1887
Volume 26, Issue 3
  • ISSN: 1354-0793
  • E-ISSN:

Abstract

The inherent heterogeneity of carbonate rocks suggests that carbonate-hosted fault zones are also likely to be heterogeneous. Coupled with a lack of host–fault petrophysical relationships, this makes the hydraulic behaviour of carbonate-hosted fault zones difficult to predict. Here we investigate the link between host rock and fault rock porosity, permeability and texture, by presenting data from series of host rock, damage zone and fault rock samples from normally faulted, shallowly buried limestones from Malta. Core plug X-ray tomography indicates that texturally heterogeneous host rocks lead to greater variability in the porosity and permeability of fault rocks. Fault rocks derived from moderate- to high-porosity (>20%) formations experience permeability reductions of up to six orders of magnitude relative to the host; >30% of these fault rocks could act as baffles or barriers to fluid flow over production timescales. Fault rocks derived from lower-porosity (<20%) algal packstones have permeabilities that are lower than their hosts by up to three orders of magnitude, which is unlikely to impact fluid flow on production timescales. The variability of fault rock permeability is controlled by a number of factors, including the initial host rock texture and porosity, the magnitude of strain localization, and the extent of post-deformation diagenetic alteration. Fault displacement has no obvious control over fault rock permeability. The results enable better predictions of fault rock permeability in similar lithotypes and tectonic regimes. This may enable predictions of across-fault fluid flow potential when combined with data on fault zone architecture.

Loading

Article metrics loading...

/content/journals/10.1144/petgeo2019-055
2019-09-18
2024-03-28
Loading full text...

Full text loading...

