1887
Volume 26, Issue 3
  • ISSN: 1354-0793
  • E-ISSN:

Abstract

The spatial geometry of microporosity influences fluid flow through chalk reservoirs and aquifers, and, hence, numerous geological processes. Analysing porosity is thus often critical in geological studies. Techniques such as mercury injection capillary pressure (MICP), nuclear magnetic resonance (NMR) and X-ray computed tomography (CT) are expensive, and hence often inapplicable to many geological studies, which often necessitate the analysis of large numbers (hundreds) of samples.

However, scanning electron microscopes (SEM) have become widely available, and SEM imagery analysis, therefore, is cheaper and faster. However, extracting meaningful porosity descriptors from SEM images can be difficult, in part because of the difficulty in digitally separating pores in laterally continuous pore networks. Moreover, mathematical morphology can be automated to collect porosity parameters from hundreds of images in a short time frame. The technique also quantifies the shape complexity of porosity. Considering the influence of pore geometry on fluid flow, the capacity of image analysis to deconstruct the pore network by pore shapes is crucial when building flow models. This study concludes that mathematical morphology constitutes an alternative to other techniques in geological studies of microporosity. Lithologies dominated by micro- and nanoporosity, such as shales and tight sandstones, could also benefit from this technique.

Loading

Article metrics loading...

/content/journals/10.1144/petgeo2019-018
2019-07-11
2024-04-19
Loading full text...

Full text loading...

References

  1. Adams, J.
    1977. Sieve size statistics from grain measurement. Journal of Geology, 85, 209–227, https://doi.org/10.1086/628286
    [Google Scholar]
  2. Akbarabadi, M. & Piri, M.
    2013. Relative permeability hysteresis and capillary trapping characteristics of supercritical CO2/brine systems: An experimental study at reservoir conditions. Advances in Water Resources, 52, 190–206, https://doi.org/10.1016/j.advwatres.2012.06.014
    [Google Scholar]
  3. Akin, S. & Kovscek, A.R.
    2003. Computed tomography in petroleum engineering research. In: Mees, F., Swennen, R., Van Geet, M. & Jacobs, P. (eds) Applications of X-ray Computed Tomography in the Geosciences. Geological Society, London, Special Publications, 215, 23–38, https://doi.org/10.1144/GSL.SP.2003.215.01.03
    [Google Scholar]
  4. Andersen, M.A.
    1995. Petroleum Research in North Sea Chalk. Joint Chalk Research Phase IV. RF-Rogaland Research, Stavanger, Norway.
    [Google Scholar]
  5. Anovitz, L.M. & Cole, D.R.
    2015. Characterization and analysis of porosity and pore structures. Pore-Scale Geochemical Processes, 80, 61–164, https://doi.org/10.2138/rmg.2015.80.04
    [Google Scholar]
  6. Anselmetti, F.S., Luthi, S. & Eberli, G.P.
    1998. Quantitative characterization of carbonate pore systems by digital image analysis. AAPG Bulletin, 82, 1815–1836, https://doi.org/10.7892/boris.87075
    [Google Scholar]
  7. Aydilek, A.H., Oguz, S.H. & Edil, T.B.
    2002. Digital image analysis to determine pore opening size distribution of nonwoven geotextiles. Journal of Computing in Civil Engineering, 16, 280–290, https://doi.org/10.1061/(ASCE)0887-3801(2002)16:4(280)
    [Google Scholar]
  8. Bakke, S. & Øren, P.-E.
    1997. 3-D pore-scale modelling of sandstones and flow simulations in the pore networks. SPE Journal, 2, 136–149, https://doi.org/10.2118/35479-PA
    [Google Scholar]
  9. Basan, P.B., Lowden, B.D., Whattler, P.R. & Attard, J.J.
    1997. Pore-size data in petrophysics: a perspective on the measurement of pore geometry. In: Lovell, M.A. & Harvey, P.K. (eds) Developments in Petrophysics. Geological Society, London, Special Publications, 122, 47–67, https://doi.org/10.1144/GSL.SP.1997.122.01.05
    [Google Scholar]
  10. Beckingham, L.E., Peters, C.A., Um, W., Jones, K.W. & Lindquist, W.B.
    2013. 2D and 3D imaging resolution trade-offs in quantifying pore throats for prediction of permeability. Advances in Water Resources, 62, 1–12, https://doi.org/10.1016/j.advwatres.2013.08.010
    [Google Scholar]
