1887
Volume 25, Issue 4
  • ISSN: 1354-0793
  • E-ISSN:
PDF

Abstract

We demonstrate statistically significant self-organized clustering over a length scale range from 10 to 10 m for north-striking opening-mode fractures (joints) in Late Archean Mount Owen Quartz Monzonite. Spatial arrangement is a critical fracture network attribute that until recently has only been assessed qualitatively. We use normalized fracture intensity plots and the normalized correlation count (NCC) method of Marrett to discriminate clustered from randomly placed or evenly spaced patterns quantitatively over a wide range of length scales and to test the statistical significance of the resulting patterns. We propose a procedure for interpreting cluster patterns on NCC diagrams generated by the freely available spatial analysis software CorrCount. Results illustrate the efficacy of NCC to measure fracture clustering patterns in texturally homogeneous Archean granitic rock in a setting distant (>2 km) from folds or faults. In their current geological setting, these regional fractures are conduits for water flow and their patterns – and the NCC approach to defining clusters – may be useful guides to the spatial arrangement style and clustering magnitude of conductive fractures in other, less accessible fractured basement rocks.

This article is part of the Naturally Fractured Reservoirs collection available at: https://www.lyellcollection.org/cc/naturally-fractured-reservoirs

[open-access]

Companion
This article is accompanied by the following content:
Degradation of fracture porosity in sandstone by carbonate cement, Piceance Basin, Colorado, USA
Companion
This article is accompanied by the following content:
Introduction to the thematic collection: Naturally Fractured Reservoirs
Companion
This article is accompanied by the following content:
Flow diagnostics for naturally fractured reservoirs
Companion
This article is accompanied by the following content:
Genesis and role of bitumen in fracture development during early catagenesis
Companion
This article is accompanied by the following content:
Multiscale fracture length analysis in carbonate reservoir units, Kurdistan, NE Iraq
Loading

Article metrics loading...

/content/journals/10.1144/petgeo2018-146
2019-07-01
2020-06-04
Loading full text...

Full text loading...

/deliver/fulltext/petgeo/25/4/petgeo2018-146.html?itemId=/content/journals/10.1144/petgeo2018-146&mimeType=html&fmt=ahah

References

  1. Anders, M.H., Laubach, S.E. & Scholz, C.H.
    2014. Microfractures: a review. Journal of Structural Geology, 69B, 377–394, https://doi.org/10.1016/j.jsg.2014.05.011
    [Google Scholar]
  2. Bagdonas, D.A., Frost, C.D. & Fanning, C.M.
    2016. The origin of extensive Neoarchean high-silica batholiths and the nature of intrusive complements to silicic ignimbrites: Insights from the Wyoming batholith, U.S.A. The American Mineralogist, 101, 1332–1347, https://doi.org/10.2138/am-2016-5512
    [Google Scholar]
  3. Bai, T., Pollard, D.D. & Gao, H.
    2000. Explanation for fracture spacing in layered materials. Nature, 403, 753–756, https://doi.org/10.1038/35001550
    [Google Scholar]
  4. Barton, C.C. & Hsieh, P.A.
    1989. Physical and Hydrologic Flow Properties of Fractures. American Geophysical Union Field Trip Guidebook, T385.
    [Google Scholar]
  5. Bear, J., Tsang, C.F. & De Marsily, G.
    2012. Flow and Contaminant Transport in Fractured Rock. Academic Press, San Diego, CA.
    [Google Scholar]
  6. Belaidi, A., Bonter, D.A., Slightam, C. & Trice, R.C
    . 2018. The Lancaster Field: progress in opening the UK's fractured basement play. In: Bowman, M. & Levell, B. (eds) Petroleum Geology of NW Europe: 50 Years of Learning – Proceedings of the 8th Petroleum Geology Conference. Geological Society, London, 385–398, https://doi.org/10.1144/PGC8.20
    [Google Scholar]
