1887
Volume 27, Issue 1
  • ISSN: 1354-0793
  • E-ISSN:

Abstract

The shallow-marine Upper Jurassic–Lower Cretaceous sedimentary successions of the Mandawa Basin, coastal Tanzania, are located about 80 km away from the offshore gas discoveries of Block 2, Tanzania. In this paper we present petroleum geochemical data, including bitumen extracted from outcrop samples which are relevant to the understanding of the onshore ‘Petroleum System’ and possibly also to the offshore basin. Despite some biodegradation and weathering, common to all outcrop samples, most bitumen samples analysed contain mature migrated oil. The maturity span of geomarkers (C–C range) covers the entire oil and condensate/wet gas window (  = 0.7–2% , where is the calculated vitrinite reflectance), with the biomarkers generally indicating the oil window (  = 0.7–1.3% ). This suggests that the bitumen extracts represent several phases of migrated oil and condensate, which shows that the samples are part of an active or recently active migration regime or ‘Petroleum System’. The source-rock facies inferred for the bitumen is Type II/III kerogen of siliciclastic to carbonate facies. This is oil-prone kerogen, typical for a marine depositional system with an influx of proximal-derived terrigenous material blended in with marine algal organic matter (OM). Application of age-specific biomarkers such as the C/C-steranes, extended tricyclic terpane ratio (ETR), nordiacholestanes and the aromatic steroids suggest that more than one source rock have contributed to the bitumen. Possible ages are limited to the Mesozoic (i.e. excluding the Late Paleozoic), with the most likely source rock belonging to the Early Jurassic. More geochemical and geological studies should be undertaken to further develop the general understanding of the petroleum system of the Mandawa Basin and its implications to the ‘Petroleum Systems’ both offshore and onshore. This paper also presents a reinterpretation of published gas composition and isotope data on the Pande, Temane and Inhassoro gas fields (Mozambique) with implications for possible oil discoveries in the gas-dominated region.

Loading

Article metrics loading...

/content/journals/10.1144/petgeo2019-050
2019-12-05
2024-03-29
Loading full text...

Full text loading...

References

  1. Abay, T.B., Karlsen, D.A. & Ohm, S.
    2014. Vertical variations in reservoir geochemistry in a Palaeozoic trap, Embla field, offshore Norway. Journal of Petroleum Geology, 37, 349–372, https://doi.org/10.1111/jpg.12590
    [Google Scholar]
  2. Abay, T.B., Karlsen, D.A., Lerch, B., Olaussen, S., Pedersen, J.H. & Backer-Owe, K.
    2017. Migrated petroleum in outcropping Mesozoic sedimentary rocks in Spitsbergen: Organic geochemical characterization and implications for regional exploration. Journal of Petroleum Geology, 40, 5–36, https://doi.org/10.1111/jpg.12662
    [Google Scholar]
  3. Abay, T.B., Karlsen, D.A., Pedersen, J.H., Olaussen, S. & Backer-Owe, K.
    2018. Thermal maturity, hydrocarbon potential and kerogen type of some Triassic–Lower Cretaceous sediments from the SW Barents Sea and Svalbard. Petroleum Geoscience, 24, 349–373, https://doi.org/10.1144/petgeo2017-035
    [Google Scholar]
  4. Aitken, W.
    1961. Geology and Palaeontology of the Jurassic and Cretaceous of Southern Tanganyika. Bulletin of the Geological Survey of Tanganyika, 31, 1–144.
    [Google Scholar]
  5. Alexander, R., Kagi, R.I., Woodhouse, G.W. & Volkman, J.K.
    1983. The geochemistry of some biodegraded Australian oils. Australian Petroleum Exploration Association Journal, 23, 53–63, https://doi.org/10.1071/AJ82006
    [Google Scholar]
  6. Aquino-Neto, F.R., Trendel, J.M., Restle, A., Connan, J. & Albrecht, P.A.
    1983. Occurrence and formation of tricyclic and tetracyclic terpanes in sediments and petroleums. In: Bjorøy, M., Albrecht, C., Cornford, C., de Groot, K., Eglington, G., Galimov, E., Leythaeuser, D. et al. (eds) Advances in Organic Geochemistry 1981. Wiley, Chichester, UK, 659–667.
