1887
Volume 25, Issue 4
  • ISSN: 1354-0793
  • E-ISSN:

Abstract

Most carbonates have a dual porosity and permeability (matrix and fracture). As fractures are preferential conduits for fluid flows, fracture networks strongly impact reservoir hydraulic properties. Two fracture patterns can affect reservoirs: random background fractures in the host rock; and damage-zone-clustered fractures in fault zones. This study identifies the structural and diagenetic attributes of both fracture patterns and determined their respective impact on reservoir properties. The study focuses on the eastern part of La Fare Anticlinal (SE France). Lower Cretaceous, Urgonian facies carbonates underwent a polyphase tectonic history. Faults were set up as normal and were later reactivated as strike-slip. We made a 290 m scanline along the outcrop to characterize the fracture network in and outside the fault zones. The diagenetic analysis of 45 thin sections in polarized light microscopy with scanning electron microscopy and cathodoluminescence evidenced three cementation phases and two micrite recrystallization phases. This study shows that fault-zone structural properties and deformation are dependent of the initial host-rock background fracture network. The fault-zone structure with a damage-zone fracture network encouraged fluid flow and the cementation of S2 phase. This fluid flow, absent in the host rock, strongly modified the reservoir properties of the studied zone.

This article is part of the Naturally Fractured Reservoirs collection available at: https://www.lyellcollection.org/cc/naturally-fractured-reservoirs

Companion
This article is accompanied by the following content:
Degradation of fracture porosity in sandstone by carbonate cement, Piceance Basin, Colorado, USA
Companion
This article is accompanied by the following content:
Multiscale fracture length analysis in carbonate reservoir units, Kurdistan, NE Iraq
Companion
This article is accompanied by the following content:
Introduction to the thematic collection: Naturally Fractured Reservoirs
Companion
This article is accompanied by the following content:
Genesis and role of bitumen in fracture development during early catagenesis
Companion
This article is accompanied by the following content:
Flow diagnostics for naturally fractured reservoirs
Companion
This article is accompanied by the following content:
Introduction to the thematic collection: Naturally Fractured Reservoirs
Companion
This article is accompanied by the following content:
Genesis and role of bitumen in fracture development during early catagenesis
Companion
This article is accompanied by the following content:
Multiscale fracture length analysis in carbonate reservoir units, Kurdistan, NE Iraq
Companion
This article is accompanied by the following content:
Degradation of fracture porosity in sandstone by carbonate cement, Piceance Basin, Colorado, USA
Companion
This article is accompanied by the following content:
Flow diagnostics for naturally fractured reservoirs
Loading

Article metrics loading...

/content/journals/10.1144/petgeo2019-010
2019-07-17
2020-08-04
Loading full text...

Full text loading...

References

  1. Agosta, F., Prasad, M. & Aydin, A.
    2007. Physical properties of carbonate fault rocks, Fucino Basin (Central Italy): implications for fault seal in platform carbonates. Geofluids, 7, 19–32, https://doi.org/10.1111/j.1468-8123.2006.00158.x
    [Google Scholar]
  2. Agosta, F., Mulch, A., Chamberlain, P. & Aydin, A.
    2008. Geochemical traces of CO2-rich fluid flow along normal faults in central Italy. Geophysical Journal International, 174, 1074–1096, https://doi.org/10.1111/j.1365-246X.2008.03792.x
    [Google Scholar]
  3. Agosta, F., Alessandroni, M., Antonellini, M., Tondi, E. & Giorgioni, M.
    2010. From fractures to flow: A field-based quantitative analysis of an outcropping carbonate reservoir. Tectonophysics, 490, 197–213, https://doi.org/10.1016/j.tecto.2010.05.005
    [Google Scholar]
  4. Agosta, F., Ruano, P., Rustichelli, A., Tondi, E., Galindo-Zaldívar, J. & Sanz de Galdeano, C.
    2012. Inner structure and deformation mechanisms of normal faults in conglomerates and carbonate grainstones (Granada Basin, Betic Cordillera, Spain): Inferences on fault permeability. Journal of Structural Geology, 45, 4–20, https://doi.org/10.1016/j.jsg.2012.04.003
    [Google Scholar]
