1887
Volume 25, Issue 4
  • ISSN: 1354-0793
  • E-ISSN:

Abstract

Cretaceous Mesaverde Group sandstones contain opening-mode fractures lined or filled by quartz and, locally, calcite cement. Fracture occlusion by quartz is controlled primarily by fracture size, age and thermal history. Fracture occlusion by calcite is highly heterogeneous, with open and calcite-sealed fractures found at adjacent depths. In the Piceance and in other basins, processes that control the distribution of these calcite cements have been uncertain. Using pore and fracture cement petrography, fluid inclusions, and isotopic and elemental analysis, we show that host-rock calcite distribution and remobilization govern porosity degradation and occlusion of fractures >1 mm wide by calcite. Fluid-inclusion analyses indicate calcite cement precipitation at 135–165°C. Sr/Sr ratios of calcite and the presence of porous albite suggest that detrital feldspar albitization released Ca, driving carbonate cement precipitation. In host rock, both albite and calcite content decreases with depth along with greater fracture porosity preservation. Although the cement sequence Fe-dolomite → ankerite → calcite is widespread, Fe-dolomite and ankerite occur as host-rock cements only, with detrital dolomite as preferred precipitation substrate. We find that the rock-mass calcite cement content correlates with fracture degradation and occlusion, and can be used to accurately predict where wide fractures are sealed or open.

This article is part of the Naturally Fractured Reservoirs collection available at: https://www.lyellcollection.org/cc/naturally-fractured-reservoirs

Companion

This article is accompanied by the following content:
Genesis and role of bitumen in fracture development during early catagenesis

Companion

This article is accompanied by the following content:
Multiscale fracture length analysis in carbonate reservoir units, Kurdistan, NE Iraq

Companion

This article is accompanied by the following content:
Flow diagnostics for naturally fractured reservoirs

Companion

This article is accompanied by the following content:
Introduction to the thematic collection: Naturally Fractured Reservoirs

Companion

This article is accompanied by the following content:
Multiscale fracture length analysis in carbonate reservoir units, Kurdistan, NE Iraq

Companion

This article is accompanied by the following content:
Flow diagnostics for naturally fractured reservoirs

Companion

This article is accompanied by the following content:
Introduction to the thematic collection: Naturally Fractured Reservoirs

Companion

This article is accompanied by the following content:
Genesis and role of bitumen in fracture development during early catagenesis
Loading

Article metrics loading...

/content/journals/10.1144/petgeo2018-162
2019-06-21
2024-03-29
Loading full text...

Full text loading...