  7. Bertrand, L., Géraud, Y., Le Garzic, E., Place, J., Diraison, M., Walter, B. & Haffen, S.
    2015. A multiscale analysis of a fracture pattern in granite: A case study of the Tamariu granite, Catalunya, Spain. Journal of Structural Geology, 78, 52–66, https://doi.org/10.1016/j.jsg.2015.05.013
    [Google Scholar]
  8. Bonnet, E., Bour, O., Odling, N.E., Davy, P., Main, I., Cowie, P. & Berkowitz, B.
    2001. Scaling of fracture systems in geological media. Reviews of Geophysics, 29, 347–383, https://doi.org/10.1029/1999RG000074
    [Google Scholar]
  9. Bonter, D., Trice, R., Cavalleri, C., Delius, H. & Singh, K
    . 2018. Giant oil discovery west of Shetland – challenges for fractured basement formation evaluation. Paper presented at theSPWLA 59th Annual Logging Symposium, 2–6 June 2018, London, UK.
    [Google Scholar]
  10. Bradley, C.C.
    1956. The Precambrian complex of Grand Teton National Park, Wyoming. In: Berg, R.R. (ed.) Jackson Hole 11th Annual Field Conference Guidebook. Wyoming Geological Association, Casper, WY, 34–42.
    [Google Scholar]
  11. Byrd, J.O., Smith, R.B. & Geissman, J.W.
    1994. The Teton fault, Wyoming: topographic signature, neotectonics, and mechanisms of deformation. Journal of Geophysical Research: Solid Earth, 99, 20  095–20  122, https://doi.org/10.1029/94JB00281
    [Google Scholar]
  12. Carey, J.W., Lei, Z., Rougier, E., Mori, H. & Viswanathan, H.
    2015. Fracture–permeability behavior of shale. Journal of Unconventional Oil and Gas Resources, 11, 27–43, https://doi.org/10.1016/j.juogr.2015.04.003
    [Google Scholar]
  13. Chamberlain, K.R., Frost, C.D. & Frost, B.R.
    2003. Early Archean to Mesoproterozoic evolution of the Wyoming Province: Archean origins to modern lithospheric architecture. Canadian Journal of Earth Sciences, 40, 1357–1374, https://doi.org/10.1139/e03-054
    [Google Scholar]
  14. Cox, S.F., Knackstedt, M.A. & Braun, J.
    2001. Principles of structural control on permeability and fluid flow in hydrothermal systems. Reviews in Economic Geology, 14, 1–24, https://doi.org/10.1130/REG14-p1
    [Google Scholar]
  15. Cuong, T.X. & Warren, J.K.
    2009. Back Ho Field, a fractured granitic basement reservoir, Cuu Long basin, offshore SE Vietnam: a ‘buried-hill’ play. Journal of Petroleum Geology, 32, 129–156, https://doi.org/10.1111/j.1747-5457.2009.00440.x
    [Google Scholar]
  16. De Dreuzy, J.R., Davy, P. & Bour, O.
    2001. Hydraulic properties of two-dimensional random fracture networks following a power law length distribution: 1. Effective connectivity. Water Resources Research, 37, 2065–2078, https://doi.org/10.1029/2001WR900011
    [Google Scholar]
  17. Dresen, G.
    1991. Stress distribution and the orientation of Riedel shears. Tectonophysics, 188, 239–247, https://doi.org/10.1016/0040-1951(91)90458-5
    [Google Scholar]
  18. Ehlen, J.
    2000. Fractal analysis of joint patterns in granite. International Journal of Rock Mechanics and Mining Sciences, 37, 909–922, https://doi.org/10.1016/S1365-1609(00)00027-7
    [Google Scholar]
  19. Engelder, T.
    1985. Loading paths to joint propagation during a tectonic cycle: an example from the Appalachian Plateau, USA. Journal of Structural Geology, 7, 459–476, https://doi.org/10.1016/0191-8141(85)90049-5
    [Google Scholar]
  20. English, J.M. & Laubach, S.E.
    2017. Opening-mode fracture systems – insights from recent fluid inclusion microthermometry studies of crack-seal fracture cements. In: Turner, J.P., Healy, D., Hillis, R.R. & Welch, M. (eds) Geomechanics and Geology.Geological Society, London, Special Publications, 458, 257–272, https://doi.org/10.1144/SP458.1
    [Google Scholar]