  5. Allan, J.R. & Matthews, R.K.
    1982. Isotope signatures associated with early meteoric diagenesis. Sedimentology, 29, 797–817, https://doi.org/10.1111/j.1365-3091.1982.tb00085.x
    [Google Scholar]
  6. Allmendinger, R.W., Cardozo, N. & Fisher, D.M.
    2013. Structural Geology Algorithms: Vectors and Tensors. Cambridge University Press, Cambridge.
    [Google Scholar]
  7. Aubert, I., Lamarche, J., Léonide, P. & Salardon, R.
    2018. Fault zones diagenesis through time: impact on drain properties. Case study in Urgonian carbonates of La Fare massif (Provence – SE France). Presented at the26th Earth Science Meeting, 22–26 October 2018, Lille, France.
    [Google Scholar]
  8. Aydin, A.
    2000. Fractures, faults, and hydrocarbon entrapment, migration and flow. Marine and Petroleum Geology, 17, 797–814, https://doi.org/10.1016/S0264-8172(00)00020-9
    [Google Scholar]
  9. Bestani, L., Espurt, N., Lamarche, J., Bellier, O. & Hollender, F.
    2016. Reconstruction of the Provence Chain evolution, Southeastern France. Tectonics, 35, 1506–1525, https://doi.org/10.1002/2016TC004115
    [Google Scholar]
  10. Billi, A., Salvini, F. & Storti, F.
    2003. The damage zone-fault core transition in carbonate rocks: Implications for fault growth, structure and permeability. Journal of Structural Geology, 25, 1779–1794, https://doi.org/10.1016/S0191-8141(03)00037-3
    [Google Scholar]
  11. Billi, A., Primavera, P., Soligo, M. & Tuccimei, P.
    2008. Minimal mass transfer across dolomitic granular fault cores. Geochemistry, Geophysics, Geosystems, 9, Q01001, https://doi.org/10.1029/2007GC001752
    [Google Scholar]
  12. Caine, J.S., Evans, J.P. & Forster, C.B.
    1996. Fault zone architechture and permeability structure. Geology, 24, 1025–1028, https://doi.org/10.1130/0091-7613(1996)024<1025:FZAAPS>2.3.CO;2
    [Google Scholar]
  13. Caine, J.S., Bruhn, R.L. & Forster, C.B.
    2010. Internal structure, fault rocks, and inferences regarding deformation, fluid flow, and mineralization in the seismogenic Stillwater normal fault, Dixie Valley, Nevada. Journal of Structural Geology, 32, 1576–1589, https://doi.org/10.1016/j.jsg.2010.03.004
    [Google Scholar]
  14. Cardozo, N. & Allmendinger, N.W.
    2013. Sperical projections with OSXStereonets. Computers & Geosciences, 51, 193–205, https://doi.org/10.1016/j.cageo.2012.07.021
    [Google Scholar]
  15. Carpentier, C., Ferry, S., Lecuyer, C., Strasser, A., Geraud, Y. & Trouiller, A.
    2015. Origin of micropores in Late Jurassic (Oxfordian) micrites of the eastern Paris Basin, France. Journal of Sedimentary Research, 85, 660–682, https://doi.org/10.2110/jsr.2015.37
    [Google Scholar]
  16. Champagnac, J.D., Sue, C., Delacou, B. & Burkhard, M.
    2004. Brittle deformation in the inner NW Alps: From early orogen-parallel extrusion to late orogen-perpendicular collapse. Terra Nova, 16, 232–242, https://doi.org/10.1111/j.1365-3121.2004.00555.x
    [Google Scholar]
  17. Champion, C., Choukroune, P. & Clauzon, G.
    2000. La déformation post-miocène en provence occidentale [Post-Miocene deformation in western Provence]. Geodinamica Acta, 13, 67–85, https://doi.org/10.1080/09853111.2000.11105365
    [Google Scholar]
  18. Chester, F.M. & Logan, J.M.
    1986. Implications for mechanical properties of brittle faults from observations of the Punchbowl Fault Zone, California. Pure and Applied Geophysics, 124, 79–106, https://doi.org/10.1007/BF00875720
    [Google Scholar]
  19. 1987. Composite planar fabric of gouge from the Punchbowl Fault, California. Journal of Structural Geology, 9, 621–634, https://doi.org/10.1016/0191-8141(87)90147-7
    [Google Scholar]
  20. Cowie, P.A. & Scholz, C.H.
    1992. Physical explanation for the displacement–length relationship of faults using a post-yield fracture mechanics model. Journal of Structural Geology, 14, 1133–1148, https://doi.org/10.1016/0191-8141(92)90065-5
    [Google Scholar]
  21. Cushing, E.M., Bellier, O. et al.
    2008. A multidisciplinary study of a slow-slipping fault for seismic hazard assessment: The example of the Middle Durance Fault (SE France). Geophysical Journal International, 172, 1163–1178, https://doi.org/10.1111/j.1365-246X.2007.03683.x
    [Google Scholar]
  22. d'Alessio, M.A. & Martel, S.J.
