1887
Volume 25, Issue 4
  • ISSN: 1354-0793
  • E-ISSN:

Abstract

Fracture scaling parameters are an important input for modelling of naturally fractured reservoirs, but are very difficult to derive from subsurface data. Extensive areas of exposure in the northern Kurdistan Region of Iraq provide useful outcrop analogues for nearby producing and potential hydrocarbon fields. A variety of data acquisition methods are used to analyse fracture systems in carbonates of the Upper Cretaceous Aqra–Bekhme Formation across a wide range of scales. When plotted on length–intensity graphs, the collated data lie below an upper envelope that follows a power-law distribution over five orders of magnitude between 0.1 and 3000 m, and which defines the maximum likely intensity of background fracturing across the region. Contouring the length–intensity data shows the distribution of intensities below the upper envelope, and allows modal and minimum likely intensities to be estimated. Likely causes for the observed variation in fracture intensities include the domainal nature of deformation, the proximity to high strain zones including faults, second-order effects such as ladder fractures, and variations in the thickness of mechanical layering.

This article is part of the Naturally Fractured Reservoirs collection available at: https://www.lyellcollection.org/cc/naturally-fractured-reservoirs

Companion
This article is accompanied by the following content:
Flow diagnostics for naturally fractured reservoirs
Companion
This article is accompanied by the following content:
Introduction to the thematic collection: Naturally Fractured Reservoirs
Companion
This article is accompanied by the following content:
Genesis and role of bitumen in fracture development during early catagenesis
Companion
This article is accompanied by the following content:
Degradation of fracture porosity in sandstone by carbonate cement, Piceance Basin, Colorado, USA
Companion
This article is accompanied by the following content:
Introduction to the thematic collection: Naturally Fractured Reservoirs
Companion
This article is accompanied by the following content:
Degradation of fracture porosity in sandstone by carbonate cement, Piceance Basin, Colorado, USA
Companion
This article is accompanied by the following content:
Flow diagnostics for naturally fractured reservoirs
Companion
This article is accompanied by the following content:
Genesis and role of bitumen in fracture development during early catagenesis
Loading

Article metrics loading...

/content/journals/10.1144/petgeo2018-168
2019-10-28
2020-05-29
Loading full text...

Full text loading...