  21. Escuder Viruete, J., Carbonell, R., Jurado, M.J., Martí, D. & & Pérez-Estaún, A.
    2001. Two dimensional geostatistical modeling and prediction of fracture system in the Albala granitic pluton, SW Iberian massif, Spain. Journal of Structural Geology, 23, 2011–2023, https://doi.org/10.1016/S0191-8141(01)00026-8
    [Google Scholar]
  22. Forstner, S.R., Laubach, S.E. & Fall, A.
    2018. Evolution of deformation in the Buck Mountain fault damage zone, Cambrian Flathead sandstone, Teton Range, Wyoming. Pan-American Current Research on Fluid Inclusions, 14, 47–48.
    [Google Scholar]
  23. Foster, D., Brocklehurst, S.H. & Gawthorpe, R.L.
    2010. Glacial–topographic interactions in the Teton Range, Wyoming. Journal of Geophysical Research: Earth Surface, 115, F01007, https://doi.org/10.1029/2008JF001135
    [Google Scholar]
  24. Frost, B.R., Swapp, S.M., Frost, C.D., Bagdonas, D.A. & Chamberlain, K.R.
    2018. Neoarchean tectonic history of the Teton Range: Record of accretion against the present-day western margin of the Wyoming Province. Geosphere, 14, 1008–1030, https://doi.org/10.1130/GES01559.1
    [Google Scholar]
  25. Gabrielsen, R.H. & Braathen, A.
    2014. Models of fracture lineaments – Joint swarms, fracture corridors and faults in crystalline rocks, and their genetic relations. Tectonophysics, 628, 26–44, https://doi.org/10.1016/j.tecto.2014.04.022
    [Google Scholar]
  26. Gale, J.F.W., Laubach, S.E., Olson, J.E., Eichhubl, P. & Fall, A.
    2014. Natural fractures in shale: a review and new observations. AAPG Bulletin, 98, 2165–2216, https://doi.org/10.1306/08121413151
    [Google Scholar]
  27. Genter, A.
    & Castaing, C. 1997. Effets d’échelle dans la fracturation des granites [Scale effects in the fracturing of granites]. Tectonics, 325, 439–445, https://doi.org/10.1016/S1251-8050(97)81162-7
    [Google Scholar]
  28. Gillespie, P.A., Howard, C.B., Walsh, J.J. & Watterson, J.
    1993. Measurement and characterization of spatial distributions of fractures. Tectonophysics, 226, 114–141, https://doi.org/10.1016/0040-1951(93)90114-Y
    [Google Scholar]
  29. Gillespie, P.A., Johnston, J.D., Loriga, M.A., McCaffrey, K.J.W., Walsh, J.J. & Watterson, J.
    1999. Influence of layering on vein systematics in line samples. In: McCaffrey, K.J.W., Walsh, J.J. & Watterson, J. (eds) Fractures, Fluid Flow, and Mineralization. Geological Society, London, Special Publications, 155, 35–56, https://doi.org/10.1144/GSL.SP.1999.155.01.05
    [Google Scholar]
  30. Gillespie, P.A., Walsh, J.J., Watterson, J., Bonson, C.G. & Manzocchi, T.
    2001. Scaling relationships of joint and vein arrays from The Burren, Co. Clare, Ireland. Journal of Structural Geology, 23, 183–201, https://doi.org/10.1016/S0191-8141(00)00090-0
    [Google Scholar]
  31. Halihan, T., Mace, R.E. & Sharp, J.M.,.J.
    2000. Flow in the San Antonio segment of the Edwards aquifer: matrix, fractures, or conduits?In: Sasowsky, I.D. & Wicks, C.M. (eds) Groundwater Flow and Contaminant Transport in Carbonate Aquifers. Balkema, Rotterdam, The Netherlands, 129–146.