    2004. Fault terminations and barriers to fault growth. Journal of Structural Geology, 26, 1885–1896, https://doi.org/10.1016/j.jsg.2004.01.010
    [Google Scholar]
  23. Delacou, B., Sue, C., Champagnac, J.D. & Burkhard, M.
    2004. Present-day geodynamics in the bend of the western and central Alps as constrained by earthquake analysis. Geophysical Journal International, 158, 753–774, https://doi.org/10.1111/j.1365-246X.2004.02320.x
    [Google Scholar]
  24. Delle Piane, C., Giwelli, A. et al.
    2016. Frictional and hydraulic behaviour of carbonate fault gouge during fault reactivation – An experimental study. Tectonophysics, 690, 21–34, https://doi.org/10.1016/j.tecto.2016.07.011
    [Google Scholar]
  25. Dercourt, J., Gaetani, M. et al.
    2000. Peri-Tethys Atlas: Palaeogeographical Maps. Commission for the Geological Map of the World, Paris.
    [Google Scholar]
  26. Deville de Periere, M., Durlet, C., Vennin, E., Lambert, L., Bourillot, R., Caline, B. & Poli, E.
    2011. Morphometry of micrite particles in cretaceous microporous limestones of the Middle East: Influence on reservoir properties. Marine and Petroleum Geology, 28, 1727–1750, https://doi.org/10.1016/j.marpetgeo.2011.05.002
    [Google Scholar]
  27. Deville de Periere, M., Durlet, C., Vennin, E., Caline, B., Boichard, R. & Meyer, A.
    2017. Influence of a major exposure surface on the development of microporous micritic limestones – Example of the Upper Mishrif Formation (Cenomanian) of the Middle East. Sedimentary Geology, 353, 96–113, https://doi.org/10.1016/j.sedgeo.2017.03.005
    [Google Scholar]
  28. Dickson, J.A.D. & Coleman, M.L.
    1980. Changes in carbon and oxygen isotope composition during limestone diagenesis. Sedimentology, 27, 107–118, https://doi.org/10.1111/j.1365-3091.1980.tb01161.x
    [Google Scholar]
  29. Dimmen, V., Rotevatn, A., Peacock, D.C.P., Nixon, C.W. & Nærland, K.
    2017. Quantifying structural controls on fluid flow: Insights from carbonate-hosted fault damage zones on the Maltese Islands. Journal of Structural Geology, 101, 43–57, https://doi.org/10.1016/j.jsg.2017.05.012
    [Google Scholar]
  30. Dunham, R.J.
    1962. Classification of carbonate rocks according to depositional textures. In: Ham, W.E. (ed.) Classification of Carbonate Rocks. AAPG, Tulsa, OK, 108–121.
    [Google Scholar]
  31. Espurt, N., Hippolyte, J.C., Saillard, M. & Bellier, O.
    2012. Geometry and kinematic evolution of a long-living foreland structure inferred from field data and cross section balancing, the Sainte-Victoire System, Provence, France. Tectonics, 31, TC4021, https://doi.org/10.1029/2011TC002988
    [Google Scholar]
  32. Evans, J.P., Forster, C.B. & Goddard, J.V.
    1997. Permeability of fault-related rocks, and implications for hydraulic structure of fault zones. Journal of Structural Geology, 19, 1393–1404, https://doi.org/10.1016/S0191-8141(97)00057-6
    [Google Scholar]
  33. Filbrandt, J.B., Richard, P.D. & Franssen, R.
    2007. Fault growth and coalescence: Insights from numerical modelling and sandbox experiments. GeoArabia, 12, 17–32.
    [Google Scholar]