    [Google Scholar]
  7. Barbanti, S.M., Moldowan, J.M., Watt, D.S. & Kolaczkowska, E.
    2011. New triaromatic steroids distinguish Paleozoic from Mesozoic oil. Organic Geochemistry, 42, 409–424, https://doi.org/10.1016/j.orggeochem.2011.02.007
    [Google Scholar]
  8. Barlass, D., Zibane, M., Samuel, C., Langa, H. & Tembe, C.
    2017. Prospectivity analysis and resource assessment of the unlicensed Angoche Basin. Abstract presented at theThird EAGE Eastern Africa Petroleum Geoscience Forum, 7–9 November 2017, Maputo, Mozambique, https://doi.org/10.3997/2214-4609.201702396
    [Google Scholar]
  9. Boote, D.R.D. & Matchette-Downes, C.
    2009. Extinct and near extinct petroleum systems of the East African coastal basins. Presented at the8th PESGB/HGS Conference on African E&P, 9–10 September 2009, London, UK.
    [Google Scholar]
  10. Bosellini, A.
    1992. The continental margins of Somalia: Structural evolution and sequence stratigraphy. In: Watkins, J.S., Zhiqiang, F. & McMillen, K.J. (eds) Geology and Geophysics of Continental Margins. AAPG Memoirs, 53, 185–205, https://doi.org/10.1306/M53552
    [Google Scholar]
  11. Chen, Z., Chai, Z., Cheng, B., Cao, Z., Liu, H., Cao, Y. & Qu, J.
    In press. Geochemistry of high mature crude oil and gas from deep reservoirs and its geological significance: a case study of the Shuntuoguole Lower Uplift, Tarim Basin, western China. AAPG Bulletin.
    [Google Scholar]
  12. Cornford, C., Needham, C. & De Walque, L.
    1986. Geochemical habitat of North Sea oils and gases. In: Spencer, A.M. (ed.) Habitat of Hydrocarbons on the Norwegian Continental Shelf. Graham and Trotman, London, 39–54.
    [Google Scholar]
  13. Curiale, J.A., Cameron, D. & Davis, D.V.
    1985. Biological marker distribution and significance in oils and rocks of the Monterey Formation, California. Geochimica et Cosmochimica Acta, 49, 271–288, https://doi.org/10.1016/0016-7037(85)90210-8
    [Google Scholar]
  14. Davison, I. & Steel, I.
    2018. Geology and hydrocarbon potential of the East African continental margin: a review. Petroleum Geoscience, 24, 57–91, https://doi.org/10.1144/petgeo2017-028
    [Google Scholar]
  15. Didyk, B., Simoneit, B., Brassell, S.t. & Eglinton, G.
    1978. Organic geochemical indicators of palaeoenvironmental conditions of sedimentation. Nature, 272, 216–222, https://doi.org/10.1038/272216a0
    [Google Scholar]
  16. Duncan, A. & Hamilton, R.
    1988. Palaeolimnology and organic geochemistry of the Middle Devonian in the Orcadian Basin. In: Fleet,A.J., Kelts, K. & Talbot, M.R. (eds) 1988. Lacustrine Petroleum Source Rocks. Geological Society, London, Special Publications, 40, 173–201, https://doi.org/10.1144/GSL.SP.1988.040.01.16
    [Google Scholar]
  17. Eagles, G. & König, M.
    2008. A model of plate kinematics in Gondwana breakup. Geophysical Journal International, 173, 703–717, https://doi.org/10.1111/j.1365-246X.2008.03753.x
    [Google Scholar]
  18. England, W.A. & Mackenzie, A.S.
    1989. Some aspects of the organic geochemistry of petroleum fluids. Geologische Rundschau, 78, 291–303, https://doi.org/10.1007/BF01988365
    [Google Scholar]
  19. Fossum, K., Morton, A.C., Dypvik, H. & Hudson, W.E.
    2019. Integrated heavy mineral study of Jurassic to Paleogene sandstones in the Mandawa Basin, Tanzania: Sediment provenance and source-to-sink relations. Journal of African Earth Sciences, 150, 546–565, https://doi.org/10.1016/j.jafrearsci.2018.09.009
    [Google Scholar]
  20. Gaina, C., Torsvik, T.H., van Hinsbergen, D.J., Medvedev, S., Werner, S.C. & Labails, C.
    2013. The African Plate: A history of oceanic crust accretion and subduction since the Jurassic. Tectonophysics, 604, 4–25, https://doi.org/10.1016/j.tecto.2013.05.037
    [Google Scholar]
  21. Galimov, E.M.
    1973. Carbon Isotopes in Oil and Gas Geology. Nedra, Moscow [in Russian]. English translation: NASA Technical Translation NASA TT F-682. NASA, Washington, DC, 1975.