    [Google Scholar]
  32. Hancock, P.L.
    1985. Brittle microtectonics: principles and practice. Journal of Structural Geology, 7, 437–457, https://doi.org/10.1016/0191-8141(85)90048-3
    [Google Scholar]
  33. Heidbach, O., Rajabi, M. et al.
    2018. The World Stress Map database release 2016: crustal stress pattern across scales. Tectonophysics, 744, 484–498, https://doi.org/10.1016/j.tecto.2018.07.007
    [Google Scholar]
  34. Henriksen, H. & Braathen, A.
    2006. Effects of fracture lineaments and in-situ rock stresses on groundwater flow in hard rocks: a case study from Sunnfjord, western Norway. Hydrogeology Journal, 14, 444–461, https://doi.org/10.1007/s10040-005-0444-7
    [Google Scholar]
  35. Hobbs, B.E. & Ord, A.
    2018. Coupling of fluid flow to permeability development in mid- to upper crustal environments: a tale of three pressures. In: Gessner, K., Blenkinsop, T.G. & Sorjonen-Ward, P. (eds) Characterization of Ore-Forming Systems from Geological, Geochemical and Geophysical Studies. Geological Society, London, Special Publications, 453, 81–120, https://doi.org/10.1144/SP453.9
    [Google Scholar]
  36. Hooker, J.N., Laubach, S.E. & Marrett, R.
    2018. Microfracture spacing distributions and the evolution of fracture patterns in sandstones. Journal of Structural Geology, 108, 66–79, https://doi.org/10.1016/j.jsg.2017.04.001
    [Google Scholar]
  37. Hu, H., Zheng, Y., Fang, X. & Fehler, M.C.
    2018. 3D seismic characterization of fractures with random spacing using double-beam method. Geophysics, 83, M63–M74, https://doi.org/10.1190/geo2017-0739.1
    [Google Scholar]
  38. Ladeira, F.L. & Price, N.J.
    1981. Relationship between fracture spacing and bed thickness. Journal of Structural Geology, 3, 179–183, https://doi.org/10.1016/0191-8141(81)90013-4
    [Google Scholar]
  39. Lageson, D.R.
    1987. Laramide uplift of the Gros Ventre Range and implications for the origin of the Teton Fault, Wyoming. In: Miller, W.R. (ed.) The Thrust Belt Revisited: 38th Annual Field Conference Guidebook. Wyoming Geological Association, Casper, WY, 79–89.
    [Google Scholar]
  40. Lamarche, J., Chabani, A. & Gauthier, B.D.
    2018. Dimensional threshold for fracture linkage and hooking. Journal of Structural Geology, 108, 171–179, https://doi.org/10.1016/j.jsg.2017.11.016
    [Google Scholar]
  41. Laubach, S.E.
    1991. Fracture patterns in low-permeability-sandstone gas reservoir rocks in the Rocky Mountain region. Paper presented at the Low Permeability Reservoirs Symposium, April 15–17, 1991, Denver, CO, USA, https://doi.org/10.2118/21853-MS
    [Google Scholar]
  42. 2003. Practical approaches to identifying sealed and open fractures. AAPG Bulletin, 87, 561–579, https://doi.org/10.1306/11060201106
    [Google Scholar]
  43. Laubach, S.E., Mace, R.E. & Nance, H.S.
    1995. Fault and joint swarms in a normal fault zone. In: Rossmanith, H.-P. (ed.) Mechanics of Jointed and Faulted Rock. Balkema, Rotterdam, The Netherlands, 305–309.
    [Google Scholar]
  44. Laubach, S.E., Lamarche, J., Gauthier, B.D.M., Dunne, W.M. & Sanderson, D.J.
    2018a. Spatial arrangement of faults and opening-mode fractures. Journal of Structural Geology, 108, 2–15. https://doi.org/10.1016/j.jsg.2017.08.008
    [Google Scholar]
  45. Laubach, S.E., Hundley, T.H., Hooker, J.N. & Marrett, R.
    2018b. Spatial arrangement and size distribution of normal faults, Buckskin Detachment upper plate, Western Arizona. Journal of Structural Geology, 108, 230–242, https://doi.org/10.1016/j.jsg.2017.10.001
    [Google Scholar]