References

  1. Allen, M.B. & Armstrong, H.A.
    2008. Arabia–Eurasia collision and the forcing of mid-Cenozoic global cooling. Palaeogeography, Palaeoclimatology, Palaeoecology, 265, 52–58, https://doi.org/10.1016/j.palaeo.2008.04.021
    [Google Scholar]
  2. Aqrawi, A.A., Goff, J.C., Horbury, A.D. & Sadooni, F.N.
    2010. The Petroleum Geology of Iraq. Scientific Press, Beaconsfield, UK.
    [Google Scholar]
  3. Araujo, H., Lacentre, P. et al.
    2004. Dynamic behavior of discrete fracture network (DFN) models. Paper presented at theSPE International Petroleum Conference, 7–9 November 2004, Puebla Pue, Mexico, https://doi.org/10.2118/91940-MS
    [Google Scholar]
  4. ArRajehi, A., McClusky, S. et al.
    2010. Geodetic constraints on present-day motion of the Arabian Plate: implications for Red Sea and Gulf of Aden rifting. Tectonics, 29, TC3011, https://doi.org/10.1029/2009TC002482
    [Google Scholar]
  5. Awdal, A.H., Braathen, A., Wennberg, O.P. & Sherwani, G.H.
    2013. The characteristics of fracture networks in the Shiranish Formation of the Bina Bawi Anticline; comparison with the Taq Taq Field, Zagros, Kurdistan, NE Iraq. Petroleum Geoscience, 19, 139–155, https://doi.org/10.1144/petgeo2012-036
    [Google Scholar]
  6. Baecher, G.B. & Lanney, N.A.
    1978. Trace length biases in joint surveys. In: Proceedings of the 19th U.S. Symposium on Rock Mechanics (USRMS). American Rock Mechanics Association, Alexandria, VA, 56–65.
    [Google Scholar]
  7. Bertrand, L., Géraud, Y., Le Garzic, E., Place, J., Diraison, M., Walter, B. & Haffen, S.
    2015. A multiscale analysis of a fracture pattern in granite: A case study of the Tamariu granite, Catalunya, Spain. Journal of Structural Geology, 78, 52–66, https://doi.org/10.1016/j.jsg.2015.05.013
    [Google Scholar]
  8. Bisdom, K., Nick, H.M. & Bertotti, G.
    2017. An integrated workflow for stress and flow modelling using outcrop-derived discrete fracture networks. Computers and Geosciences, 103, 21–35, https://doi.org/10.1016/j.cageo.2017.02.019
    [Google Scholar]
  9. Blanc, E.J.-P., Allen, M.B., Inger, S. & Hassani, H.
    2003. Structural styles in the Zagros Simple Folded Zone, Iran. Journal of the Geological Society, London, 160, 401–412, https://doi.org/10.1144/0016-764902-110
    [Google Scholar]
  10. Bonnet, E., Bour, O., Odling, N.E., Davy, P., Main, I.G., Cowie, P. & Berkowitz, B.
    2001. Scaling of fracture systems in geological media. Reviews of Geophysics, 39, 34–383, https://doi.org/10.1029/1999RG000074
    [Google Scholar]
  11. Bour, O. & Davy, P.
    1997. Connectivity of random fault networks following a power law fault length distribution. Water Resources Research, 33, 1567–1583, https://doi.org/10.1029/96WR00433
    [Google Scholar]
  12. Bour, O., Davy, P., Darcel, C. & Odling, N.
    2002. A statistical scaling model for fracture network geometry, with validation on a multiscale mapping of a joint network (Hornelen Basin, Norway). Journal of Geophysical Research: Solid Earth, 107, ETG4-1–ETG4-12, https://doi.org/10.1029/1999RG000074
    [Google Scholar]
  13. Cacas, M.C., Daniel, J.M. & Letouzey, J.
    2001. Nested geological modelling of naturally fractured reservoirs. Petroleum Geoscience, 7, S43–S52, https://doi.org/10.1144/petgeo.7.S.S43
    [Google Scholar]
  14. Call, R.D., Savely, J.P. & Nicolas, D.E.
    1976. Estimation of joint set characteristics from surface mapping data. In: Hustrulid, W.A. (ed.) Monograph on Rock Mechanic Application in Mining. AIME, New York, 65–73.
    [Google Scholar]
  15. Candela, T., Renard, F., Klinger, Y., Mair, K., Schmittbuhl, J. & Brodsky, E.E.
    2012. Roughness of fault surfaces over nine decades of length scales. Journal of Geophysical Research: Solid Earth, 117, B08409, https://doi.org/10.1029/2011JB009041
    [Google Scholar]
  16. Castaing, C., Halawani, M.A. et al.
    1996. Scaling relationships in intraplate fracture systems related to Red Sea rifting. Tectonophysics, 261, 291–314, https://doi.org/10.1016/0040-1951(95)00177-8
    [Google Scholar]
  17. Childs, C., Walsh, J.J. & Watterson, J.