  11. Blunt, M.J.
    2017. Multiphase Flow in Permeable Media: A Pore-Scale Perspective. Cambridge University Press, Cambridge.
    [Google Scholar]
  12. Blunt, M.J., Bijeljic, B. et al.
    2013. Pore-scale imaging and modelling. Advances in Water Resources, 51, 197–216, https://doi.org/10.1016/j.advwatres.2012.03.003
    [Google Scholar]
  13. Brownstein, K.R. & Tarr, C.E.
    1977. Spin-lattice relaxation in a system governed by diffusion. Journal of Magnetic Resonance, 26, 17–24, https://doi.org/10.1016/0022-2364(77)90230-X
    [Google Scholar]
  14. Bultreys, T., De Boever, W. & Cnudde, V.
    2016. Imaging and image-based fluid transport modeling at the pore scale in geological materials: A practical introduction to the current state-of-the-art. Earth-Science Reviews, 155, 93–128, https://doi.org/10.1016/j.earscirev.2016.02.001
    [Google Scholar]
  15. Canny, J.
    1986. A computational approach to edge-detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8, 679–698, https://doi.org/10.1109/TPAMI.1986.4767851
    [Google Scholar]
  16. Chen, Q., Sun, Q.S., Heng, P.A. & Xia, D.S.
    2008. A double-threshold image binarization method based on edge detector. Pattern Recognition, 41, 1254–1267, https://doi.org/10.1016/j.patcog.2007.09.007
    [Google Scholar]
  17. Chen, Y.P., Zhang, C.B., Shi, M.H. & Peterson, G.P.
    2009. Role of surface roughness characterized by fractal geometry on laminar flow in microchannels. Physical Review E, 80, 026301, https://doi.org/10.1103/PhysRevE.80.026301
    [Google Scholar]
  18. Chow, C.K. & Kaneko, T.
    1972. Automatic boundary detection of left ventricle from cineangiograms. Computers and Biomedical Research, 5, 388–410, https://doi.org/10.1016/0010-4809(72)90070-5
    [Google Scholar]
  19. Cnudde, V. & Boone, M.N.
    2013. High-resolution X-ray computed tomography in geosciences: A review of the current technology and applications. Earth-Science Reviews, 123, 1–17, https://doi.org/10.1016/j.earscirev.2013.04.003
    [Google Scholar]
  20. Collins, R.E.
    1964. Flow of fluids through porous media. PennWell Books, Tulsa, OK.
    [Google Scholar]
  21. Conner, W.C., Blanco, C., Coyne, K., Neil, J. & Pajares, J.
    1987. Analysis of the morphology of high surface-area solids – Studies of agglomeration and the determination of shape. Journal of Catalysis, 106, 202–209, https://doi.org/10.1016/0021-9517(87)90224-7
    [Google Scholar]
  22. Crandell, L.E., Peters, C.A., Um, W., Jones, K.W. & Lindquist, W.B.
    2012. Changes in the pore network structure of Hanford sediment after reaction with caustic tank wastes. Journal of Contaminant Hydrology, 131, 89–99, https://doi.org/10.1016/j.jconhyd.2012.02.002
    [Google Scholar]
  23. Dewhurst, D.N., Jones, R.M. & Raven, M.D.
    2002. Microstructural and petrophysical characterization of Muderong Shale: application to top seal risking. Petroleum Geoscience, 8, 371–383, https://doi.org/10.1144/petgeo.8.4.371
    [Google Scholar]
  24. D'Heur, M.
    1984. Porosity and hydrocarbon distribution in the North Sea chalk reservoirs. Marine and Petroleum Geology, 1, 211–238, https://doi.org/10.1016/0264-8172(84)90147-8
    [Google Scholar]
  25. Doyen, P.M.
    1988. Permeability, Conductivity, and Pore Geometry of Sandstone. Journal of Geophysical Research: Solid Earth and Planets, 93, 7729–7740, https://doi.org/10.1029/JB093iB07p07729
    [Google Scholar]
  26. Ehrlich, R., Kennedy, S.K., Crabtree, S.J. & Cannon, R.L.
    1984. Petrographic image-analysis. 1. Analysis of reservoir pore complexes. Journal of Sedimentary Petrology, 54, 1365–1378, https://doi.org/10.1306/212F85DF-2B24-11D7-8648000102C1865D
    [Google Scholar]
