https://doi.org/10.1029/2005WR004482
    [Google Scholar]
  22. Lumley, D.E.
    2001. Time -lapse seismic reservoir monitoring. Geophysics, 66, 50–53, https://doi.org/10.1190/1.1444921
    [Google Scholar]
  23. 2010. 4D seismic monitoring of CO 2 sequestration. The Leading Edge, 29, 150–155, https://doi.org/10.1190/1.3304817
    [Google Scholar]
  24. Macquet, M. & Lawton, D.C.
    2018. Reservoir simulations and feasibility study for seismic monitoring at CaMI.FRS., Newell County, Alberta. In: Fifth CO2 Geological Storage Workshop, 21–23 November 2018, Utrecht, The Netherlands.
    [Google Scholar]
  25. Martens, S., Möller, F., Streibel, M. & Liebscher, A.
    2014. Completion of five years of safe CO 2 injection and transition to the post-closure phase at the Ketzin pilot site. Energy Procedia, 59, 190–197, https://doi.org/10.1016/j.egypro.2014.10.366
    [Google Scholar]
  26. Mavko, G., Mukerji, T. & Dvorkin, J.
    1998. The Rock Physics Handbook: Tools for Seismic Analysis in Porous Media. Cambridge University Press.
    [Google Scholar]
  27. Meadows, M.A. & Cole, S.P.
    2013. 4D seismic modeling and CO 2 pressure-saturation inversion at the Weyburn Field, Saskatchewan. International Journal of Greenhouse Gas Control, 16, S103–S117, https://doi.org/10.1016/j.ijggc.2013.01.030
    [Google Scholar]
  28. Meadows, M., Adams, D., Wright, R., Tura, A., Cole, S. & Lumley, D.
    2005. Rock physics analysis for time-lapse seismic at Schiehallion Field, North Sea. Geophysical Prospecting, 53, 205–213, https://doi.org/10.1111/j.1365-2478.2004.00467.x
    [Google Scholar]
  29. Morcote, A., Mavko, G. & Prasad, M.
    2010. Dynamic elastic properties of coal. Geophysics, 75, E227–E234, https://doi.org/10.1190/1.3508874
    [Google Scholar]
  30. Mossop, G.D. & Shetsen, I.
    , Compilers 1994. Geological Atlas of the Western Canada Sedimentary Basin. Canadian Society of Petroleum Geologists and Alberta Research Council. Accessed 9 February 2018, https://ags.aer.ca/reports/atlas-of-the-western-canada-sedimentary-basin.htm
    [Google Scholar]
  31. Murphy, W.F.
    1982. Effects of microstructure and pore fluids on the acoustic properties of granular sedimentary materials. Ph. D. dissertation, Stanford University.
    [Google Scholar]
  32. Nghiem, L., Sammon, P., Grabenstetter, J. & Ohkuma, H.
    2004. Modeling CO2 Storage in Aquifers with a Fully-Coupled Geochemical EOS Compositional Simulator. In:SPE/DOE Fourteenth Symposium on Improved Oil Recovery, 17–21 April 2004, Tulsa, Oklahoma, U.S.A.
    [Google Scholar]
  33. Nowroozi, N., Lawton, D. & Khaniani, H.
    2016. Seismic modeling and imaging for a shallow CO 2 injection project. SEG Technical Program Expanded Abstracts, 2936–2940. https://doi.org/10.1190/segam2016-13973145.1.
    [Google Scholar]
  34. Reuss, A.
    1929. Berechnung der Fliebgrenze von Mischkristallen auf Grund der Plastizitatsbedingung fur Einkristalle. Journal of Applied Mathematics and Mechanics, 9, 49–58. https://doi.org/10.1002/zamm.19290090104.
    [Google Scholar]
  35. Roach, L.A., White, D.J., Roberts, B. & Angus, D.
    2017. Initial 4D seismic results after CO 2 injection start-up at the Aquistore storage site. Geophysics, 82, B95–B107, https://doi.org/10.1190/geo2016-0488.1
    [Google Scholar]
  36. Rock, L., Brydie, J., Jones, D., Perkin, J.-P. & Taylor, E.
    2015. Methodology to assess groundwater quality during CO2 injection at the Quest CCS project. In: Geoconvention, Geoscience New Horizons, May 2015, Calgary, Alberta, Canada.
    [Google Scholar]
  37. Smith, T.M., Sondergeld, C.H. & Rai, C.S.
    2003. Gassmann fluid substitutions: a tutorial. Geophysics, 68, 430–440, https://doi.org/10.1190/1.1567211
    [Google Scholar]
  38. Span, R. & Wagner, W.
    1996. A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100K at pressures up to 800MPa. Journal of Physical and Chemical Reference Data, 25, 1509–1596, https://doi.org/10.1063/1.555991
    [Google Scholar]
  39. Spangler, L.H., Dobeck, L.M. et al.
    2010. A shallow subsurface controlled release facility in Bozeman, Montana, USA, for testing near surface CO2 detection techniques and transport models. Environmental Earth Sciences, 60, 227–239, https://doi.org/10.1007/s12665-009-0400-2
    [Google Scholar]
  40. Swager, L.
    2015. Geophysical log descriptive report: CMCRI COUNTESS 10-22-17-16 ELAN: Schlumberger Carbon Services-CS1512-112-LS, No. 2.
  41. Voigt, W.
    1889. Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper. Annalen der Physik, 274, 573–587, https://doi.org/10.1002/andp.18892741206
    [Google Scholar]
  42. White, D.
    2013. Seismic characterization and time-lapse imaging during seven years of CO 2 flood in the Weyburn field, Saskatchewan, Canada. International Journal of Greenhouse Gas Control, 16, S78–S94, https://doi.org/10.1016/j.ijggc.2013.02.006
    [Google Scholar]
  43. Wright, G.N., McMechan, M.E., Potter, D.E.G. & Holter, M.E.
    1994. Structure and architecture of the Western Canada Sedimentary Basin. In: Mossop, G.D. & Shetsen, I. (eds) Geological Atlas of the Western Canada Sedimentary Basin. Canadian Society of Petroleum Geologists and Alberta Research Council, Calgary, 25–40.
    [Google Scholar]
  44. Zaluski, W., Lee, S.Y. & Dongas, J.
    2016. Carbon Management Canada static and dynamic model report. Schlumberger Carbon Services-CS1603-020-WZ, No. 2.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1144/petgeo2018-135
Loading
/content/journals/10.1144/petgeo2018-135
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error