    1990. A method for estimation of the density of fault displacements below the limits of seismic resolution in reservoir formations. In: Buller, A.T., Berg, E., Hjelmeland, O., Kleppe, J., Torsæter, O. & Aasen, J.O. (eds) North Sea Oil and Gas Reservoirs – II. Springer, Dordrecht, The Netherlands, 309–318, https://doi.org/10.1007/978-94-009-0791-1_26
    [Google Scholar]
  18. Clauset, A., Shalizi, C.R. & Newman, M.E.J.
    2009. Power-law distributions in empirical data. Society for Industrial and Applied Mathematics Review, 51, 661–703, https://doi.org/10.1137/070710111
    [Google Scholar]
  19. Corradetti, A., Tavani, S. et al.
    2018. Distribution and arrest of vertical through-going joints in a seismic-scale carbonate platform exposure (Sorrento peninsula, Italy): insights from integrating field survey and digital outcrop model. Journal of Structural Geology, 108, 121–136, https://doi.org/10.1016/j.jsg.2017.09.009
    [Google Scholar]
  20. Cruden, D.M.
    1977. Describing the size of discontinuities. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 14, 133–137, https://doi.org/10.1016/0148-9062(77)90004-3
    [Google Scholar]
  21. Dershowitz, W.S. & Herda, H.H.
    1992. Interpretation of fracture spacing and intensity. Paper presented at the33th US Symposium on Rock Mechanics (USRMS), 3–5 June 1992, Santa Fe, New Mexico, USA.
    [Google Scholar]
  22. Dunnington, H.V.
    1958. Generation, migration, accumulation and dissipation of oil in northern Iraq. In: Weeks, G.L. (ed.) Habitat of Oil. AAPG Special Publications, 18, 1194–1251.
    [Google Scholar]
  23. English, J.M., Lunn, G.A., Ferreira, L. & Yacu, G.
    2015. Geologic evolution of the Iraqi Zagros, and its influence on the distribution of hydrocarbons in the Kurdistan region. AAPG Bulletin, 99, 231–272, https://doi.org/10.1306/06271413205
    [Google Scholar]
  24. Gillespie, P.A., Howard, C.B., Walsh, J.J. & Watterson, J.
    1993. Measurement and characterisation of fractures. Tectonophysics, 226, 113–141, https://doi.org/10.1016/0040-1951(93)90114-Y
    [Google Scholar]
  25. Gillespie, P.A., Johnston, J.D., Loriga, M.A., McCaffrey, K.J.W., Walsh, J.J. & Watterson, J.
    1999. Influence of layering on vein systematics in line samples. In: McCaffrey, K.J.W., Lonergan, L. & Wilkinson, J.J. (eds) 1999. Fractures, Fluid Flow and Mineralization. Geological Society, London, Special Publications, 155, 35–56, https://doi.org/10.1144/GSL.SP.1999.155.01.05
    [Google Scholar]
  26. Gillespie, P.A., Walsh, J.J., Watterson, J., Bonson, C.G. & Manzocchi, T.
    2001. Scaling relationships of joint and vein arrays from The Burren, Co. Clare, Ireland. Journal of Structural Geology, 23, 183–201, https://doi.org/10.1016/S0191-8141(00)00090-0
    [Google Scholar]
  27. Gross, M.R. & Eyal, Y.
    2007. Throughgoing fractures in layered carbonate rocks. Geological Society of America Bulletin, 119, 1387–1404, https://doi.org/10.1130/0016-7606(2007)119[1387:TFILCR]2.0.CO;2
    [Google Scholar]
  28. Gross, M.R., Fisher, M.P., Engelder, T. & Greenfield, R.J.
    1995. Factors controlling joint spacing in interbedded sedimentary rocks: integrating numerical models with field observations from the Monterey Formation, USA. In: Ameen, M.S. (ed.) 1995. Fractography: Fracture Topography as a Tool in Fracture Mechanics and Stress Analysis. Geological Society, London, Special Publications, 92, 215–233, https://doi.org/10.1144/GSL.SP.1995.092.01.12
    [Google Scholar]
  29. Guerriero, V., Vitale, S., Ciarcia, S. & Mazzoli, S.
    2011. Improved statistical multi-scale analysis of fractured reservoir analogues. Tectonophysics, 504, 14–24, https://doi.org/10.1016/j.tecto.2011.01.003
    [Google Scholar]
  30. Hancock, P.L.
    1985. Brittle microtectonics: principles and practice. Journal of Structural Geology, 7, 437–457, https://doi.org/10.1016/0191-8141(85)90048-3
    [Google Scholar]
  31. Heffer, K.J. & BevanT.G.
    1990. Scaling relationships in natural fractures – Data, theory and applications. Paper SPE 20981 presented at theEuropean Petroleum Conference, 21–24 October 1990, The Hague, Netherlands.
    [Google Scholar]