References

  1. Almansour, A.
    2017. A value of information analysis of fracture prediction models. MS Thesis, The University of Texas at Austin, https://doi.org/10.15781/T2FJ29V85
  2. Anderson, S.
    1980. Western Gas Sands Project: Stratigraphy of the Piceance Basin. DOE Report DOE/BC/10003-13. United States Department of Energy, Washington, DC.
    [Google Scholar]
  3. Baytok, S. & Pranter, M.J.
    2013. Fault and fracture distribution within a tight-gas sandstone reservoir: Mesaverde Group, Mamm Creek Field, Piceance Basin, Colorado, USA. Petroleum Geoscience, 19, 203–222, https://doi.org/10.1144/petgeo2011-093
    [Google Scholar]
  4. Beach, A.
    1977. Vein arrays, hydraulic fractures and pressure solution structures in a deformed flysch sequence, S.W. England. Tectonophysics, 40, 201–225, https://doi.org/10.1016/0040-1951(77)90066-X
    [Google Scholar]
  5. Becker, S.P., Eichhubl, P., Laubach, S.E., Reed, R.M., Lander, R.H. & Bodnar, R.J.
    2010. A 48  m.y. history of fracture opening, temperature, and fluid pressure: Cretaceous Travis Peak Formation, East Texas basin. Geological Society of America Bulletin, 122, 1081–1093, https://doi.org/10.1130/B30067.1
    [Google Scholar]
  6. Bjørkum, P.A. & Walderhaug, O.
    1990. Geometrical arrangement of calcite cementation within shallow marine sandstones. Earth-Science Reviews, 29, 145–161, https://doi.org/10.1016/0012-8252(90)90033-R
    [Google Scholar]
  7. Bjørlykke, K.
    2010. Sedimentary geochemistry. In: Bjørlykke, K. (ed.) Petroleum Geoscience. Springer, Berlin, 87–111.
    [Google Scholar]
  8. Bjørlykke, K. & Jahren, J.
    2012. Open or closed geochemical systems during diagenesis in sedimentary basins: Constraints on mass transfer during diagenesis and the prediction of porosity in sandstone and carbonate reservoirs. AAPG Bulletin, 96, 2193–2214, https://doi.org/10.1306/04301211139
    [Google Scholar]
  9. Boles, J.R.
    1982. Active albitization of plagioclase, Gulf Coast Tertiary. American Journal of Science, 282, 165–180, https://doi.org/10.2475/ajs.282.2.165
    [Google Scholar]
  10. Boles, J.R. & Ramseyer, K.
    1987. Diagenetic carbonate in Miocene sandstone reservoir, San Joaquin Basin, California. AAPG Bulletin, 71, 1475–1487, https://doi.org/10.1306/703C80F1-1707-11D7-8645000102C1865D
    [Google Scholar]
  11. Bredehoeft, J.D., Wolff, R.G., Keys, W.S. & Shuter, E.
    1976. Hydraulic fracturing to determine the regional in situ stress field, Piceance Basin, Colorado. Geological Society of America Bulletin, 87, 250–258, https://doi.org/10.1130/0016-7606(1976)87<250:HFTDTR>2.0.CO;2
    [Google Scholar]
  12. Clow, D.W., Mast, M.A., Bullen, T.D. & Turk, J.T.
    1997. Strontium 87/strontium 86 as a tracer of mineral weathering reactions and calcium sources in an Alpine/Subalpine Watershed, Loch Vale, Colorado. Water Resources Research, 33, 1335–1351, https://doi.org/10.1029/97WR00856
    [Google Scholar]
  13. Copeland, S.R., Sponheimer, M., Le Roux, P.J., Grimes, V., Lee-Thorp, J.A., de Ruiter, D.J. & Richards, M.P.
    2008. Strontium isotope ratios (87Sr/86Sr) of tooth enamel: a comparison of solution and laser ablation multicollector inductively coupled plasma mass spectrometry methods. Rapid Communications in Mass Spectrometry, 22, 3187–3194, https://doi.org/10.1002/rcm.3717
    [Google Scholar]
  14. Crossey, L.J. & Larsen, D.
    1992. Authigenic mineralogy of sandstones intercalated with organic-rich mudstones: integrating diagenesis and burial history of the Mesaverde Group, Piceance Basin, NW Colorado. In: Houseknecht, D.W. & Pittman, E.D. (eds) Origin, Diagenesis, and Petrophysics of Clay Minerals in Sandstones. SEPM Society for Sedimentary Geology Special Publications, 47,125–144, https://doi.org/10.2110/pec.92.47.0125