  27. Ehrlich, R., Crabtree, S.J., Horkowitz, K.O. & Horkowitz, J.P.
    1991. Petrography and reservoir physics .1. Objective classification of reservoir porosity. AAPG Bulletin, 75, 1547–1562, https://doi.org/10.1306/0C9B2989-1710-11D7-8645000102C1865D
    [Google Scholar]
  28. Fabricius, I.L., Rogen, B. & Gommesen, L.
    2007. How depositional texture and diagenesis control petrophysical and elastic properties of samples from five North Sea chalk fields. Petroleum Geoscience, 13, 81–95, https://doi.org/10.1144/1354-079306-707
    [Google Scholar]
  29. Faÿ-Gomord, O., Soete, J. et al.
    2016. New insight into the microtexture of chalks from NMR analysis. Marine and Petroleum Geology, 75, 252–271, https://doi.org/10.1016/j.marpetgeo.2016.04.019
    [Google Scholar]
  30. Friedman, G.M.
    1958. Determination of sieve-size distribution from thin-section data for sedimentary petrological studies. Journal of Geology, 66, 394–416, https://doi.org/10.1086/626525
    [Google Scholar]
  31. Frykman, P.
    2001. Spatial variability in petrophysical properties in Upper Maastrichtian chalk outcrops at Stevns Klint, Denmark. Marine and Petroleum Geology, 18, 1041–1062, https://doi.org/10.1016/S0264-8172(01)00043-5
    [Google Scholar]
  32. Gallegos, D.P. & Smith, D.M.
    1988. A NMR technique for the analysis of pore structure – determination of continuous pore-size distributions. Journal of Colloid and Interface Science, 122, 143–153, https://doi.org/10.1016/0021-9797(88)90297-4
    [Google Scholar]
  33. Gao, Z.Y. & Hu, Q.H.
    2013. Estimating permeability using median pore-throat radius obtained from mercury intrusion porosimetry. Journal of Geophysics and Engineering, 10, 1–7, https://doi.org/10.1088/1742-2132/10/2/025014
    [Google Scholar]
  34. Ghanbarian, B., Hunt, A.G. & Daigle, H.
    2016. Fluid flow in porous media with rough pore-solid interface. Water Resources Research, 52, 2045–2058, https://doi.org/10.1002/2015WR017857
    [Google Scholar]
  35. Giesche, H.
    2006. Mercury porosimetry: A general (practical) overview. Particle & Particle Systems Characterization, 23, 9–19, https://doi.org/10.1002/ppsc.200601009
    [Google Scholar]
  36. Haines, T.J., Neilson, J.E., Healy, D., Michie, E.A.H. & Aplin, A.C.
    2015. The impact of carbonate texture on the quantification of total porosity by image analysis. Computers & Geosciences, 85, 112–125, https://doi.org/10.1016/j.cageo.2015.08.016
    [Google Scholar]
  37. Hinedi, Z.R., Chang, A.C., Anderson, M.A. & Borchardt, D.B.
    1997. Quantification of microporosity by nuclear magnetic resonance relaxation of water imbibed in porous media. Water Resources Research, 33, 2697–2704, https://doi.org/10.1029/97WR02408
    [Google Scholar]
  38. Hollis, C., Vahrenkamp, V., Tull, S., Mookerjee, A., Taberner, C. & Huang, Y.
    2010. Pore system characterisation in heterogeneous carbonates: An alternative approach to widely-used rock-typing methodologies. Marine and Petroleum Geology, 27, 772–793, https://doi.org/10.1016/j.marpetgeo.2009.12.002
    [Google Scholar]
  39. Iassonov, P., Gebrenegus, T. & Tuller, M.
    2009. Segmentation of X-ray computed tomography images of porous materials: A crucial step for characterization and quantitative analysis of pore structures. Water Resources Research, 45, W09415, https://doi.org/10.1029/2009WR008087
    [Google Scholar]
  40. Jerauld, G.R. & Salter, S.J.
    1990. The effect of pore-structure on hysteresis in relative permeability and capillary-pressure – pore-level modeling. Transport in Porous Media, 5, 103–151, https://doi.org/10.1007/BF00144600
    [Google Scholar]
  41. Johnson, M.R.
    1994. Thin-section grain-size analysis revisited. Sedimentology, 41, 985–999, https://doi.org/10.1111/j.1365-3091.1994.tb01436.x
    [Google Scholar]