  34. Flügel, E.
    2004. Microfacies of Carbonate Rocks Analysis, Interpretation and Application. Springer, Berlin.
    [Google Scholar]
  35. Ford, M., Duchene, S., Gasquet, D. & Vanderhaeghe, O.
    2006. Two-phase orogenic convergence in the external and internal SW Alps. Journal of the Geological Society, London, 163, 815–826, https://doi.org/10.1144/0016-76492005-034
    [Google Scholar]
  36. Fournier, F. & Borgomano, J.
    2009. Critical porosity and elastic properties of microporous mixed carbonate-siliciclastic rocks. Geophysics, 74, E93–E109, https://doi.org/10.1190/1.3043727
    [Google Scholar]
  37. Fournier, F., Leonide, P., Biscarrat, K., Gallois, A., Borgomano, J. & Foubert, A.
    2011. Elastic properties of microporous cemented grainstones. Geophysics, 76, E211–E226, https://doi.org/10.1190/geo2011-0047.1
    [Google Scholar]
  38. Gale, J.F.W., Lander, R.H., Reed, R.M. & Laubach, S.E.
    2010. Modeling fracture porosity evolution in dolostone. Journal of Structural Geology, 32, 1201–1211, https://doi.org/10.1016/j.jsg.2009.04.018
    [Google Scholar]
  39. Godet, A., Bodin, S. et al.
    2006. Evolution of the marine stable carbon-isotope record during the early Cretaceous: A focus on the late Hauterivian and Barremian in the Tethyan realm. Earth and Planetary Science Letters, 242, 254–271, https://doi.org/10.1016/j.epsl.2005.12.011
    [Google Scholar]
  40. Gudmundsson, A.
    2004. Effects of Young's modulus on fault displacement. Comptes Rendus – Geoscience, 336, 85–92, https://doi.org/10.1016/j.crte.2003.09.018
    [Google Scholar]
  41. Guieu, G.
    1967. Un exemple de tectonique tangentielle: l’évolution du cadre montagneux de Marseille [An example of tangential tectonics : evolution of Marseilles mountain frame]. Bulletin de la Société Géologique de France, 7 Série, IX, 610–630.
    [Google Scholar]
  42. Guyonnet-Benaize, C., Lamarche, J., Masse, J.P., Villeneuve, M. & Viseur, S.
    2010. 3D structural modelling of small-deformations in poly-phase faults pattern. Application to the Mid-Cretaceous Durance uplift, Provence (SE France). Journal of Geodynamics, 50, 81–93, https://doi.org/10.1016/j.jog.2010.03.003
    [Google Scholar]
  43. Hammond, K.J. & Evans, J.P.
    2003. Geochemistry, mineralization, structure, and permeability of a normal- fault zone, Casino mine, Alligator Ridge district, north central Nevada. Journal of Structural Geology, 25, 717–736, https://doi.org/10.1016/S0191-8141(02)00060-3
    [Google Scholar]
  44. Jack, A. & Sun, S.
    2003. Controls on recovery factor in fractured reservoirs: Lessons learned from 100 Fractured fields. Presented at theSPE Annual Technical Conference and Exhibition, 5–8 October 2003, Denver, Colorado, USA.
    [Google Scholar]
  45. Kim, Y.S., Peacock, D.C.P. & Sanderson, D.J.
    2004. Fault damage zones. Journal of Structural Geology, 26, 503–517, https://doi.org/10.1016/j.jsg.2003.08.002
    [Google Scholar]
  46. Lacombe, O. & Jolivet, L.
    2005. Structural and kinematic relationships between Corsica and the Pyrenees–Provence domain at the time of the Pyrenean orogeny. Tectonics, 24, 1–20, https://doi.org/10.1029/2004TC001673
    [Google Scholar]
  47. Lamarche, J., Lavenu, A.P.C., Gauthier, B.D.M., Guglielmi, Y. & Jayet, O.
    2012. Relationships between fracture patterns, geodynamics and mechanical stratigraphy in carbonates (South-East Basin, France). Tectonophysics, 581, 231–245, https://doi.org/10.1016/j.tecto.2012.06.042
    [Google Scholar]