    [Google Scholar]
  22. 1985. The Biological Fractionation of Isotopes. Academic Press, Orlando, FL.
    [Google Scholar]
  23. Geiger, M., Clark, D.N. & Mette, W.
    2004. Reappraisal of the timing of the breakup of Gondwana based on sedimentological and seismic evidence from the Morondava Basin, Madagascar. Journal of African Earth Sciences, 38, 363–381, https://doi.org/10.1016/j.jafrearsci.2004.02.003
    [Google Scholar]
  24. Grantham, P.J. & Wakefield, L.L.
    1988. Variations in the sterane carbon number distributions of marine source rock derived crude oils through geological time. Organic Geochemistry, 12, 61–73, https://doi.org/10.1016/0146-6380(88)90115-5
    [Google Scholar]
  25. Gundersveen, E.
    2014. Sedimentology, Petrology and Diagenesis of Mesozoic Sandstones in the Mandawa Basin, Coastal Tanzania. MSc thesis, University of Oslo.
    [Google Scholar]
  26. Gussow, W.C.
    1954. Differential entrapment of oil and gas: a fundamental principle. AAPG Bulletin, 38, 816–853, https://doi.org/10.1306/5CEADF11-16BB-11D7-8645000102C1865D
    [Google Scholar]
  27. Haid, M.H.M.
    2018. Depositional Environments of the Lower Cretaceous Nalwehe Formation of Mandawa Basin, Southern Coastal Tanzania. A Study Based on Mineralogical and Petrographical Analysis. MSc thesis, University of Oslo.
    [Google Scholar]
  28. Holba, A., Tegelaar, E., Huizinga, B., Moldowan, J., Singletary, M., McCaffrey, M. & Dzou, L.
    1998. 24-norcholestanes as age-sensitive molecular fossils. Geology, 26, 783–786, https://doi.org/10.1130/0091-7613(1998)026<0783:NAASMF>2.3.CO;2
    [Google Scholar]
  29. Holba, A., Ellis, L., Dzou, L., Hallam, A., Masterson, W., Francu, J. & Fincannon, A.
    2001. Extended tricyclic terpanes as age discriminators between Triassic, Early Jurassic and Middle–Late Jurassic oils. In: Di Primio, R., Connan, J. et al. (eds) Advances in Organic Geochemistry 2001: Proceedings of the 20th International Meeting on Organic Geochemistry, Nancy, France, 10–14 September 2001, Volume 1. Pergamon, Oxford, UK, 464, https://doi.org/10.1016/S0146-6380(00)00159-5
    [Google Scholar]
  30. Hudson, W.E.
    2011. The Geological Evolution of the Petroleum Prospective Mandawa Basin Southern Coastal Tanzania. PhD thesis, Trinity College, University of Dublin
    [Google Scholar]
  31. Hudson, W.E. & Nicholas, C.J.
    2014. The Pindiro Group (Triassic to Early Jurassic Mandawa Basin, southern coastal Tanzania): Definition, palaeoenvironment, and stratigraphy. Journal of African Earth Sciences, 92, 55–67, https://doi.org/10.1016/j.jafrearsci.2014.01.005
    [Google Scholar]
  32. Hunt, J.M.
    1996. Petroleum Geochemistry and Geology. 2nd edn. W. H. Freeman, New York.
    [Google Scholar]
  33. Kagya, M.L.N.
    1996. Geochemical characterization of Triassic petroleum source rock in the Mandawa basin, Tanzania. Journal of African Earth Sciences, 23, 73–88, https://doi.org/10.1016/S0899-5362(96)00053-X
    [Google Scholar]
  34. Kapilima, S.
    2003. Tectonic and sedimentary evolution of the coastal basin of Tanzania during the Mesozoic times. Tanzania Journal of Science, 29, 1–16, https://doi.org/10.4314/tjs.v29i1.18362
    [Google Scholar]
  35. Karlsen, D.A. & Larter, S.
    1989. A rapid correlation method for petroleum population mapping within individual petroleum reservoirs: applications to petroleum reservoir description. In: Collinson, J.D. (ed.) Correlation in Hydrocarbon Exploration. Springer, Dordrecht, The Netherlands, 77–85.