  42. Kapur, J.N., Sahoo, P.K. & Wong, A.K.C.
    1985. A new method for gray-level picture thresholding using the entropy of the histogram. Computer Vision Graphics and Image Processing, 29, 273–285, https://doi.org/10.1016/0734-189X(85)90125-2
    [Google Scholar]
  43. Karpyn, Z.T., Piri, M. & Singh, G.
    2010. Experimental investigation of trapped oil clusters in a water-wet bead pack using X-ray microtomography. Water Resources Research, 46, W04510, https://doi.org/10.1029/2008WR007539
    [Google Scholar]
  44. Katz, A.J. & Thompson, A.H.
    1986. Quantitative prediction of permeability in porous rock. Physical Review B, 34, 8179–8181, https://doi.org/10.1103/PhysRevB.34.8179
    [Google Scholar]
  45. Kellerhals, R., Shaw, J. & Arora, V.K.
    1975. On grain size from thin sections. Journal of Geology, 83, 79–86, https://doi.org/10.1086/628046
    [Google Scholar]
  46. Kong, M.Y., Bhattacharya, R.N., James, C. & Basu, A.
    2005. A statistical approach to estimate the 3D size distribution of spheres from 2D size distributions. Geological Society of America Bulletin, 117, 244–249, https://doi.org/10.1130/B25000.1
    [Google Scholar]
  47. Lauridsen, B.W. & Surlyk, F.
    2008. Benthic faunal response to late Maastrichtian chalk–marl cyclicity at Rordal, Denmark. Palaeogeography, Palaeoclimatology, Palaeoecology, 269, 38–53, https://doi.org/10.1016/j.palaeo.2008.07.001
    [Google Scholar]
  48. Lauridsen, B.W., Surlyk, F. & Bromley, R.G.
    2011. Trace fossils of a cyclic chalk–marl succession; the upper Maastrichtian Rørdal Member, Denmark. Cretaceous Research, 32, 194–202, https://doi.org/10.1016/j.cretres.2010.12.002
    [Google Scholar]
  49. Lenormand, R., Zarcone, C. & Sarr, A.
    1983. Mechanisms of the displacement of one fluid by another in a network of capillary ducts. Journal of Fluid Mechanics, 135, 337–353, https://doi.org/10.1017/S0022112083003110
    [Google Scholar]
  50. Mallon, A.J. & Swarbrick, R.E.
    2008a. Diagenetic characteristics of low permeability, non-reservoir chalks from the Central North Sea. Marine and Petroleum Geology, 25, 1097–1108, https://doi.org/10.1016/j.marpetgeo.2007.12.001
    [Google Scholar]
  51. 2008b. How should permeability be measured in fine-grained lithologies? Evidence from the chalk. Geofluids, 8, 35–45, https://doi.org/10.1111/j.1468-8123.2007.00203.x
    [Google Scholar]
  52. Matheron, G.
    1967. Eléments pour une théorie des milieux poreux [Elements for a theory of porous media]. Masson, Paris.
    [Google Scholar]
  53. Matrecano, M.
    2011. Porous media characterization by micro-tomographic image processing. PhD thesis, Università degli studi di Napoli ‘Federico II’, Naples, Italy.
    [Google Scholar]
  54. McCreesh, C.A., Ehrlich, R. & Crabtree, S.J.
    1991. Petrography and reservoir physics. 2. Relating thin-section porosity to capillary-pressure, the association between pore types and throat size. AAPG Bulletin, 75, 1563–1578.
    [Google Scholar]
  55. Mees, F., Swennen, R., Van Geet, M. & Jacobs, P.
    2003. Applications of X-ray computed tomography in the geosciences. In: Mees, F., Swennen, R., Van Geet, M. & Jacobs, P. (eds) Applications of X-ray Computed Tomography in the Geosciences. Geological Society, London, Special Publications, 215, 1–6, https://doi.org/10.1144/GSL.SP.2003.215.01.01
    [Google Scholar]
  56. Megawati, M., Madland, M.V. & Hiorth, A.
    2012. Probing pore characteristics of deformed chalk by NMR relaxation. Journal of Petroleum Science and Engineering, 100, 123–130, https://doi.org/10.1016/j.petrol.2012.11.001
    [Google Scholar]