    [Google Scholar]
  15. Cumella, S.P. & Scheevel, J.
    2008. The influence of stratigraphy and rock mechanics on Mesaverde gas distribution, Piceance Basin, Colorado. In: Cumella, S.P., Shanley, K.W. & Camp, W.K. (eds) Understanding, Exploring, and Developing Tight-Gas Sands: 2005 Vail Hedberg Conference. AAPG Hedberg Series, 3, 137–155, https://doi.org/10.1306/13131054H33104
    [Google Scholar]
  16. Davis, S.J., Mix, H.T., Wiegand, B.A., Carroll, A.R. & Chamberlain, C.P.
    2009. Synorogenic evolution of large-scale drainage patterns: Isotope paleohydrology of sequential Laramide basins. American Journal of Science, 309, 549–602, https://doi.org/10.2475/07.2009.02
    [Google Scholar]
  17. Dutton, S.P., Clift, S.J. et al.
    1993, Major Low-Permeability Sandstone Gas Reservoirs in the Continental United States. Report of Investigations 211. Bureau of Economic Geology, Austin, TX
    [Google Scholar]
  18. Fall, A., Eichhubl, P., Cumella, S.P., Bodnar, R.J., Laubach, S.E. & Becker, S.P.
    2012. Testing the basin-centered gas accumulation model using fluid inclusion observations: southern Piceance Basin, Colorado. AAPG Bulletin, 96, 2297–2318, https://doi.org/10.1306/05171211149
    [Google Scholar]
  19. Fall, A., Eichhubl, P., Bodnar, R.J., Laubach, S.E. & Davis, J.S.
    2015. Natural hydraulic fracturing of tight-gas sandstone reservoirs, Piceance Basin, Colorado. Geological Society of America Bulletin, 127, 61–75, https://doi.org/10.1130/B31021.1
    [Google Scholar]
  20. Faure, G. & Mensing, T.M.
    2004. Isotopes: Principles and Applications. Wiley, Hoboken, NJ.
    [Google Scholar]
  21. Finley, S.J. & Lorenz, J.C.
    1988. Characterization of Natural Fractures in Mesaverde Core from the Multiwell Experiment. Sandia National Laboratories, Albuquerque, NM.
    [Google Scholar]
  22. Fischer, M.P., Higuera-Díaz, I.C., Evans, M.A., Perry, E.C. & Lefticariu, L.
    2009. Fracture-controlled paleohydrology in a map-scale detachment fold: Insights from the analysis of fluid inclusions in calcite and quartz veins. Journal of Structural Geology, 31, 1490–1510, https://doi.org/10.1016/j.jsg.2009.09.004
    [Google Scholar]
  23. Fisher, D. & Byrne, T.
    1990. The character and distribution of mineralized fractures in the Kodiak Formation, Alaska: implications for fluid flow in an underthrust sequence. Journal of Geophysical Research, 95, 9069–9080, https://doi.org/10.1029/JB095iB06p09069
    [Google Scholar]
  24. Friedman, I. & O'Neil, J.R.
    1977. Compilation of stable isotope fractionation factors of geochemical interest. In: Fleischer, M. (ed.) Data of Geochemistry. 6th edn. United States Geological Survey Professional Paper, 440, chap. KK.
    [Google Scholar]
  25. Goldstein, R.H. & Reynolds, T.J.
    1994. Systematics of Fluid Inclusions in Diagenetic Minerals. Society for Sedimentary Geology Short Course, 31.
    [Google Scholar]
  26. Grout, M.A. & Verbeek, E.A
    . 1985. Fracture History of the Plateau Creek and Adjacent Colorado River Valleys, Southern Piceance Basin – Implications for Predicting Joint Patterns at Depth. United States Geological Survey Open-File Report, 85-744.
    [Google Scholar]
  27. Grout, M.A. & Verbeek, E.A.
    1992. Fracture History of the Divide Creek and Wolf Creek Anticlines and its Relation to Laramide Basin-Margin Tectonism, Southern Piceance Basin, Northwestern Colorado. United States Geological Survey Bulletin, 1787, chap. Z.
    [Google Scholar]
  28. Hansley, P.L. & Johnson, R.C.
    1980. Mineralogy and diagenesis of low-permeability sandstones of late Cretaceous age, Piceance Creek basin, northwestern Colorado. The Mountain Geologist, 17, 88–106.
    [Google Scholar]