References

  1. Agosta, F.
    2008. Fluid flow properties of basin-bounding normal faults in platform carbonates, Fucino Basin, central Italy. In: Wibberley, C.A.J., Kurz, W., Imber, J., Holdsworth, R.E. & Collettini, C. (eds) The Internal Structure of Fault Zones: Implications for Mechanical and Fluid-Flow Properties. Geological Society, London, Special Publications, 299, 277–291, https://doi.org/10.1144/SP299.17
    [Google Scholar]
  2. Agosta, F. & Aydin, A.
    2006. Architecture and deformation mechanism of a basin-bounding normal fault in Mesozoic platform carbonates, central Italy. Journal of Structural Geology, 28, 1445–1467, https://doi.org/10.1016/j.jsg.2006.04.006
    [Google Scholar]
  3. Agosta, F. & Kirschner, D.L.
    2003. Fluid conduits in carbonate-hosted seismogenic normal faults of central Italy. Journal of Geophysical Research, 108, 2221, https://doi.org/10.1029/2002JB002013
    [Google Scholar]
  4. API
    . 1998. Recommended Practices for Core Analysis. 2nd edn. American Petroleum Institute, Washington, DC.
    [Google Scholar]
  5. Ballas, G., Fossen, H. & Soliva, R.
    2015. Factors controlling permeability of cataclastic deformation bands and faults in porous sandstone reservoirs. Journal of Structural Geology, 76, 1–21, https://doi.org/10.1016/j.jsg.2015.03.013
    [Google Scholar]
  6. Bastesen, E. & Braathen, A.
    2010. Extensional faults in fine grained carbonates – analysis of fault core lithology and thickness–displacement relationships. Journal of Structural Geology, 32, 1609–1628, https://doi.org/10.1016/j.jsg.2010.09.008
    [Google Scholar]
  7. Baud, P., Schubnel, A. & Wong, T.
    2000. Dilatancy, compaction, and failure mode in Solnhofen limestone. Journal of Geophysical Research, 105, 19  289–19  303, https://doi.org/10.1029/2000JB900133
    [Google Scholar]
  8. Bauer, H. & Decker, K.
    2010. Fault architecture, fault rocks and fault rock properties in carbonate rocks. Geophysical Research Abstracts, 12, EGU2010-5112.
    [Google Scholar]
  9. Billi, A., Salvini, F. & Storti, F.
    2003. The damage zone-fault core transition in carbonate rocks: implications for fault growth, structure and permeability. Journal of Structural Geology, 25, 1779–1794, https://doi.org/10.1016/S0191-8141(03)00037-3
    [Google Scholar]
  10. Bonson, C.G., Childs, C., Walsh, J.J., Schöpfer, M.P.J. & Carboni, V.
    2007. Geometric and kinematic controls on the internal structure of a large normal fault in massive limestones: The Maghlaq Fault, Malta. Journal of Structural Geology, 29, 336–354, https://doi.org/10.1016/j.jsg.2006.06.016
    [Google Scholar]
  11. Bosence, D.W.J. & Pedley, H.M.
    1982. Sedimentology and palaeoecology of a Miocene coralline algal biostrome from the Maltese Islands. Palaeogeography, Palaeoclimatology, Palaeoecology, 38, 9–43, https://doi.org/10.1016/0031-0182(82)90062-1
    [Google Scholar]
  12. Caine, J.S., Evans, J.P. & Forster, C.B.
    1996. Fault zone architecture and permeability structure. Geology, 24, 1025–1028, https://doi.org/10.1130/0091-7613(1996)024<1025:FZAAPS>2.3.CO;2
    [Google Scholar]
  13. Chester, F.M. & Logan, J.M.
    1986. Implications for mechanical properties of brittle faults from observations of the Punchbowl Fault Zone, California. Pure and Applied Geophysics, 124, 79–106, https://doi.org/10.1007/BF00875720
    [Google Scholar]
  14. Chester, F., Evans, J. & Biegel, R.
    1993. Internal structure and weakening mechanisms of the San Andreas Fault. Journal of Geophysical Research: Solid Earth, 98, 771–786, https://doi.org/10.1029/92JB01866
    [Google Scholar]
  15. Chester, F.M., Chester, J.S., Kirschner, D.L., Schulz, S.E. & Evans, J.P.
    2004. Structure of large-displacement, strike-slip fault zones in the brittle continental crust. In: Karner, G.D., Taylor, B., Driscoll, N.W. & Kohlstedt, D.L. (eds) Rheology and Deformation of the Lithosphere at Continental Margins. Columbia University Press, New York, 223–260, https://doi.org/10.7312/karn12738-009
    [Google Scholar]
  16. Childs, C., Walsh, J.J. & Watterson, J.