  46. Le Garzic, E., De L'Hamaide, T. et al.
    2011. Scaling and geometric properties of extensional fracture systems in the proterozoic basement of Yemen: Tectonic interpretation and fluid flow implications. Journal of Structural Geology, 33, 519–536, https://doi.org/10.1016/j.jsg.2011.01.012
    [Google Scholar]
  47. Leopold, E.B., Lu, G., Love, J.D. & Love, D.W.
    2007. Plio-Pleistocene climatic transition and the lifting of the Teton Range, Wyoming. Quaternary Research, 67, 1–11, https://doi.org/10.1016/j.yqres.2006.10.006
    [Google Scholar]
  48. Li, J.Z., Laubach, S.E., Gale, J.F.W. & Marrett, R.
    2018. Quantifying opening-mode fracture spatial organization in horizontal wellbore image logs, core and outcrop: application to Upper Cretaceous Frontier Formation tight gas sandstones, USA. Journal of Structural Geology, 108, 137–156, https://doi.org/10.1016/j.jsg.2017.07.005
    [Google Scholar]
  49. Love, J.D., Leopold, E.B. & Love, D.W.
    1978. Eocene Rocks, Fossils, and Geologic History, Teton Range, Northwestern Wyoming. United States Geological Survey Professional Paper, 932-B.
    [Google Scholar]
  50. Love, J.D., Reed, J.C. & Christiansen, A.C.
    1992. Geologic Map of Grand Teton National Park, Teton County, Wyoming (Scale 1:62  500) . United States Geological Survey Miscellaneous Investigations Series Map, 1-2031(IMAP 2031).
  51. Maillot, J., Davy, P., Le Goc, R., Darcel, C. & De Dreuzy, J.R.
    2016. Connectivity, permeability, and channeling in randomly distributed and kinematically defined discrete fracture network models. Water Resources Research, 52, 8526–8545, https://doi.org/10.1002/2016WR018973
    [Google Scholar]
  52. Marrett, R., Gale, J.F.W., Gomez, L. & Laubach, S.E.
    2018. Correlation analysis of fracture arrangement in space. Journal of Structural Geology, 108, 16–33, https://doi.org/10.1016/j.jsg.2017.06.012
    [Google Scholar]
  53. Martel, S.J.
    1990. Formation of compound strike-slip fault zones, Mount Abbot quadrangle, California. Journal of Structural Geology, 12, 869–882, https://doi.org/10.1016/0191-8141(90)90060-C
    [Google Scholar]
  54. Mazurek, M., Jakob, A. & Bossart, P.
    2003. Solute transport in crystalline rocks at Äspö – I: Geological basis and model calibration. Journal of Contaminant Hydrology, 61, 157–174, https://doi.org/10.1016/S0169-7722(02)00137-7
    [Google Scholar]
  55. McGinnis, R.N., Ferrill, D.A., Smart, K.J., Morris, A.P., Higuera-Diaz, C. & Prawika, D.
    2015. Pitfalls of using entrenched fracture relationships: Fractures in bedded carbonates of the Hidden Valley Fault Zone, Canyon Lake Gorge, Comal County, Texas. AAPG Bulletin, 99, 2221–2245, https://doi.org/10.1306/07061513012
    [Google Scholar]
  56. Miranda, T.S., Santos, R.F. et al.
    2018. Quantifying aperture, spacing and fracture intensity in a carbonate reservoir analogue: Crato Formation, NE Brazil. Marine & Petroleum Geology, 97, 556–567, https://doi.org/10.1016/j.marpetgeo.2018.07.019
    [Google Scholar]
  57. Nara, Y., Harui, T. & Kashiwaya, K.
    2018. Influence of calcium ions on subcritical crack growth in granite. International Journal of Rock Mechanics and Mining Sciences, 102, 71–77, https://doi.org/10.1016/j.ijrmms.2018.01.001
    [Google Scholar]
  58. Narr, W. & Suppe, J.
    1991. Joint spacing in sedimentary rocks. Journal of Structural Geology, 13, 1037–1048, https://doi.org/10.1016/0191-8141(91)90055-N
    [Google Scholar]