  57. Mehmani, A. & Prodanovic, M.
    2014. The effect of microporosity on transport properties in porous media. Advances in Water Resources, 63, 104–119, https://doi.org/10.1016/j.advwatres.2013.10.009
    [Google Scholar]
  58. Meyer, A.G.
    2019. Measuring simplified pore-throat angularity using automated mathematical morphology. SPE Journal, 24, 243–253, https://doi.org/10.2118/194193-PA
    [Google Scholar]
  59. Meyer, A.G., Stemmerik, L., Frykman, P., Buls, T. & Nourani, M.
    2019. Modifications of chalk microporosity geometry during burial – an application of mathematical morphology. Marine and Petroleum Geology, 100, 212–224, https://doi.org/10.1016/j.marpetgeo.2018.11.006
    [Google Scholar]
  60. Miller, K.G., Kominz, M.A. et al.
    2005. The phanerozoic record of global sea-level change. Science, 310, 1293–1298, https://doi.org/10.1126/science.1116412
    [Google Scholar]
  61. Moran, C.J., Mcbratney, A.B. & Koppi, A.J.
    1989. A rapid method for analysis of soil macropore structure .1. Specimen preparation and digital binary image production. Soil Science Society of America Journal, 53, 921–928, https://doi.org/10.2136/sssaj1989.03615995005300030048x
    [Google Scholar]
  62. Müter, D., Sørensen, H.O. et al.
    2014. Resolution dependence of petrophysical parameters derived from X-ray tomography of chalk. Applied Physics Letters, 105, 5, https://doi.org/10.1063/1.4891965
    [Google Scholar]
  63. Nakagawa, Y. & Rosenfeld, A.
    1979. Some experiments on variable thresholding. Pattern Recognition, 11, 191–204, https://doi.org/10.1016/0031-3203(79)90006-2
    [Google Scholar]
  64. Norbisrath, J.H., Eberli, G.P., Laurich, B., Desbois, G., Weger, R.J. & Urai, J.L.
    2015. Electrical and fluid flow properties of carbonate microporosity types from multiscale digital image analysis and mercury injection. AAPG Bulletin, 99, 2077–2098, https://doi.org/10.1306/07061514205
    [Google Scholar]
  65. Otsu, N.
    1979. A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9, 62–66, https://doi.org/10.1109/TSMC.1979.4310076
    [Google Scholar]
  66. Panozzo, R.
    1982. Determination of size distributions of spheres from size distributions of circular sections by Monte-Carlo methods. Microscopica Acta, 86, 37–48.
    [Google Scholar]
  67. Patsoules, M.G. & Cripps, J.C.
    1982. The application of resin impregnation to the 3-dimensional study of chalk pore geometry. Engineering Geology, 19, 15–27, https://doi.org/10.1016/0013-7952(82)90003-5
    [Google Scholar]
  68. Priol, G., De Gennaro, V., Delage, P. & Cui, Y.-J.
    2004. On the suction and the time dependent behaviour of reservoir chalks of North Sea oilfields. In: Mancuso, C. & Tarantino, A. (eds) Unsaturated Soils – Advances in Testing, Modelling and Engineering Applications. CRC Press, Boca Raton, FL, 43–54.
    [Google Scholar]
  69. Raeini, A.Q., Blunt, M.J. & Bijeljic, B.
    2014. Direct simulations of two-phase flow on micro-CT images of porous media and upscaling of pore-scale forces. Advances in Water Resources, 74, 116–126, https://doi.org/10.1016/j.advwatres.2014.08.012
    [Google Scholar]
  70. Raoof, A., Nick, H.M., Wolterbeek, T.K.T. & Spiers, C.J.
    2012. Pore-scale modeling of reactive transport in wellbore cement under CO2 storage conditions. International Journal of Greenhouse Gas Control, 11, S67–S77, https://doi.org/10.1016/j.ijggc.2012.09.012
    [Google Scholar]
  71. R_Core_Team
    2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
    [Google Scholar]
  72. Rink, M.
    1976. Computerized quantitative image analysis procedure for investigating features and an adapted image process. Journal of Microscopy, 107, 267–286, https://doi.org/10.1111/j.1365-2818.1976.tb02448.x
    [Google Scholar]
  73. Rink, M. & Schopper, J.R.
    1978. On the application of image analysis to formation evaluation. The Log Analyst, 19, 12–22.
    [Google Scholar]