  32. Jassim, S.Z. & Goff, J.C.
    2006. Geology of Iraq. Dolin, Prague, Czech Republic.
    [Google Scholar]
  33. Jones, R.R., Pringle, J.K., McCaffrey, K.J.W., Imber, J., Wightman, R.H, Guo, J. & Long, J.J.
    2011. Extending digital outcrop geology into the subsurface. In: Martinsen, O., Pulham, A., Haughton, P. & Sullivan, M. (eds) Outcrops Revitalized: Tools, Techniques and Applications. SEPM Concepts in Sedimentology and Paleontology, 10, 31–50.
    [Google Scholar]
  34. Jones, R.R., Pearce, M.A., Jacquemyn, J. & Watson, F.E.
    2016. Robust best-fit planes from geospatial data. Geosphere, 12, 196–202, https://doi.org/10.1130/GES01247.1
    [Google Scholar]
  35. Kaplan, E.L. & Meier, P.
    1958. Non-parametric estimation from incomplete observations. Journal of the American Statistical Association, 53, 457–481, https://doi.org/10.1080/01621459.1958.10501452
    [Google Scholar]
  36. Kulatilake, P.H.S.W. & Wu, T.H.
    1984. Estimation of mean trace length of discontinuities. Rock Mechanics and Rock Engineering, 17, 215–232, https://doi.org/10.1007/BF01032335
    [Google Scholar]
  37. Le Garzic, E., de L'Hamaide, T. et al.
    2011. Scaling and geometric properties of extensional fracture systems in the Proterozoic basement of Yemen. Tectonic interpretation and fluid flow implications. Journal of Structural Geology, 33, 519–536, https://doi.org/10.1016/j.jsg.2011.01.012
    [Google Scholar]
  38. Long, J.J, Jones, R.R. & Daniels, S.E.
    2018. Reducing uncertainty in fracture modelling: assessing the sensitivity of inputs from outcrop analogues. Paper presented at theGeology of Fractured Reservoirs Conference, 24–25 October 2018, London, UK.
    [Google Scholar]
  39. McCaffrey, K.J.W., Sleight, J.M., Pugliese, S. & Holdsworth, R.E.
    2003. Fracture formation and evolution in crystalline rocks: Insights from attribute analysis. In: Petford, N. & McCaffrey, K.J.W. (eds) 2003. Hydrocarbons in Crystalline Rocks. Geological Society, London, Special Publications, 214, 109–124, https://doi.org/10.1144/GSL.SP.2003.214.01.07
    [Google Scholar]
  40. McCaffrey, K.J.W., Jones, R.R. et al.
    2005. Unlocking the spatial dimension: digital technologies and the future of geoscience fieldwork. Journal of the Geological Society, London, 162, 1–12, https://doi.org/10.1144/0016-764904-082
    [Google Scholar]
  41. McQuillan, H.
    1973. Small-scale fracture density in Asmari Formation of Southwest Iran and its relation to bed thickness and structural setting. AAPG Bulletin, 57, 2367–2385, http://doi.org/10.1306/83d9131c-16c7-11d7-8645000102c1865d
    [Google Scholar]
  42. Mouthereau, F., Lacombe, O. & Vergés, J.
    2012. Building the Zagros collisional orogen: timing, strain distribution and the dynamics of Arabia/Eurasia plate convergence. Tectonophysics, 532, 27–60, https://doi.org/10.1016/j.tecto.2012.01.022
    [Google Scholar]
  43. Narr, W. & Suppe, J.
    1991. Joint spacing in sedimentary rocks. Journal of Structural Geology, 13, 1037–1048, https://doi.org/10.1016/0191-8141(91)90055-N
    [Google Scholar]
  44. Nelson, R.
    2001. Geologic Analysis of Naturally Fractured Reservoirs. Gulf Professional Publishing, Houston, TX.
    [Google Scholar]
  45. Odling, N.E.
    1997. Scaling and connectivity of joint systems in sandstones from western Norway. Journal of Structural Geology, 19, 1257–1271, https://doi.org/10.1016/S0191-8141(97)00041-2
    [Google Scholar]
  46. Pahl, P.H.
    1981. Estimating the mean length of discontinuity traces. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 18, 221–228, https://doi.org/10.1016/0148-9062(81)90976-1
    [Google Scholar]
  47. Pickering, G., Bull, J.M. & Sanderson, D.J.
    1995. Sampling power-law distributions. Tectonophysics, 248, 1–20, https://doi.org/10.1016/0040-1951(95)00030-Q
    [Google Scholar]
  48. Pless, J.C., McCaffrey, K.J.W., Jones, R.R., Holdsworth, R.E., Conway, A. & Krabbendam, M.
    2015. 3D characterization of fracture systems using terrestrial laser scanning: An example from the Lewisian basement of NW Scotland. In: Richards, F.L., Richardson, N.J., Rippington, S.J., Wilson, R.W. & Bond, C.E. (eds) 2015. Industrial Structural Geology: Principles, Techniques and Integration. Geological Society, London, Special Publications, 421, 125–141, https://doi.org/10.1144/SP421.14