  48. Lambert, L., Durlet, C., Loreau, J.P. & Marnier, G.
    2006. Burial dissolution of micrite in Middle East carbonate reservoirs (Jurassic–Cretaceous): Keys for recognition and timing. Marine and Petroleum Geology, 23, 79–92, https://doi.org/10.1016/j.marpetgeo.2005.04.003
    [Google Scholar]
  49. Larsen, B., Grunnaleite, I. & Gudmundsson, A.
    2010. How fracture systems affect permeability development in shallow-water carbonate rocks: An example from the Gargano Peninsula, Italy. Journal of Structural Geology, 32, 1212–1230, https://doi.org/10.1016/j.jsg.2009.05.009
    [Google Scholar]
  50. Laubach, S.E., Olson, J.E. & Gross, M.R.
    2009. Mechanical and fracture stratigraphy. AAPG Bulletin, 93, 1413–1426, https://doi.org/10.1306/07270909094
    [Google Scholar]
  51. Laubach, S.E., Lamarche, J., Gauthier, B.D.M., Dunne, W.M. & Sanderson, D.J.
    2018. Spatial arrangement of faults and opening-mode fractures. Journal of Structural Geology, 108, 2–15, https://doi.org/10.1016/j.jsg.2017.08.008
    [Google Scholar]
  52. Lavenu, A.P.C. & Lamarche, J.
    2018. What controls diffuse fractures in platform carbonates? Insights from Provence (France) and Apulia (Italy). Journal of Structural Geology, 108, 94–107, https://doi.org/10.1016/j.jsg.2017.05.011
    [Google Scholar]
  53. Lavenu, A.P.C., Lamarche, J., Gallois, A. & Gauthier, B.D.M.
    2013. Tectonic versus diagenetic origin of fractures in a naturally fractured carbonate reservoir analog [Nerthe anticline, Southeastern France. AAPG Bulletin, 97, 2207–2232, https://doi.org/10.1306/04041312225
    [Google Scholar]
  54. Lavenu, A.P.C., Lamarche, J., Salardon, R., Gallois, A., Marié, L. & Gauthier, B.D.M.
    2014. Relating background fractures to diagenesis and rock physical properties in a platform-slope transect. Example of the Maiella Mountain (central Italy). Marine and Petroleum Geology, 51, 2–19, https://doi.org/10.1016/j.marpetgeo.2013.11.012
    [Google Scholar]
  55. Le Pichon, X., Bergerat, F. & Roulet, M.-J.
    1988. Plate kinematics and tectonics leading to the Alpine belt formation; A new analysis. In: Clark, S.P., Jr, Burchfiel, B.C. & Suppe, J. (eds) Processes in Continental Lithospheric Deformation. Geological Society of America Special Papers, 218, 111–131, https://doi.org/10.1130/SPE218-p111
    [Google Scholar]
  56. Le Pichon, X., Rangin, C., Hamon, Y., Loget, N., Lin, J.Y., Andreani, L. & Flotte, N.
    2010. Geodynamics of the France Southeast Basin. Bulletin de la Société Géologique de France, 181, 477–501, https://doi.org/10.2113/gssgfbull.181.6.477
    [Google Scholar]
  57. Léonide, P., Floquet, M. & Villier, L.
    2007. Interaction of tectonics, eustasy, climate and carbonate production on the sedimentary evolution of an early/middle Jurassic extensional basin (Southern Provence Sub-basin, SE France). Basin Research, 19, 125–152, https://doi.org/10.1111/j.1365-2117.2007.00316.x
    [Google Scholar]
  58. Léonide, P., Fournier, F. et al.
    2014. Diagenetic patterns and pore space distribution along a platform to outer-shelf transect (Urgonian limestone, Barremian–Aptian, SE France). Sedimentary Geology, 306, 1–23, https://doi.org/10.1016/j.sedgeo.2014.03.001
    [Google Scholar]
  59. Masse, J.P.
    1976. Les calcaires urgoniens de Provence (Valanginien–Aptien Inférieur) – stratigraphie, paléontologie, paléoenvironnements et leur évolution. PhD thesis, Université Aix-Marseille, Marseille, France.
    [Google Scholar]
  60. Masse, J.-P. & Philip, J.
    1976. Paléogéographie et tectonique du Crétacé moyen en Provence: révision du concept d'isthme durancien. [Paleogeography and tectonic of Provence during Middle Cretaceous: revision of the Durancian isthmus]. Revue de Géographie physique et de Géologie dynamique, 18, 49–46.