  74. Rios, E.H., Figueiredo, I., Moss, A.K., Pritchard, T.N., Glassborow, B.A., Domingues, A.B.G. & Azeredo, R.B.D.
    2016. NMR permeability estimators in ‘chalk’ carbonate rocks obtained under different relaxation times and MICP size scalings. Geophysical Journal International, 206, 260–274, https://doi.org/10.1093/gji/ggw130
    [Google Scholar]
  75. Røgen, B. & Fabricius, I.L.
    2002. Influence of clay and silica on permeability and capillary entry pressure of chalk reservoirs in the North Sea. Petroleum Geoscience, 8, 287–293, https://doi.org/10.1144/petgeo.8.3.287
    [Google Scholar]
  76. Ross, C.M. & Ehrlich, R.
    1991. Objective measurement and classification of microfabrics and their relationship to physical-properties. In: Bennett, R.H., Bryant, W.R. et al. (eds) Microstructure of Fine-Grained Sediments. Frontiers in Sedimentary Geology. Springer, New York, 353–358, https://doi.org/10.1007/978-1-4612-4428-8_38
    [Google Scholar]
  77. Rustichelli, A., Tondi, E., Agosta, F., Di Celma, C. & Giorgioni, M.
    2013. Sedimentologic and diagenetic controls on pore-network characteristics of Oligocene–Miocene ramp carbonates (Majella Mountain, central Italy). AAPG Bulletin, 97, 487–524, https://doi.org/10.1306/07311212071
    [Google Scholar]
  78. Sahimi, M.
    2011. Flow and Transport in Porous Media and Fractured Rock - From Classical Methods to Modern Approaches. 2nd revised and enlarged version. Wiley-VCH, Weinheim, Germany.
    [Google Scholar]
  79. Schatzinger, R.A.
    1985. Chalk Pore Systems: Qualitative Evaluation and Quantitative Aspects of Pore Geometry. Proceedings of the Second North Sea Chalk Symposium, Stavanger, Norway.
    [Google Scholar]
  80. Scholle, P.A.
    1977. Chalk diagenesis and its relation to petroleum exploration: Oil from chalks, a modern miracle?AAPG Bulletin, 61, 982–1009, https://doi.org/10.1306/C1EA43B5-16C9-11D7-8645000102C1865D
    [Google Scholar]
  81. Serra, J.
    1982. Image Analysis and Mathematical Morphology. Academic Press, London.
    [Google Scholar]
  82. Sezgin, M. & Sankur, B.
    2004. Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic Imaging, 13, 146–168, https://doi.org/10.1117/1.1631315
    [Google Scholar]
  83. Shah, S.M., Gray, F., Crawshaw, J.P. & Boek, E.S.
    2016. Micro-computed tomography pore-scale study of flow in porous media: Effect of voxel resolution. Advances in Water Resources, 95, 276–287, https://doi.org/10.1016/j.advwatres.2015.07.012
    [Google Scholar]
  84. Sheppard, A.P., Sok, R.M. & Averdunk, H.
    2004. Techniques for image enhancement and segmentation of tomographic images of porous materials. Physica A – Statistical Mechanics and Its Applications, 339, 145–151, https://doi.org/10.1016/j.physa.2004.03.057
    [Google Scholar]
  85. Silin, D. & Patzek, T.
    2006. Pore space morphology analysis using maximal inscribed spheres. Physica A – Statistical Mechanics and Its Applications, 371, 336–360, https://doi.org/10.1016/j.physa.2006.04.048
    [Google Scholar]
  86. Smith, J.D., Chatzis, I. & Ioannidis, M.A.
    2005. A new technique to measure the breakthrough capillary pressure. Journal of Canadian Petroleum Technology, 44, 25–31, https://doi.org/10.2118/05-11-01
    [Google Scholar]
  87. Sørland, G.H., Djurhuus, K., Widerøe, H.C., Lien, J.R. & Skauge, A.
    2007. Absolute pore size distributions from NMR. Diffusion Findamentals, 5, 1–15.
    [Google Scholar]
  88. Starnoni, M., Pokrajac, D. & Neilson, J.E.
    2017. Computation of fluid flow and pore-space properties estimation on micro-CT images of rock samples. Computers & Geosciences, 106, 118–129, https://doi.org/10.1016/j.cageo.2017.06.009
    [Google Scholar]
  89. Swanson, B.F.
    1981. A simple correlation between permeabilities and mercury capillary pressures. Journal of Petroleum Technology, 33, 2498–2504, https://doi.org/10.2118/8234-PA
    [Google Scholar]
  90. Talukdar, M.S., Ioannidis, M., Howard, J. & Torsaeter, O.
    2001. Network modeling as a tool for petrophysical measurements in chalk. Proceedings of the 6th Nordic Symposium on Petrophysics, 15–16 May 2001, Trondheim, Norway, 1–20, Norwegian University of Science and Technology, Trondheim.