    [Google Scholar]
  36. Karlsen, D.A. & Larter, S.R.
    1991. Analysis of petroleum fractions by TLC-FID: applications to petroleum reservoir description. Organic Geochemistry, 17, 603–617, https://doi.org/10.1016/0146-6380(91)90004-4
    [Google Scholar]
  37. Karlsen, D.A. & Skeie, J.E.
    2006. Petroleum migration, faults and overpressure, Part I: calibrating basin modelling using petroleum in traps – a review. Journal of Petroleum Geology, 29, 227–256, https://doi.org/10.1111/j.1747-5457.2006.00227.x
    [Google Scholar]
  38. Karlsen, D.A., Nedkvitne, T., Larter, S.R. & Bjørlykke, K.
    1993. Hydrocarbon composition of authigenic inclusions: application to elucidation of petroleum reservoir filling history. Geochimica et Cosmochimica Acta, 57, 3641–3659, https://doi.org/10.1016/0016-7037(93)90146-N
    [Google Scholar]
  39. Karlsen, D.A., Nyland, B., Flood, B., Ohm, S.E., Brekke, T., Olsen, S. & Backer-Owe, K.
    1995. Petroleum geochemistry of the Haltenbanken, Norwegian continental shelf. In: England, W.A. & Cubitt, J.M. (eds) 1995. The Geochemistry of Reservoirs. Geological Society, London, Special Publications, 86, 203–256, https://doi.org/10.1144/GSL.SP.1995.086.01.14
    [Google Scholar]
  40. Karlsen, D.A., Skeie, J.E. et al.
    2004. Petroleum migration, faults and overpressure. Part II. Case history: The Haltenbanken Petroleum Province, offshore Norway. In: Cubitt, J.M., England, W.A. & Larter, S. (eds) 2004. Understanding Petroleum Reservoirs: Towards an Integrated Reservoir Engineering and Geochemical Approach. Geological Society, London, Special Publications, 237, 305–372, https://doi.org/10.1144/GSL.SP.2004.237.01.18
    [Google Scholar]
  41. Kent, P.E., Hunt, J.A. & Johnstone, D.W.
    1971. The geology and geophysics of coastal Tanzania. Institute of Geological Sciences, Geophysical Papers, 6, 1–101.
    [Google Scholar]
  42. Kvalheim, O.M., Christy, A.A., Telnæs, N. & Bjørseth, A.
    1987. Maturity determination of organic matter in coals using the methylphenanthrene distribution. Geochimica et Cosmochimica Acta, 51, 1883–1888, https://doi.org/10.1016/0016-7037(87)90179-7
    [Google Scholar]
  43. Lerch, B., Karlsen, D.A., Abay, T.B., Duggan, D., Seland, R. & Backer-Owe, K.
    2016a. Regional petroleum alteration trends in Barents Sea oils and condensates as a clue to migration regimes and processes. AAPG Bulletin, 100, 165–190, https://doi.org/10.1306/08101514152
    [Google Scholar]
  44. Lerch, B., Karlsen, D.A., Matapour, Z., Seland, R. & Backer-Owe, K.
    2016b. Organic geochemistry of Barents Sea petroleum: thermal maturity and alteration and mixing processes in oils and condensates. Journal of Petroleum Geology, 39, 125–148, https://doi.org/10.1111/jpg.12637
    [Google Scholar]
  45. Lerch, B., Karlsen, D.A. et al.
    2018. Investigations on the use of triaromatic dimethylcholesteroids as age-specific biomarkers in bitumens and oils from Arctic Norway. Organic Geochemistry, 122, 1–16, https://doi.org/10.1016/j.orggeochem.2018.04.011
    [Google Scholar]
  46. Loegering, M.J. & Milkov, A.V.
    2017. Geochemistry of petroleum gases and liquids from the Inhassoro, Pande and Temane fields onshore Mozambique. Geosciences, 7, 33, https://doi.org/10.3390/geosciences7020033
    [Google Scholar]
  47. Mackenzie, A., Patience, R., Maxwell, J., Vandenbroucke, M. & Durand, B.
    1980. Molecular parameters of maturation in the Toarcian shales, Paris Basin, France – I. Changes in the configurations of acyclic isoprenoid alkanes, steranes and triterpanes. Geochimica et Cosmochimica Acta, 44, 1709–1721, https://doi.org/10.1016/0016-7037(80)90222-7
    [Google Scholar]
  48. Mackenzie, A.S., Hoffmann, C.F. & Maxwell, J.R.
    1981. Molecular parameters of maturation in the Toarcian shales, Paris Basin, France – III. Changes in aromatic steroid hydrocarbons. Geochimica et Cosmochimica Acta, 45, 1345–1355, https://doi.org/10.1016/0016-7037(81)90227-1
    [Google Scholar]
  49. Mackenzie, A.S., Maxwell, J.R., Coleman, M.L. & Deegan, C.E.
    1984. Biological marker and carbon isotope studies of North Sea crude oils and sediments. In: Proceedings of the 11th World Petroleum Congress, Volume 2. John Wiley & Sons, Chichester, UK, 45–56.