  59. Olson, J.E.
    1993. Joint pattern development: effects of subcritical crack growth and mechanical interaction. Journal of Geophysical Research, 98, 12  251–12  265, https://doi.org/10.1029/93JB00779
    [Google Scholar]
  60. 2004. Predicting fracture swarms – the influence of subcritical crack growth and the crack-tip process zone on joint spacing in rock. In: Cosgrove, J.W. & Engelder, T. (eds) The Initiation, Propagation, and Arrest of Joints and Other Fractures. Geological Society, London, Special Publications, 231, 73–88, https://doi.org/10.1144/GSL.SP.2004.231.01.05
    [Google Scholar]
  61. Olson, J.E. & Pollard, D.D.
    1989. Inferring paleostresses from natural fracture patterns: a new method. Geology, 17, 345–348, https://doi.org/10.1130/0091-7613(1989)017<0345:IPFNFP>2.3.CO;2
    [Google Scholar]
  62. Ortega, O., Marrett, R. & Laubach, S.E.
    2006. A scale-independent approach to fracture intensity and average spacing measurement. AAPG Bulletin, 90, 193–208, https://doi.org/10.1306/08250505059
    [Google Scholar]
  63. Pollard, D.D. & Aydin, A.
    1988. Progress in understanding jointing over the past century. Geological Society of America Bulletin, 100, 1181–1204, https://doi.org/10.1130/0016-7606(1988)100<1181:PIUJOT>2.3.CO;2
    [Google Scholar]
  64. Powers, R.B.
    (ed.). 1982. Geologic Studies of the Cordilleran Thrust Belt. Rocky Mountain Association of Geologists, Denver, CO.
    [Google Scholar]
  65. Priest, S.D. & Hudson, J.A.
    1976. Discontinuity spacings in rock. International Journal of Rock Mechanics, 13, 135–148, https://doi.org/10.1016/0148-9062(76)90818-4
    [Google Scholar]
  66. Putz-Perrier, M.W. & Sanderson, D.J.
    2008. The distribution of faults and fractures and their importance in accommodating extensional strain at Kimmeridge Bay, Dorset, UK. In: Wibberley, C.A.J., Kurz, W., Holdsworth, R.E. & Collettini, C. (eds) The Internal Structure of Fault Zones: Implications for Mechanical and Fluid-Flow Properties. Geological Society, London, Special Publications, 299, 97–111, https://doi.org/10.1144/SP299.6
    [Google Scholar]
  67. Questiaux, J.M., Couples, G.D. & Ruby, N.
    2010. Fractured reservoirs with fracture corridors. Geophysical Prospecting, 58, 279–295, https://doi.org/10.1111/j.1365-2478.2009.00810.x
    [Google Scholar]
  68. Reed, J.C., Jr & Zartman, R.E.
    1973. Geochronology of Precambrian rocks of the Teton Range, Wyoming. Geological Society of America Bulletin, 84, 561–582, https://doi.org/10.1130/0016-7606(1973)84<561:GOPROT>2.0.CO;2
    [Google Scholar]
  69. Roberts, S.V. & Burbank, D.W.
    1993. Uplift and thermal history of the Teton Range (northwestern Wyoming) defined by apatite fission-track dating. Earth and Planetary Science Letters, 118, 295–309, https://doi.org/10.1016/0012-821X(93)90174-8
    [Google Scholar]
  70. Roy, A., Perfect, E., Dunne, W.M. & McKay, L.D.
    2014. A technique for revealing scale-dependent patterns in fracture spacing data. Journal of Geophysical Research: Solid Earth, 119, 5979–5986, https://doi.org/10.1002/2013JB010647
    [Google Scholar]
  71. Sanderson, D.J. & Nixon, C.W.
    2015. The use of topology in fracture network characterization. Journal of Structural Geology, 72, 55–66, https://doi.org/10.1016/j.jsg.2015.01.005
    [Google Scholar]
  72. Sanderson, D.J. & Peacock, D.C.P.
    2019. Line sampling of fracture swarms and corridors. Journal of Structural Geology, 122, 27–37, https://doi.org/10.1016/j.jsg.2019.02.006
    [Google Scholar]