  29. Hood, K.C. & Yurewicz, D.A.
    2008. Assessing the Mesaverde basin-centered gas play, Piceance Basin, Colorado. In: Cumella, S.P., Shanley, K.W. & Camp, W.K. (eds) Understanding, Exploring, and Developing Tight-Gas Sands: 2005 Vail Hedberg Conference. AAPG Hedberg Series, 3, 87–104.
    [Google Scholar]
  30. Hooker, J.N. & Katz, R.F.
    2015. Vein spacing in extending, layered rock: The effect of synkinematic cementation. American Journal of Science, 315, 557–588, https://doi.org/10.2475/06.2015.03
    [Google Scholar]
  31. Hooker, J.N., Gale, J.F.W., Gomez, L.A., Laubach, S.E., Marrett, R. & Reed, R.M.
    2009. Aperture-size scaling variations in a low-strain opening-mode fracture set, Cozzette Sandstone, Colorado. Journal of Structural Geology, 31, 707–718, https://doi.org/10.1016/j.jsg.2009.04.001
    [Google Scholar]
  32. Hooker, J.N., Laubach, S.E. & Marrett, R.
    2014. A universal power-law scaling exponent for fracture apertures in sandstone. Geological Society of America Bulletin, 126, 1340–1362, https://doi.org/10.1130/B30945.1
    [Google Scholar]
  33. Hooker, J.N., Larson, T.E., Eakin, A., Laubach, S.E., Eichhubl, P., Fall, A. & Marrett, R.
    2015. Fracturing and fluid flow in a sub-décollement sandstone; or, a leak in the basement. Journal of the Geological Society, London, 172, 428–442, https://doi.org/10.1144/jgs2014-128
    [Google Scholar]
  34. Johnson, R.C. & Flores, R.M.
    2003. History of the Piceance Basin from Latest Cretaceous through Early Eocene and the characterization of Lower Tertiary sandstone reservoirs. In: Peterson, M., Olson, T.M. & Anderson, D.S. (eds) Piceance Basin 2003 Guidebook. Rocky Mountain Association of Geologists, Denver, CO, 21–62.
    [Google Scholar]
  35. Johnson, R.C. & Nuccio, V.F.
    1986. Structural and thermal history of the Piceance Creek Basin, western Colorado, in relation to hydrocarbon occurrence in the Mesaverde Group. In: Spencer, C.W. & Mast, R.F. (eds) Geology of Tight Gas Reservoirs. AAPG Studies in Geology, 24, 165–205.
    [Google Scholar]
  36. Johnson, R.C. & Roberts, S.B.
    2003. The Mesaverde total petroleum system, Uinta-Piceance Province, Utah and Colorado. In: USGS Uinta-Piceance Assessment Team (eds) Petroleum Systems and Geologic Assessment of Oil and Gas in the Uinta-Piceance Province, Utah and Colorado. United States Geological Survey Digital Data Series, DDS-69-B, chap. 7.
    [Google Scholar]
  37. Kimball, B.A.
    1984. Ground water age determinations, Piceance Creek Basin, Colorado. In: Hitchon, B. & Wallick, E.I. (eds) Proceedings of the First Canadian/American Conference on Hydrogeology, Banff, Canada, June 1984. National Well Water Association, Worthington, OH, 267–283.
    [Google Scholar]
  38. Klimentidis, R.E. & Welton, J.E.
    2008. Advances in reservoir quality assessment of tight-gas sands – links to producibility. Search and Discovery Article #40395 presented at theAAPG Annual Convention, April 20–23, 2008, San Antonio, Texas, USA.
    [Google Scholar]
  39. Land, L.S.
    1987. The major ion chemistry of saline brines in sedimentary basins. AIP Conference Proceedings, 154, 160–179, https://doi.org/10.1063/1.36392
    [Google Scholar]
  40. Lander, R.H. & Laubach, S.E.
    2015. Insights into rates of fracture growth and sealing from a model for quartz cementation in fractured sandstones. Geological Society of America Bulletin, 127, 516–538, https://doi.org/10.1130/B31092.1
    [Google Scholar]
  41. Lander, R.H. & Walderhaug, O.
    1999. Predicting porosity through simulating sandstone compaction and quartz cementation. AAPG Bulletin, 83, 433–449.
    [Google Scholar]
  42. Landry, C.J., Eichhubl, P., Prodanović, M. & Wilkins, S.