    [Google Scholar]
  50. Mackenzie, A.S., Beaumont, C., Boutilier, R. & Rullkötter, J.
    1985. The aromatization and isomerization of hydro carbons and the thermal and subsidence history of the Nova Scotia margin. Philosophical Transactions of The Royal Society A: Mathematical, Physical and Engineering Sciences, 315, 203–232, https://doi.org/10.1098/rsta.1985.0037
    [Google Scholar]
  51. Mahanjane, E., Franke, D., Lutz, R., Winsemann, J., Ehrhardt, A., Berglar, K. & Reichert, C.
    2014. Maturity and petroleum systems modelling in the offshore Zambezi Delta depression and Angoche Basin, northern Mozambique. Journal of Petroleum Geology, 37, 329–348, https://doi.org/10.1111/jpg.12589
    [Google Scholar]
  52. Makoye, D.M.
    2016. Geophysical Investigation of the Subsurface Structures of the Mandawa Basin, Southeast Coastal Tanzania. MSc thesis, University of Dar es Salaam.
    [Google Scholar]
  53. Matapour, Z. & Karlsen, D.
    2018. Ages of Norwegian oils and bitumen based on age-specific biomarkers. Petroleum Geoscience, 24, 92–101, https://doi.org/10.1144/petgeo2016-119
    [Google Scholar]
  54. Mbede, E.I.
    1991. The sedimentary basins of Tanzania-reviewed. Journal of African Earth Sciences (and the Middle East), 13, 291–297, https://doi.org/10.1016/0899-5362(91)90092-D
    [Google Scholar]
  55. McKirdy, D., Aldridge, A. & Ypma, P.
    1983. A geochemical comparison of some crude oils from pre-Ordovician carbonate rocks. In: Bjorøy, M., Albrecht, C., Cornford, C., de Groot, K., Eglington, G., Galimov, E., Leythaeuser, D. et al. (eds) Advances in Organic Geochemistry 1981. Wiley, Chichester, UK, 99–107.
    [Google Scholar]
  56. Mello, M., Gaglianone, P., Brassell, S. & Maxwell, J.
    1988. Geochemical and biological marker assessment of depositional environments using Brazilian offshore oils. Marine and Petroleum Geology, 5, 205–223, https://doi.org/10.1016/0264-8172(88)90002-5
    [Google Scholar]
  57. Mkuu, D.E.
    2018. Palynological, Palynofacies, Thermal Maturity and Burial Modelling Analyses of the Cretaceous to Cenozoic Sediments from a Series of Tanzanian Onshore and Offshore Boreholes. PhD thesis, University of Southampton.
    [Google Scholar]
  58. Moldowan, J.M., Seifert, W.K. & Gallegos, E.J.
    1985. Relationship between petroleum composition and depositional environment of petroleum source rocks. AAPG Bulletin, 69, 1255–1268, https://doi.org/10.1306/AD462BC8-16F7-11D7-8645000102C1865D
    [Google Scholar]
  59. Moldowan, J.M., Fago, F.J. et al.
    1991. Rearranged hopanes in sediments and petroleum. Geochimica et Cosmochimica Acta, 55, 3333–3353, https://doi.org/10.1016/0016-7037(91)90492-N
    [Google Scholar]
  60. Mpanda, S.
    1997. Geological Development of the East African Coastal Basin of Tanzania. Acta Universitatis Stockholmiensis, Stockholm.