  73. Sanderson, D.J., Roberts, S. & Gumiel, P.
    1994. A fractal relationship between vein thickness and gold grade in drill core from La Codosera, Spain. Economic Geology, 89, 168–173, https://doi.org/10.2113/gsecongeo.89.1.168
    [Google Scholar]
  74. Santos, R.F., Miranda, T.S. et al.
    2015. Characterization of natural fracture systems: analysis of uncertainty effects in linear scanline results. AAPG Bulletin, 99, 2203–2219, https://doi.org/10.1306/05211514104
    [Google Scholar]
  75. Segall, P. & Pollard, D.D.
    1983. Joint formation in granitic rock of the Sierra Nevada. Geological Society of America Bulletin, 94, 563–575, https://doi.org/10.1130/0016-7606(1983)94<563:JFIGRO>2.0.CO;2
    [Google Scholar]
  76. Slightam, C.
    2014. Characterizing seismic-scale faults pre- and post-drilling; Lewisian Basement, West of Shetlands, UK. In: Spence, G.H., Redfern, J., Aguilera, R., Bevan, T.G., Cosgrove, J.W., Couples, G.D. & Daniel, J.-M. (eds) Advances in the Study of Fractured Reservoirs. Geological Society, London, Special Publications, 374, 311–331, https://doi.org/10.1144/SP374.6
    [Google Scholar]
  77. Smith, R.B. & Siegel, L.
    2000. Windows into Earth: The Geologic Story of Yellowstone and Grand Teton National Parks. Oxford University Press, Oxford.
    [Google Scholar]
  78. Smith, R.B., Byrd, J.O.D. & Susong, D.D.
    1993. The Teton fault: seismotectonics, Quaternary history and earthquake hazards. In: Snoke, A.W., Steidtmann, J. & Roberts, S.M. (eds) Geology of Wyoming. Geological Survey of Wyoming Memoirs, 5, 628–667.
    [Google Scholar]
  79. Solano, N., Zambrano, L. & Aguilera, R.
    2011. Cumulative-gas-production distribution on the Nikanassin Formation, Alberta and British Columbia, Canada. SPE Reservoir Evaluation and Engineering, 14, 357–376, https://doi.org/10.2118/132923-PA
    [Google Scholar]
  80. Tchalenko, J.S.
    1970. Similarities between shear zones of different magnitudes. Geological Society of America Bulletin, 81, 1625–1640, https://doi.org/10.1130/0016-7606(1970)81[1625:SBSZOD]2.0.CO;2
    [Google Scholar]
  81. Terzaghi, R.
    1965. Sources of error in joint surveys. Geotechnique, 15, 287–297, https://doi.org/10.1680/geot.1965.15.3.287
    [Google Scholar]
  82. Torabi, A., Alaei, B. & Ellingsen, T.S.S.
    2018. Faults and fractures in basement rocks, their architecture, petrophysical and mechanical properties. Journal of Structural Geology, 117, 256–263. https://doi.org/10.1016/j.jsg.2018.07.001
    [Google Scholar]
  83. Wehunt, D., Borovykh, M. & Narr, W.
    2017. Stochastic 2D well-path assessments for naturally fractured carbonate reservoirs. SPE Reservoir Evaluation & Engineering, 20, 853–875, https://doi.org/10.2118/180468-PA
    [Google Scholar]
  84. Willemse, E.J. & Pollard, D.D.
    1998. On the orientation and patterns of wing cracks and solution surfaces at the tips of a sliding flaw or fault. Journal of Geophysical Research: Solid Earth, 103, 2427–2438, https://doi.org/10.1029/97JB01587
    [Google Scholar]
  85. Zartman, R.E. & Reed, J.C., Jr
    . 1998. Zircon geochronology of the Webb Canyon Gneiss and the Mount Owen Quartz Monzonite, Teton Range, Wyoming: significance to dating Late Archean metamorphism in the Wyoming craton. The Mountain Geologist, 35, 71–77.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1144/petgeo2018-146
Loading
/content/journals/10.1144/petgeo2018-146
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error