    2016. Nanoscale grain boundary channels in fracture cement enhance flow in mudrocks. Journal of Geophysical Research: Solid Earth, 121, 3366–3376, https://doi.org/10.1002/2016JB012810
    [Google Scholar]
  43. Langmuir, D.
    1997, Aqueous Environmental Geochemistry. Prentice-Hall, Upper Saddle River, NJ.
    [Google Scholar]
  44. Laubach, S.E.
    2003. Practical approaches to identifying sealed and open fractures. AAPG Bulletin, 87, 561–579, https://doi.org/10.1306/11060201106
    [Google Scholar]
  45. Laubach, S.E. & Ward, M.W.
    2006. Diagenesis in porosity evolution of opening-mode fractures, Middle Triassic to Lower Jurassic La Boca Formation, NE Mexico. Tectonophysics, 419, 75–97, https://doi.org/10.1016/j.tecto.2006.03.020
    [Google Scholar]
  46. Laubach, S.E., Reed, R.M., Olson, J.E., Lander, R.H. & Bonnell, L.M.
    2004. Coevolution of crack-seal texture and fracture porosity in sedimentary rocks: cathodoluminescence observations of regional fractures. Journal of Structural Geology, 26, 967–982, https://doi.org/10.1016/j.jsg.2003.08.019
    [Google Scholar]
  47. Lee, H.P., Olson, J.E. & Schultz, R.A.
    2018. Interaction analysis of propagating opening model fractures with veins using the Discrete Element Method. International Journal of Rock Mechanics and Mining Sciences, 103, 275–288, https://doi.org/10.1016/j.ijrmms.2018.01.005
    [Google Scholar]
  48. Lorenz, J.C.
    2003. Fracture systems in the Piceance Basin: overview and comparision with fractures in the San Juan and Green River basins. In: Peterson, K.M., Olsen, T.M. & Anderson, D.S. (eds) Piceance Basin 2003 Guidebook. Rocky Mountain Association of Geologists, Denver, CO, 75–94.
    [Google Scholar]
  49. Lorenz, J.C. & Finley, S.J.
    1991. Regional fractures; II, fracturing of Mesaverde reservoirs in the Piceance Basin, Colorado. AAPG Bulletin, 75, 1738–1757.
    [Google Scholar]
  50. McArthur, J.M., Howarth, R.J. & Bailey, T.R.
    2001. Strontium isotope stratigraphy: LOWESS Version 3: best fit to the marine Sr-isotope curve for 0–509  Ma and accompanying look-up table for deriving numerical age. The Journal of Geology, 109, 155–170, https://doi.org/10.1086/319243
    [Google Scholar]
  51. Milliken, K.L.
    2003. Late diagenesis and mass transfer in sandstone–shale sequences. In: Heinrich, D.H. & Karl, K.T. (eds) Treatise on Geochemistry. Pergamon, Oxford, 159–190.
    [Google Scholar]
  52. Morad, S.
    1998. Carbonate cementation in sandstone: Distribution patterns and geochemical evolution. In: Morad, S. (ed.) Carbonate Cementation in Sandstones. International Association of Sedimentologists Special Publications, 26, 1–26, https://doi.org/10.1002/9781444304893.ch1
    [Google Scholar]
  53. Nollet, S., Hilgers, C. & Urai, J.
    2005. Sealing of fluid pathways in overpressure cells: a case study from the Buntsandstein in the Lower Saxony Basin (NW Germany). International Journal of Earth Sciences, 94, 1039–1055, https://doi.org/10.1007/s00531-005-0492-1
    [Google Scholar]
  54. Nollet, S., Koerner, T., Kramm, U. & Hilgers, C.
    2009. Precipitation of fracture fillings and cements in the Buntsandstein (NW Germany). Geofluids, 9, 373–385, https://doi.org/10.1111/j.1468-8123.2009.00261.x
    [Google Scholar]
  55. Olson, J.E., Laubach, S.E. & Lander, R.H.
    2009. Natural fracture characterization in tight gas sandstones: Integrating mechanics and diagenesis. AAPG Bulletin, 93, 1535–1549, https://doi.org/10.1306/08110909100
    [Google Scholar]
  56. Olson, J.E., Laubach, S.E. & Eichhubl, P.
    2010. Estimating natural fracture producibility in tight gas sandstones: coupling diagenesis with geomechanical modeling. The Leading Edge, 29, 1494–1499, https://doi.org/10.1190/1.3525366
    [Google Scholar]
  57. Ozkan, A., Cumella, S.P., Milliken, K.L. & Laubach, S.E.