    [Google Scholar]
  61. Mpanju, F. & Philp, R.
    1994. Organic geochemical characterization of bitumens, seeps, rock extracts and condensates from Tanzania. Organic Geochemistry, 21, 359–371, https://doi.org/10.1016/0146-6380(94)90198-8
    [Google Scholar]
  62. Msaky, E.
    2015. Oil and Gas Exploration – General Overview. A presentation to the delegation from Tanzania Private Section Foundation (TPSF), http://tpdc.co.tz/wp-content/uploads/2015/04/OIL-and-GAS-EXPLORATION.pdf
  63. Muhongo, S.
    2013. Tanzania as an Emerging Energy Producer. Lecture at Chatham House, The Royal Institute of International Affairs, London, https://www.chathamhouse.org/events/view/189235
  64. Nicholas, C.J., Pearson, P.N., McMillan, I.K., Ditchfield, P.W. & Singano, J.M.
    2007. Structural evolution of southern coastal Tanzania since the Jurassic. Journal of African Earth Sciences, 48, 273–297, https://doi.org/10.1016/j.jafrearsci.2007.04.003
    [Google Scholar]
  65. Ohm, S.E., Karlsen, D.A. & Austin, T.
    2008. Geochemically driven exploration models in uplifted areas: Examples from the Norwegian Barents Sea. AAPG Bulletin, 92, 1191–1223, https://doi.org/10.1306/06180808028
    [Google Scholar]
  66. Palermo, D., Galbiati, M., Famiglietti, M., Marchesini, M., Mezzapesa, D. & Fonnesu, F.
    2014. Insights into a new super-giant gas field-sedimentology and reservoir modeling of the Coral Reservoir Complex, Offshore Northern Mozambique. Presented at theOffshore Technology Conference – Asia, 25–28 March 2014, Kuala Lumpur, Malaysia, https://doi.org/10.4043/24907-MS
    [Google Scholar]
  67. Pereira-Rego, M.C., Carr, A.D. & Cameron, N.R.
    2013. Gas success along the margin of East Africa, but where is all the generated oil?AAPG Search and Discovery Article #10488 presented at theEast Africa Petroleum Province of the 21st Century Conference, 24–26 October 2012, London, UK, http://www.searchanddiscovery.com/pdfz/documents/2013/10488pereira/ndx_pereira.pdf.html
    [Google Scholar]
  68. Peters, K.E.
    1986. Guidelines for evaluating petroleum source rock using programmed pyrolysis. AAPG Bulletin, 70, 318–329, https://doi.org/10.1306/94885688-1704-11D7-8645000102C1865D
    [Google Scholar]
  69. Peters, K.E. & Cassa, M.R.
    1994. Applied source rock geochemistry. In: Magoon, L.B. & Dow, W.G. (eds) The Petroleum System – From Source to Trap. AAPG Memoirs, 60, 93–117.
    [Google Scholar]
  70. Peters, K.E. & Moldowan, J.M.
    1993. The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments. Prentice-Hall, Englewood Cliffs, NJ.
    [Google Scholar]
  71. Peters, K.E., Moldowan, J. & Sundararaman, P.
    1990. Effects of hydrous pyrolysis on biomarker thermal maturity parameters: Monterey phosphatic and siliceous members. Organic Geochemistry, 15, 249–265, https://doi.org/10.1016/0146-6380(90)90003-I
    [Google Scholar]
  72. Peters, K.E., Walters, C.C. & Moldowan, J.M.
    2005. The Biomarker Guide: Biomarkers and Isotopes in the Environment and Human History. Cambridge University Press, Cambridge.
    [Google Scholar]
  73. Philp, R.T. & Gilbert, T.
    1986. Biomarker distributions in Australian oils predominantly derived from terrigenous source material. Organic Geochemistry, 10, 73–84, https://doi.org/10.1016/0146-6380(86)90010-0
    [Google Scholar]
  74. Purcell, P.
    2014. Oil and gas exploration in East Africa: A brief history. AAPG Search and Discovery Article #30388 presented at theAAPG International Conference & Exhibition, September 14–17, 2014, Istanbul, Turkey.
    [Google Scholar]
  75. Quinton, J. & Copestake, P.
    2006. Mesozoic rift basins in onshore Tanzania: Stratigraphic and structural development and petroleum potential. Poster and abstract presented at the5th PESGB/HGS African Conference – Africa: The Elephants of the Future, 12–13 September 2006, London.
    [Google Scholar]
  76. Radke, M.
    1987. Organic geochemistry of aromatic hydrocarbons. In: Brooks, J. & Welte, D. (eds) Advances in Petroleum Geochemistry, Volume 2. Academic Press, London, 141–207.