    [Google Scholar]
  49. Priest, S.D.
    1993. Discontinuity Analysis for Rock Engineering. Chapman and Hall, New York.
    [Google Scholar]
  50. Rizzo, R.E., Healy, D. & De Siena, L.
    2017. Benefits of maximum likelihood estimators for fracture attribute analysis: Implications for permeability and up-scaling. Journal of Structural Geology, 95, 17–31, https://doi.org/10.1016/j.jsg.2016.12.005
    [Google Scholar]
  51. Sanderson, D.J. & Nixon, C.W.
    2015. The use of topology in fracture network characterization. Journal of Structural Geology, 72, 55–66, https://doi.org/10.1016/j.jsg.2015.01.005
    [Google Scholar]
  52. Sharland, P.R., Archer, R. et al.
    2001. Arabian Plate Sequence Stratigraphy. GeoArabia Special Publications, 2. Gulf PetroLink, Manama, Bahrain.
    [Google Scholar]
  53. Sharp, I., Gillespie, P. et al.
    2010. Stratigraphic architecture and fracture-controlled dolomitization of the Cretaceous Khami and Bangestan groups: an outcrop case study, Zagros Mountains, Iran. In: van Buchem, F.S.P., Gerdes, K.D. & Esteban, M. (eds) 2010. Mesozoic and Cenozoic Carbonate Systems of the Mediterranean and the Middle East: Stratigraphic and Diagenetic Reference Models. Geological Society, London, Special Publications, 329, 343–396, https://doi.org/10.1144/SP329.14
    [Google Scholar]
  54. Snyder, M.E. & Waldron, J.W.
    2018. Fracture overprinting history using Markov chain analysis: Windsor–Kennetcook subbasin, Maritimes Basin, Canada. Journal of Structural Geology, 108, 80–93, https://doi.org/10.1016/j.jsg.2017.07.009
    [Google Scholar]
  55. Stearns, D.W.
    1968. Certain aspects of fracture in naturally deformed rocks. In: Riecker, R.E. (ed.) NSF Advanced Science Seminar in Rock Mechanics for College Teachers of Structural Geology. Air Force Cambridge Research Laboratories, Bedford, MA, 1, 97–118.
    [Google Scholar]
  56. Stearns, D.W. & Friedman, M.
    1972. Reservoirs in fractured rock. In: King, R.E. (ed.) Stratigraphic Oil and Gas Fields – Classification, Exploration Methods, and Case Histories. AAPG Memoir, 16 & Society of Exploration Geophysicists Special Publications, 10, 82–106.
    [Google Scholar]
  57. Tan, Y., Johnston, T. & Engelder, T.
    2014. The concept of joint saturation and its application. AAPG Bulletin, 98, 2347–2364, https://doi.org/10.1306/06231413113
    [Google Scholar]
  58. Torabi, A. & Berg, S.S.
    2011. Scaling of fault attributes: A review. Marine and Petroleum Geology, 28, 1444–1460, https://doi.org/10.1016/j.marpetgeo.2011.04.003
    [Google Scholar]
  59. van Bellen, R.C., Dunnington, H.V., Wetzel, R. & Morton, D.M.
    1959. Stratigraphic Lexicon of Iraq. Gulf PetroLink, Manama, Bahrain.
    [Google Scholar]
  60. Wasserman, L.
    2004. All of Statistics: A Concise Course in Statistical Inference. Springer, New York, https://doi.org/10.1007/978-0-387-21736-9
    [Google Scholar]
  61. Watson, F., Long, J., Jarvis, Z., Wilkinson, M. & Jones, R.
    2013. Variability in interpretations when picking fractures from satellite images. Geophysical Research Abstracts, 15, EGU2013-10445, https://meetingorganizer.copernicus.org/EGU2013/EGU2013-10445.pdf
    [Google Scholar]
  62. Wennberg, O.P., Svana, T., Azizzadeh, M., Aqrawi, A.M.M., Brockbank, P., Lyslo, K.B. & Ogilvie, S.
    2006. Fracture intensity vs. mechanical stratigraphy in platform top carbonates; the Aquitanian of the Asmari Formation, Khaviz Anticline, Zagros, SW Iran. Petroleum Geoscience, 12, 235–245, https://doi.org/10.1144/1354-079305-675
    [Google Scholar]
  63. Wu, H. & Pollard, D.D.
    1995. An experimental study of the relationship between joint spacing and layer thickness. Journal of Structural Geology, 17, 887–905, https://doi.org/10.1016/0191-8141(94)00099-L
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1144/petgeo2018-168
Loading
/content/journals/10.1144/petgeo2018-168
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error