    2011. Prediction of lithofacies and reservoir quality using well logs, Williams Fork Formation, Mamm Creek Field, Piceance Basin. AAPG Bulletin, 95, 1699–1723, https://doi.org/10.1306/01191109143
    [Google Scholar]
  58. Patel, S.C., Frost, C.D. & Frost, B.R.
    1999. Contrasting responses of Rb–Sr systematics to regional and contact metamorphism, Laramie Mountains, Wyoming, USA. Journal of Metamorphic Geology, 17, 259–269, https://doi.org/10.1046/j.1525-1314.1999.00411.x
    [Google Scholar]
  59. Patterson, P.E., Kronmueller, K. & D, T.D.
    2003. Sequence stratigraphy of the Mesaverde Group and Ohio Creek Conglomerate, northern Piceance Basin, Colorado. In: Peterson, M., Olson, T.M. & Anderson, D.S. (eds) Piceance Basin 2003 Guidebook. Rocky Mountain Association of Geologists, Denver, CO, 115–128.
    [Google Scholar]
  60. Payne, D.F., Tuncay, K., Park, A., Comer, J.B. & Ortoleva, P.
    2000. A reaction–transport–mechanical approach to modeling the interrelationships among gas generation, overpressuring, and fracturing: implications for the Upper Cretaceous natural gas reservoirs of the Piceance Basin, Colorado. AAPG Bulletin, 84, 545–565, https://doi.org/10.1306/C9EBCE4B-1735-11D7-8645000102C1865D
    [Google Scholar]
  61. Philip, Z.G., Jennings, J.W., Olson, J.E., Laubach, S.E. & Holder, J.
    2005. Modeling coupled fracture–matrix fluid flow in geomechanically simulated fracture networks. SPE Reservoir Evaluation & Engineering, 8, 300–309, https://doi.org/10.2118/77340-PA
    [Google Scholar]
  62. Pitman, J.K. & Dickinson, W.
    1989. Petrology and isotope geochemistry of mineralized fracture in Cretaceous rocks – evidence for cementation in a closed hydrological system. In: Law, B.E. & Spencer, C.W. (eds) Geology of Tight Gas Reservoirs in the Pinedale Anticline area, Wyoming, and the Multiwell Experiment Site, Colorado. United States Geological Survey Bulletin, 1886, chap. J, J1–J15.
    [Google Scholar]
  63. Pitman, J.K. & Sprunt, E.S.
    1985. Origin and distribution of fractures in Tertiary and Cretaceous rocks, Piceance basin, Colorado, and their relation to hydrocarbon occurrence. AAPG Bulletin, 69, 860–861.
    [Google Scholar]
  64. 1986. Origin and distribution of fractures in lower Tertiary and Upper Cretaceous rocks, Piceance Basin, Colorado, and their relation to the occurrence of hydrocarbons. In: Spencer, C.W. & Mast, R.F. (eds) Geology of Tight Gas Reservoirs. AAPG Studies in Geology, 24, 221–233.
    [Google Scholar]
  65. Pitman, J.K., Spencer, C.W. & Pollastro, R.M.
    1989. Petrography, Mineralogy, and Reservoir Characteristics of the Upper Cretaceous Mesaverde Group in the East-central Piceance Basin, Colorado. United States Geological Survey Bulletin, 1787-G, G1–G31.
    [Google Scholar]
  66. Pranter, M.J. & Sommer, N.K.
    2011. Static connectivity of fluvial sandstones in a lower coastal-plain setting: An example from the Upper Cretaceous lower Williams Fork Formation, Piceance Basin, Colorado. AAPG Bulletin, 95, 899–923, https://doi.org/10.1306/12091010008
    [Google Scholar]
  67. Pranter, M.J., Ellison, A.I., Cole, R.D. & Patterson, P.E.
    2007. Analysis and modeling of intermediate-scale reservoir heterogeneity based on a fluvial point-bar outcrop analog, Williams Fork Formation, Piceance Basin, Colorado. AAPG Bulletin, 91, 1025–1051, https://doi.org/10.1306/02010706102
    [Google Scholar]
  68. Ramos, F.C., Wolff, J.A. & Tollstrup, D.L.
    2004. Measuring 87Sr/86Sr variations in minerals and groundmass from basalts using LA-MC-ICPMS. Chemical Geology, 211, 135–158, https://doi.org/10.1016/j.chemgeo.2004.06.025
    [Google Scholar]
  69. Rhodes, M.K., Carroll, A.R., Pietras, J.T., Beard, B.L. & Johnson, C.M.