    [Google Scholar]
  61. Matonti, C., Lamarche, J., GuglieLmi, Y. & Marié, L.
    2012. Structural and petrophysical characterization of mixed conduit/seal fault zones in carbonates: Example from the Castellas fault (SE France). Journal of Structural Geology, 39, 103–121, https://doi.org/10.1016/j.jsg.2012.03.003
    [Google Scholar]
  62. Molli, G., Cortecci, G. et al.
    2010. Fault zone structure and fluid–rock interaction of a high angle normal fault in Carrara marble (NW Tuscany, Italy) // Fault zone structure and fluid–rock interaction of a high angle normal fault in Carrara marble (NW Tuscany, Italy). Journal of Structural Geology, 32, 1334–1348, https://doi.org/10.1016/j.jsg.2009.04.021
    [Google Scholar]
  63. Molliex, S.
    2009. Caractérisation de la déformation tectonique récente en Provence (Sud-Est France)[Characterization of recent tectonic deformation in Provence (South East France)]. PhD thesis, Université Paul Cézanne – Aix-Marseille III, Marseille, France.
    [Google Scholar]
  64. Molliex, S., Bellier, O., Terrier, M., Lamarche, J., Martelet, G. & Espurt, N.
    2011. Tectonic and sedimentary inheritance on the structural framework of Provence (SE France): Importance of the Salon-Cavaillon fault. Tectonophysics, 501, 1–16, https://doi.org/10.1016/j.tecto.2010.09.008
    [Google Scholar]
  65. Moss, S. & Tucker, M.E.
    1995. Diagenesis of Barremian–Aptian platform carbonates (the Urgonian Limestone Formation of SE France): near-surface and shallow-burial diagenesis. Sedimentology, 42, 853–874, https://doi.org/10.1111/j.1365-3091.1995.tb00414.x
    [Google Scholar]
  66. Nelson, R.
    2001. Geologic Analysis of Naturally Fractured Reservoirs, 2nd edn. Gulf Professional Publishing, Houston, TX.
    [Google Scholar]
  67. Ostwald, W.
    1886. Lehrbuch der allgemeinen Chemie, Band 2. Wilhelm Engelmann, Leipzig, Germany.
    [Google Scholar]
  68. Peacock, D.C.P., Dimmen, V., Rotevatn, A. & Sanderson, D.J.
    2017. A broader classification of damage zones. Journal of Structural Geology, 102, 179–192, https://doi.org/10.1016/j.jsg.2017.08.004
    [Google Scholar]
  69. Philip, J.
    1970. Les formations calcaires à Rudistes du Crétacé Supérieur Provençal et Rhodanien. PhD thesis, Université de Provence, Marseille, France.
    [Google Scholar]
  70. Philip, Z.G., Jennings, J.W., Olson, J.E., Laubach, S.E. & Holder, J.T,
    2005. Modeling coupled fracture-matrix fluid flow in geomechanically simulated fracture networks. SPE Reservoir Evaluation and Engineering, 8, 300–308.
    [Google Scholar]
  71. Purser, B.H.
    1980. Sédimentation et diagenèse des carbonates néritiques récents[Sedimentation and diagenesis of recent neritic carbonates]. Les éléments de la sédimentation et de la diagenèse, Volume 1. Editions Technip, Paris.
    [Google Scholar]
  72. Reches, Z. & Dewers, T.A.
    2005. Gouge formation by dynamic pulverization during earthquake rupture. Earth and Planetary Science Letters, 235, 361–374, https://doi.org/10.1016/j.epsl.2005.04.009
    [Google Scholar]
  73. Roche, V.
    2008. Analyse structurale et géo-mécanique de réseau de failles du chaînon de La Fare les Oliviers (Provence). Université de Montpellier II, Marseille, France.