    [Google Scholar]
  91. Tansey, J. & Balhoff, M.T.
    2016. Pore network modeling of reactive transport and dissolution in porous media. Transport in Porous Media, 113, 303–327, https://doi.org/10.1007/s11242-016-0695-x
    [Google Scholar]
  92. Tomutsa, L. & Silin, D.
    2004. Nanoscale Pore Imaging and Pore Scale Fluid Flow Modeling in Chalk. Lawrence Berkeley National Laboratory. Berkeley, CA, https://escholarship.org/uc/item/9b86t01t
    [Google Scholar]
  93. Tomutsa, L., Silin, D. & Radmilovic, V.
    2007. Analysis of chalk petrophysical properties by means of submicron-scale pore imaging and modeling. SPE Reservoir Evaluation and Engineering, 10, 285–293, https://doi.org/10.2118/99558-PA
    [Google Scholar]
  94. Tuller, M., Or, D. & Dudley, L.M.
    1999. Adsorption and capillary condensation in porous media: Liquid retention and interfacial configurations in angular pores. Water Resources Research, 35, 1949–1964, https://doi.org/10.1029/1999WR900098
    [Google Scholar]
  95. Verwer, K., Eberli, G.P. & Weger, R.J.
    2011. Effect of pore structure on electrical resistivity in carbonates. AAPG Bulletin, 95, 175–190, https://doi.org/10.1306/06301010047
    [Google Scholar]
  96. Vincent, B., Fleury, M., Santerre, Y. & Brigaud, B.
    2011. NMR relaxation of neritic carbonates: An integrated petrophysical and petrographical approach. Journal of Applied Geophysics, 74, 38–58, https://doi.org/10.1016/j.jappgeo.2011.03.002
    [Google Scholar]
  97. Vogel, H.J.
    1997. Morphological determination of pore connectivity as a function of pore size using serial sections. European Journal of Soil Science, 48, 365–377, https://doi.org/10.1046/j.1365-2389.1997.00096.x
    [Google Scholar]
  98. Vogel, H.J. & Kretzschmar, A.
    1996. Topological characterization of pore space in soil – Sample preparation and digital image-processing. Geoderma, 73, 23–38, https://doi.org/10.1016/0016-7061(96)00043-2
    [Google Scholar]
  99. Wardlaw, N.C.
    1990. Quantitative-determination of pore structure and application to fluid displacement in reservoir rocks. In: Buller, A.T., Berg, E., Hjelmeland, O., Kleppe, J., Torsæter, O. & Aasen, J.O. (eds) North Sea Oil and Gas Reservoirs – II. Springer, Dordrecht, The Netherlands, 229–243, https://doi.org/10.1007/978-94-009-0791-1_19
    [Google Scholar]
  100. Weger, R.J., Eberli, G.P., Baechle, G.T., Massaferro, J.L. & Sun, Y.F.
    2009. Quantification of pore structure and its effect on sonic velocity and permeability in carbonates. AAPG Bulletin, 93, 1297–1317, https://doi.org/10.1306/05270909001
    [Google Scholar]
  101. Wildenschild, D. & Sheppard, A.P.
    2013. X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems. Advances in Water Resources, 51, 217–246, https://doi.org/10.1016/j.advwatres.2012.07.018
    [Google Scholar]
  102. Xiong, Q.R., Baychev, T.G. & Jivkov, A.P.
    2016. Review of pore network modelling of porous media: Experimental characterisations, network constructions and applications to reactive transport. Journal of Contaminant Hydrology, 192, 101–117, https://doi.org/10.1016/j.jconhyd.2016.07.002
    [Google Scholar]
  103. Yoon, H. & Dewers, T.A.
    2013. Nanopore structures, statistically representative elementary volumes, and transport properties of chalk. Geophysical Research Letters, 40, 4294–4298, https://doi.org/10.1002/grl.50803
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1144/petgeo2019-018
Loading
/content/journals/10.1144/petgeo2019-018
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error