    2002. Strontium isotope record of paleohydrology and continental weathering, Eocene Green River Formation, Wyoming. Geology, 30, 167–170, https://doi.org/10.1130/0091-7613(2002)030<0167:SIROPA>2.0.CO;2
    [Google Scholar]
  70. Rosman, K.J.R. & Taylor, P.D.P.
    1998. Isotopic compositions of the elements 1997. Journal of Physical and Chemical Reference Data, 27, 1275–1287, https://doi.org/10.1063/1.556031
    [Google Scholar]
  71. Schultz, J.L., Boles, J.R. & Tilton, G.R.
    1989. Tracking calcium in the San Joaquin basin, California: a strontium isotopic study of carbonate cements at North Coles Levee. Geochimica et Cosmochimica Acta, 53, 1991–1999, https://doi.org/10.1016/0016-7037(89)90319-0
    [Google Scholar]
  72. Steiger, R.H. & Jäger, E.
    1977. Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters, 36, 359–362, https://doi.org/10.1016/0012-821X(77)90060-7
    [Google Scholar]
  73. Sterner, S.M. & Bodnar, R.J.
    1984. Synthetic fluid inclusions in natural quartz I. Compositional types synthesized and applications to experimental geochemistry. Geochimica et Cosmochimica Acta, 48, 2659–2668, https://doi.org/10.1016/0016-7037(84)90314-4
    [Google Scholar]
  74. Stockmann, G.J., Wolff-Boenisch, D., Bovet, N., Gislason, S.R. & Oelkers, E.H.
    2014. The role of silicate surfaces on calcite precipitation kinetics. Geochimica et Cosmochimica Acta, 135, 231–250, https://doi.org/10.1016/j.gca.2014.03.015
    [Google Scholar]
  75. Taylor, K.G., Gawthorpe, R.L., Curtis, C.D., Marshall, J.D. & Awwiller, D.N.
    2000. Carbonate cementation in a sequence-stratigraphic framework: Upper Cretaceous Sandstones, Book Cliffs, Utah–Colorado. Journal of Sedimentary Research, 70, 360–372, https://doi.org/10.1306/2DC40916-0E47-11D7-8643000102C1865D
    [Google Scholar]
  76. Taylor, T.R., Giles, M.R. et al.
    2010. Sandstone diagenesis and reservoir quality prediction: Models, myths, and reality. AAPG Bulletin, 94, 1093–1132, https://doi.org/10.1306/04211009123
    [Google Scholar]
  77. Thirlwall, M.F.
    1991. Long-term reproducibility of multicollector Sr and Nd isotope ratio analysis. Chemical Geology: Isotope Geoscience Section, 94, 85–104, https://doi.org/10.1016/0168-9622(91)90002-E
    [Google Scholar]
  78. Tokan-Lawal, A., Prodanović, M. & Eichhubl, P.
    2015. Investigating flow properties of partially cemented fractures in Travis Peak Formation using image-based pore-scale modeling. Journal of Geophysical Research: Solid Earth, 120, 5453–5466, https://doi.org/10.1002/2015JB012045
    [Google Scholar]
  79. Tokan-Lawal, A., Prodanović, M., Landry, C.J. & Eichhubl, P.
    2017. Influence of numerical cementation on multiphase displacement in rough fractures. Transport in Porous Media, 116, 275–293, https://doi.org/10.1007/s11242-016-0773-0
    [Google Scholar]
  80. Tong, Y., Ibarra, D.E., Caves, J.K., Mukerji, T. & Graham, S.A.
    2017. Constraining basin thermal history and petroleum generation using palaeoclimate data in the Piceance Basin, Colorado. Basin Research, 29, 542–553, https://doi.org/10.1111/bre.12213
    [Google Scholar]
  81. Turner, C.E. & Fishman, N.S.
    1991. Jurassic Lake T'oo'dichi': a large alkaline, saline lake, Morrison Formation, eastern Colorado Plateau. Geological Society of America Bulletin, 103, 538–558, https://doi.org/10.1130/0016-7606(1991)103<0538:JLTODA>2.3.CO;2
    [Google Scholar]
  82. Ukar, E., Ozkul, C. & Eichhubl, P.
    2016. Fracture abundance and strain in folded Cardium Formation, Red Deer River anticline, Alberta Foothills, Canada. Marine and Petroleum Geology, 76, 210–230, https://doi.org/10.1016/j.marpetgeo.2016.05.016
    [Google Scholar]
  83. Verbeek, E.R. & Grout, M.A.