    1997. Complexity in fault zone structure and implications for fault seal prediction. In: Møller-Pedersen, P. & Koestler, A.G. (eds) Hydrocarbon Seals – Importance for Exploration and Production. Norwegian Petroleum Society Special Publications, 7, 61–72, https://doi.org/10.1016/S0928-8937(97)80007-0
    [Google Scholar]
  17. Childs, C., Manzocchi, T., Walsh, J.J., Bonson, C.G., Nicol, A. & Schöpfer, M.P.J.
    2009. A geometric model of fault zone and fault rock thickness variations. Journal of Structural Geology, 31, 117–127, https://doi.org/10.1016/j.jsg.2008.08.009
    [Google Scholar]
  18. Cilona, A., Baud, P., Tondi, E., Agosta, F., Vinciguerra, S., Rustichelli, A. & Spiers, C.J.
    2012. Deformation bands in porous carbonate grainstones: Field and laboratory observations. Journal of Structural Geology, 45, 137–157, https://doi.org/10.1016/j.jsg.2012.04.012
    [Google Scholar]
  19. Cooke, A.P., Fisher, Q.J., Michie, E.A.H. & Yielding, G.
    2018. Investigating the controls on fault rock distribution in normal faulted shallow burial limestones, Malta, and the implications for fluid flow. Journal of Structural Geology, 114, 22–42, https://doi.org/10.1016/j.jsg.2018.05.024
    [Google Scholar]
  20. Dart, C.J., Bosence, D.W.J. & McClay, K.R.
    1993. Stratigraphy and structure of the Maltese graben system. Journal of the Geological Society, London, 150, 1153–1166, https://doi.org/10.1144/gsjgs.150.6.1153
    [Google Scholar]
  21. Demurtas, M., Fondriest, M., Balsamo, F., Clemenzi, L., Storti, F., Bistacchi, A. & Di, G.
    2016. Structure of a normal seismogenic fault zone in carbonates: The Vado di Corno Fault, Campo Imperatore, Central Apennines (Italy). Journal of Structural Geology, 90, 185–206, https://doi.org/10.1016/j.jsg.2016.08.004
    [Google Scholar]
  22. Du Bernard, X., Eichhubl, P. & Aydin, A.
    2002. Dilation bands: A new form of localized failure in granular media. Geophysical Research Letters, 29, 2176, https://doi.org/10.1029/2002GL015966
    [Google Scholar]
  23. Faulkner, D.R., Lewis, A.C. & Rutter, E.H.
    2003. On the internal structure and mechanics of large strike-slip fault zones: field observations of the Carboneras fault in southeastern Spain. Tectonophysics, 367, 235–251, https://doi.org/10.1016/S0040-1951(03)00134-3
    [Google Scholar]
  24. Faulkner, D.R., Mitchell, T.M., Jensen, E. & Cembrano, J.
    2011. Scaling of fault damage zones with displacement and the implications for fault growth processes. Journal of Geophysical Research: Solid Earth, 116, B05403, https://doi.org/10.1029/2010JB007788
    [Google Scholar]
  25. Ferrill, D.A. & Morris, A.P.
    2008. Fault zone deformation controlled by carbonate mechanical stratigraphy, Balcones fault system, Texas. AAPG Bulletin, 92, 359–380, https://doi.org/10.1306/10290707066
    [Google Scholar]
  26. Fisher, Q.J. & Knipe, R.J.
    1998. Fault sealing processes in siliciclastic sediments. In: Jones, G., Fisher, Q.J. & Knipe, R.J. (eds) Faulting, Fault Sealing and Fluid Flow in Hydrocarbon Reservoirs. Geological Society, London, Special Publications, 147, 117–134, https://doi.org/10.1144/GSL.SP.1998.147.01.08
    [Google Scholar]
  27. Fisher, Q.J., Haneef, J., Grattoni, C.A., Allshorn, S. & Lorinczi, P.
    2018. Permeability of fault rocks in siliciclastic reservoirs: Recent advances. Marine and Petroleum Geology, 91, 29–42, https://doi.org/10.1016/j.marpetgeo.2017.12.019
    [Google Scholar]
  28. Fulljames, J., Zijerveld, L. & Franssen, R.
    1997. Fault seal processes: systematic analysis of fault seals over geological and production time scales. In: Møller-Pedersen, P. & Koestler, A.G. (eds) Hydrocarbon Seals – Importance for Exploration and Production. Norwegian Petroleum Society Special Publications, 7, 51–59, https://doi.org/10.1016/S0928-8937(97)80006-9
    [Google Scholar]
  29. Gatt, P.
    2007. Controls on Plio-Quaternary foreland sedimentation in the region of the Maltese Islands. Bollettino Societa Geologica Italiana (Italian Journal of Geoscience), 126, 119–129.
    [Google Scholar]
  30. Géraud, Y., Diraison, M. & Orellana, N.
    2006. Fault zone geometry of a mature active normal fault: A potential high permeability channel (Pirgaki fault, Corinth rift, Greece). Tectonophysics, 426, 61–76., https://doi.org/10.1016/j.tecto.2006.02.023