    [Google Scholar]
  74. Rotevatn, A. & Bastesen, E.
    2014. Fault linkage and damage zone architecture in tight carbonate rocks in the Suez Rift (Egypt): implications for permeability structure along segmented normal faults. In: Spence, G.H., Redfern, J., Aguilera, R., Bevan, T.G., Cosgrove, J.W., Couples, G.D. & Daniel, J.-M. (eds) Advances in the Study of Fractured Reservoirs. Geological Society, London, Special Publications, 374, 79–95, https://doi.org/10.1144/SP374.12
    [Google Scholar]
  75. Samankassou, E., Tresch, J. & Strasser, A.
    2005. Origin of peloids in Early Cretaceous deposits, Dorset, South England. Facies, 51, 264–273, https://doi.org/10.1007/s10347-005-0002-8
    [Google Scholar]
  76. Sibson, R.H.
    2000. Fluid involvement in normal faulting. Journal of Geodynamics, 29, 469–499, https://doi.org/10.1016/S0264-3707(99)00042-3
    [Google Scholar]
  77. Sinisi, R., Petrullo, A.V., Agosta, F., Paternoster, M., Belviso, C. & Grassa, F.
    2016. Contrasting fault fluids along high-angle faults: a case study from Southern Apennines (Italy). Tectonophysics, 690, 206–218, https://doi.org/10.1016/j.tecto.2016.07.023
    [Google Scholar]
  78. Solum, J.G.
    & Huisman, B.A.H. 2016. Toward the creation of models to predict static and dynamic fault-seal potential in carbonates. Petroleum Geoscience, 23, 70–91, https://doi.org/10.1144/petgeo2016-044
    [Google Scholar]
  79. Storti, F., Billi, A. & Salvini, F.
    2003. Particle size distributions in natural carbonate fault rocks: Insights for non-self-similar cataclasis. Earth and Planetary Science Letters, 206, 173–186, https://doi.org/10.1016/S0012-821X(02)01077-4
    [Google Scholar]
  80. Swart, P.K.
    2015. The geochemistry of carbonate diagenesis: The past, present and future. Sedimentology, 62, 1233–1304, https://doi.org/10.1111/sed.12205
    [Google Scholar]
  81. Tempier, C.
    1987. Modèle nouveau de mise en place des structures provençales[New model of Provence structure development]. Bulletin de la Société Géologique de France, 3, 533–540.
    [Google Scholar]
  82. Tondi, E.
    2007. Nucleation, development and petrophysical properties of faults in carbonate grainstones: Evidence from the San Vito Lo Capo peninsula (Sicily, Italy). Journal of Structural Geology, 29, 614–628, https://doi.org/10.1016/j.jsg.2006.11.006
    [Google Scholar]
  83. Vermilye, J.M. & Scholz, C.H.
    1999. Fault propagation and segmentation: Insight from the microstructural examination of a small fault. Journal of Structural Geology, 21, 1623–1636, https://doi.org/10.1016/S0191-8141(99)00093-0
    [Google Scholar]
  84. Vincent, B., Emmanuel, L., Houel, P. & Loreau, J.P.
    2007. Geodynamic control on carbonate diagenesis: Petrographic and isotopic investigation of the Upper Jurassic formations of the Paris Basin (France). Sedimentary Geology, 197, 267–289, https://doi.org/10.1016/j.sedgeo.2006.10.008
    [Google Scholar]
  85. Vitale, S., Dati, F., Mazzoli, S., Ciarcia, S., Guerriero, V. & Iannace, A.
    2012. Modes and timing of fracture network development in poly-deformed carbonate reservoir analogues, Mt. Chianello, southern Italy. Journal of Structural Geology, 37, 223–235, https://doi.org/10.1016/j.jsg.2012.01.005
    [Google Scholar]
  86. Volery, C., Davaud, E., Durlet, C., Clavel, B., Charollais, J. & Caline, B.
    2010a. Microporous and tight limestones in the Urgonian Formation (late Hauterivian to early Aptian) of the French Jura Mountains: Focus on the factors controlling the formation of microporous facies. Sedimentary Geology, 230, 21–34, https://doi.org/10.1016/j.sedgeo.2010.06.017
    [Google Scholar]
  87. Volery, C., Davaud, E., Foubert, A. & Caline, B.
    2010b. Lacustrine microporous micrites of the Madrid Basin (Late Miocene, Spain) as analogues for shallow-marine carbonates of the Mishrif reservoir formation (Cenomanian to Early Turonian, Middle East). Facies, 56, 385–397, https://doi.org/10.1007/s10347-009-0210-8
    [Google Scholar]
  88. Walker, R.J., Holdsworth, R.E., Armitage, P.J. & Faulkner, D.R.
    2013. Fault zone permeability structure evolution in basalts. Geology, 41, 59–62, https://doi.org/10.1130/G33508.1
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1144/petgeo2019-010
Loading
/content/journals/10.1144/petgeo2019-010
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error