    [Google Scholar]
  77. 1988. Application of aromatic compounds as maturity indicators in source rocks and crude oils. Marine and Petroleum Geology, 5, 224–236, https://doi.org/10.1016/0264-8172(88)90003-7
    [Google Scholar]
  78. Radke, M. & Welte, D.H.
    1983. The methylphenanthrene index (MPI); a maturity parameter based on aromatic hydrocarbons. In: Bjorøy, M. et al. (ed.) Advances in Organic Geochemistry 1981, Wiley, Chichester, 504–512.
    [Google Scholar]
  79. Radke, M., Welte, D.H. & Willsch, H.
    1982. Geochemical study on a well in the Western Canada Basin: relation of the aromatic distribution pattern to maturity of organic matter. Geochimica et Cosmochimica Acta, 46, 1–10, https://doi.org/10.1016/0016-7037(82)90285-X
    [Google Scholar]
  80. Radke, M., Welte, D. & Willsch, H.
    1986. Maturity parameters based on aromatic hydrocarbons: Influence of the organic matter type. Organic Geochemistry, 10, 51–63, https://doi.org/10.1016/0146-6380(86)90008-2
    [Google Scholar]
  81. Radke, M., Vriend, S. & Schaefer, R.
    2001. Geochemical characterization of lower Toarcian source rocks from NW Germany: Interpretation of aromatic and saturated hydrocarbons in relation to depositional environment and maturation effects. Journal of Petroleum Geology, 24, 287–307, https://doi.org/10.1111/j.1747-5457.2001.tb00676.x
    [Google Scholar]
  82. Rampen, S.W., Schouten, S. et al.
    2007. On the origin of 24-norcholestanes and their use as age-diagnostic biomarkers. Geology, 35, 419–422, https://doi.org/10.1130/G23358A.1
    [Google Scholar]
  83. Reeves, C.V.
    2018. The development of the East African margin during Jurassic and Lower Cretaceous times: a perspective from global tectonics. Petroleum Geoscience, 24, 41–56, https://doi.org/10.1144/petgeo2017-021
    [Google Scholar]
  84. Rullkötter, J., Mukhopadhyay, P.K. & Welte, D.H.
    1984. Geochemistry and petrography of organic matter in sediments from Hole 530A, Angola Basin, and Hole 532, Walvis Ridge, Deep-Sea Drilling Project. In: Hay, W.W., Sibuet, J.C. et al. (eds) Initial Reports of the Deep Sea Drilling Project, Volume 75. United States Government Printing Office, Washington, DC, 1069–1087, https://doi.org/10.2973/dsdp.proc.75.138.1984
    [Google Scholar]
  85. Sales, J.K.
    1997. Seal strength vs. trap closure; a fundamental control on the distribution of oil and gas. In: Surdam, R.C. (ed.) Seals, Traps, and the Petroleum System. AAPG Memoirs, 67, 57–83, https://doi.org/10.1306/M67611C5
    [Google Scholar]
  86. Sansom, P.
    2018. Hybrid turbidite–contourite systems of the Tanzanian margin. Petroleum Geoscience, 24, 258–276, https://doi.org/10.1144/petgeo2018-044
    [Google Scholar]
  87. Schoell, M.
    1983. Genetic characterisation of natural gases. AAPG Bulletin, 67, 2225–2238, https://doi.org/10.1306/AD46094A-16F7-11D7-8645000102C1865D
    [Google Scholar]
  88. Seifert, W.K. & Moldowan, J.M.
    1978. Applications of steranes, terpanes and monoaromatics to the maturation, migration and source of crude oils. Geochimica et Cosmochimica Acta, 42, 77–95, https://doi.org/10.1016/0016-7037(78)90219-3
    [Google Scholar]
  89. Shanmugam, G.
    1985. Significance of coniferous rain forests and related organic matter in generating commercial quantities of oil, Gippsland Basin, Australia. AAPG Bulletin, 69, 1241–1254, https://doi.org/10.1306/AD462BC3-16F7-11D7-8645000102C1865D
    [Google Scholar]
  90. Siversen, C., Schomacker, E. & Coffey, T.
    2017. Cretaceous to Paleogene Deep Water Depositional Systems, Block 2, Offshore Tanzania. Abstract presented at theThird EAGE Eastern Africa Petroleum Geoscience Forum, 7–9 November 2017, Maputo, Mozambique.