    1984. Fracture Studies in Cretaceous and Paleocene Strata in and Around the Piceance Basin, Colorado – Preliminary Results and Their Bearing on a Fracture-Controlled Natural-Gas Reservoir at the MWX Site. United State Geological Survey Open-File Report, 84-156.
    [Google Scholar]
  84. Virgo, S., Abe, S. & Urai, J.L.
    2014. The evolution of crack seal vein and fracture networks in an evolving stress field: Insights from Discrete Element Models of fracture sealing. Journal of Geophysical Research: Solid Earth, 119, 8708–8727, https://doi.org/10.1002/2014JB011520
    [Google Scholar]
  85. Walther, B.D. & Thorrold, S.R.
    2009. Inter-annual variability in isotope and elemental ratios recorded in otoliths of an anadromous fish. Journal of Geochemical Exploration, 102, 181–186, https://doi.org/10.1016/j.gexplo.2008.10.001
    [Google Scholar]
  86. Warpinski, N.R. & Lorenz, J.C.
    2008. Analysis of the multiwell experiment data and results: Implications for the basin-centered gas model. In: Cumella, S.P., Shanley, K.W. & Camp, W.K. (eds)Understanding, exploring, and developing tight-gas sands – 2005 Vail Hedberg Conference, AAPG Hedberg Series, 157–176, https://doi.org/10.1306/13131055H33325
    [Google Scholar]
  87. Warren, J.
    2000. Dolomite: occurrence, evolution and economically important associations. Earth-Science Reviews, 52, 1–81, https://doi.org/10.1016/S0012-8252(00)00022-2
    [Google Scholar]
  88. Wennberg, O.P., Casini, G., Jonoud, S. & Peacock, D.C.
    2016. The characteristics of open fractures in carbonate reservoirs and their impact on fluid flow: a discussion. Petroleum Geoscience, 22, 91–104, https://doi.org/10.1144/petgeo2015-003
    [Google Scholar]
  89. Wilson, M.S., Gunneson, B.G., Peterson, K., Honore, R. & Laughland, M.M.
    1998. Abnormal pressures encountered in a deep wildcat well, Southern Piceance Basin, Colorado. In: Law, B.E., Ulmishek, G.F. & Slavi, V.I. (eds) Abnormal Pressures in Hydrocarbon Environments. AAPG Memoirs, 70, 195–214.
    [Google Scholar]
  90. Witte, J., Bonora, M., Carbone, C. & Oncken, O.
    2012. Fracture evolution in oil-producing sills of the Rio Grande Valley, northern Neuquén Basin, Argentina. AAPG Bulletin, 96, 1253–1277, https://doi.org/10.1306/10181110152
    [Google Scholar]
  91. Yang, Z., Fryer, B.J., Longerich, H.P., Gagnon, J.E. & Samson, I.M.
    2011. 785  nm femtosecond laser ablation for improved precision and reduction of interferences in Sr isotope analyses using MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 26, 341–351, https://doi.org/10.1039/C0JA00131G
    [Google Scholar]
  92. Yurewicz, D.A., Bohacs, K.M., Yeakel, J.D. & Kronmueller, K.
    2003. Source rock analysis and hydrocarbon generation, Mesaverde Group and Mancos Shale, northern Piceance Basin, Colorado. In: Peterson, K.M., Olson, T.M. & Anderson, D.S. (eds) Piceance Basin Guidebook. Rocky Mountain Association of Geologists, Denver, CO, 130–153.
    [Google Scholar]
  93. Yurewicz, D.A., Bohacs, K.M., Kendall, R.E., Kronmueller, K., Maurer, M.E., Ryan, T.C. & Yeakel, J.D.
    2008. Controls on gas and water distribution, Mesaverde basin-centered gas play, Piceance Basin, Colorado. In: Cumella, S.P., Shanley, K.W. & Camp, W.K. (eds) Understanding, Exploring, and Developing Tight-Gas Sands: 2005 Vail Hedberg Conference. AAPG Hedberg Series, 3, 105–136.
    [Google Scholar]
  94. Zhang, E., Hill, R.J., Katz, B.J. & Tang, Y.
    2008. Modeling of gas generation from the Cameo coal zone in the Piceance Basin, Colorado. AAPG Bulletin, 92, 1077–1106, https://doi.org/10.1306/04020806015
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1144/petgeo2018-162
Loading
/content/journals/10.1144/petgeo2018-162
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error