    [Google Scholar]
  91. Smelror, M., Fossum, K., Dypvik, H., Hudson, W. & Mweneinda, A.
    2018. Late Jurassic–Early Cretaceous palynostratigraphy of the onshore Mandawa Basin, southeastern Tanzania. Review of Palaeobotany and Palynology, 258, 248–255, https://doi.org/10.1016/j.revpalbo.2018.09.001
    [Google Scholar]
  92. Stockley, G.
    1943. The Geology of the Rufiji District, Including a Small Portion of Northern Kilwa District (Matumbi Hills). Tanganyika Notes and Records, 16, 7–28.
    [Google Scholar]
  93. Sullivan, M.A. & Lawson, M.
    2017. East Africa gas: Source type and maturity. Abstract presented at theThird EAGE Eastern Africa Petroleum Geoscience Forum, 7–9 November 2017, Maputo, Mozambique.
    [Google Scholar]
  94. Sutton, S., Figueredo, P., Sullivan, M., Johnson, C. & Karner, G.
    2017. Tectonic history and structural evolution of the East Africa margin. Abstract presented at theThird EAGE Eastern Africa Petroleum Geoscience Forum, 7–9 November 2017, Maputo, Mozambique.
    [Google Scholar]
  95. Tissot, B.P. & Welte, D.H.
    1984. Petroleum Formation and Occurrence. 2nd edn. Springer, Berlin.
    [Google Scholar]
  96. Tvedt, T.
    2018. Nilen (The Nile) – Historiens elv. Aschehoug, Oslo, [in Norwegian].
    [Google Scholar]
  97. van den Brink, M.
    2015. Depositional Environments and Mineralogical Characterization of the Upper Jurassic Mitole Formation, Southern Coastal Tanzania. MSc thesis, University of Oslo.
    [Google Scholar]
  98. van Graas, G.W.
    1990. Biomarker maturity parameters for high maturities: calibration of the working range up to the oil/condensate threshold. Organic Geochemistry, 16, 1025–1032, https://doi.org/10.1016/0146-6380(90)90139-Q
    [Google Scholar]
  99. van Koeverden, J.H., Nakrem, H.A. & Karlsen, D.A.
    2010. Migrated oil on Novaya Zemlya, Russian Arctic: Evidence for a novel petroleum system in the eastern Barents Sea and the Kara Sea. AAPG Bulletin, 94, 791–817, https://doi.org/10.1306/10200909146
    [Google Scholar]
  100. Volkman, J.K.
    1988. Biological marker compounds as indicators of the depositional environments of petroleum source rocks. In: Fleet, A.J., Kelts, K. &  Talbot, M.R. (eds) 1988. Lacustrine Petroleum Source Rocks. Geological Society, London, Special Publications, 40, 103–122, https://doi.org/10.1144/GSL.SP.1988.040.01.10
    [Google Scholar]
  101. Volkman, J.K., Alexander, R., Kagi, R.I., Noble, R.A. & Woodhouse, C.W.
    1983. A geochemical reconstruction of oil generation in the Barrow Sub-basin of Western Australia. Geochimica et Cosmochimica Acta, 47, 2091–2105, https://doi.org/10.1016/0016-7037(83)90034-0
    [Google Scholar]
  102. Weiss, H.M., Wilhelms, A., Mills, N., Scotchmer, J., Hall, P.B., Lind, K. & Brekke, T.
    2000. NIGOGA – The Norwegian Industry Guide to Organic Geochemical Analyses. Edition 4.0 (online). Norsk Hydro, Statoil, Geolab Nor, SINTEF Petroleum Research and the Norwegian Petroleum Directorate, http://www.npd.no/Global/Norsk/7-Rapportering/Bronner/nigoga4.pdf [accessed 10 October 2018].
  103. Whaley, J.
    2016. Tanzania: Largest Onshore Discovery. GeoExPro, 13, 65.
    [Google Scholar]
  104. Whiticar, M.J.
    1994. Correlation of natural gases with their sources. In: Magoon, L.B. & Dow, W.G. (eds) The Petroleum System – From Source to Trap. AAPG Memoirs, 60, 261–283.
    [Google Scholar]
  105. Wilhelms, A. & Larter, S.R.
    1994. Origin of tar mats in petroleum reservoirs. Part I: introduction and case studies. Marine and Petroleum Geology, 11, 418–441, https://doi.org/10.1016/0264-8172(94)90077-9
    [Google Scholar]
  106. Wilkin, D.
    2017. Exploration in a low price environment. Abstract presented at theThird EAGE Eastern Africa Petroleum Geoscience Forum, 7–9 November 2017, Maputo, Mozambique.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1144/petgeo2019-050
Loading
/content/journals/10.1144/petgeo2019-050
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error