    [Google Scholar]
  31. Groshong, R.
    1988. Low-temperature deformation mechanisms and their interpretation. Geological Society of America Bulletin, 100, 1329–1360, https://doi.org/10.1130/0016-7606(1988)100<1329:LTDMAT>2.3.CO;2
    [Google Scholar]
  32. Hadizadeh, J.
    1994. Interaction of cataclasis and pressure solution in a low-temperature carbonate shear zone. Pure and Applied Geophysics, 143, 255–280, https://doi.org/10.1007/BF00874331
    [Google Scholar]
  33. Haines, T.J., Michie, E.A.H., Neilson, J.E. & Healy, D.
    2016. Permeability evolution across carbonate hosted normal fault zones. Marine and Petroleum Geology, 72, 62–82, https://doi.org/10.1016/j.marpetgeo.2016.01.008
    [Google Scholar]
  34. Hausegger, S., Kurz, W., Rabitsch, R., Kiechl, E. & Brosch, F.-J.
    2010. Analysis of the internal structure of a carbonate damage zone: Implications for the mechanisms of fault breccia formation and fluid flow. Journal of Structural Geology, 32, 1349–1362, https://doi.org/10.1016/j.jsg.2009.04.014
    [Google Scholar]
  35. Illies, J.H.
    1981. Graben formation – the Maltese Islands – a case history. Tectonophysics, 73, 151–168, https://doi.org/10.1016/0040-1951(81)90182-7
    [Google Scholar]
  36. Jeanne, P., Guglielmi, Y., Lamarche, J., Cappa, F. & Marié, L.
    2012. Architectural characteristics and petrophysical properties evolution of a strike-slip fault zone in a fractured porous carbonate reservoir. Journal of Structural Geology, 44, 93–109, https://doi.org/10.1016/j.jsg.2012.08.016
    [Google Scholar]
  37. John, C.M., Mutti, M. & Adatte, T.
    2003. Mixed carbonate–siliciclastic record on the North African margin (Malta) – coupling of weathering processes and mid Miocene climate. Geological Society of America Bulletin, 115, 217–229, https://doi.org/10.1130/0016-7606(2003)115<0217:MCSROT>2.0.CO;2
    [Google Scholar]
  38. Kaminskaite, I., Fisher, Q.J. & Michie, E.A.H.
    2019. Microstructure and petrophysical properties of deformation bands in high porosity carbonates. Journal of Structural Geology, 119, 61–80, https://doi.org/10.1016/j.jsg.2018.12.001
    [Google Scholar]
  39. Kim, Y.-S., Peacock, D.C.P. & Sanderson, D.J.
    2003. Mesoscale strike-slip faults and damage zones at Marsalforn, Gozo Island, Malta. Journal of Structural Geology, 25, 793–812, https://doi.org/10.1016/S0191-8141(02)00200-6
    [Google Scholar]
  40. Klinkenberg, L.J.
    1941. The permeability of porous media to liquids and gases. In: Drilling and Production Practice, 1 January 1941, New York, USA. American Petroleum Institute, Washington, DC, 200–213.
    [Google Scholar]
  41. Knipe, R.J.
    1997. Juxtaposition and seal diagrams to help analyze fault seals in hydrocarbon reservoirs. AAPG Bulletin, 81, 187–195, https://doi.org/10.1306/522b42df-1727-11d7-8645000102c1865d
    [Google Scholar]
  42. Lander, R.H. & Laubach, S.E.
    2015. Insights into rates of fracture growth and sealing from a model for quartz cementation in fractured sandstones. Geological Society of America Bulletin, 127, 516–538, https://doi.org/10.1130/B31092.1
    [Google Scholar]
  43. Laubach, S.E., Eichhubl, P., Hargrove, P., Ellis, M.A. & Hooker, J.N.
    2014. Fault core and damage zone fracture attributes vary along strike owing to interaction of fracture growth, quartz accumulation, and differing sandstone composition. Journal of Structural Geology, 68, 207–226, https://doi.org/10.1016/j.jsg.2014.08.007
    [Google Scholar]
  44. Loveless, S., Bense, V. & Turner, J.
    2011. Fault architecture and deformation processes within poorly lithified rift sediments, Central Greece. Journal of Structural Geology, 33, 1554–1568, https://doi.org/10.1016/j.jsg.2011.09.008
    [Google Scholar]
  45. Lucia, F.J.
    1995. Rock-fabric/petrophysical classification of carbonate pore space for reservoir characterization. AAPG Bulletin, 79, 1275–1300, https://doi.org/10.1306/7834d4a4-1721-11d7-8645000102c1865d
    [Google Scholar]
  46. Maas, J.G. & Hebing, A.
    2013. Quantitative X-ray CT for SCAL plug homogeneity assessment. Paper SCA2013-004 presented at theInternational Symposium of the Society of Core Analysts, 16–19 September 2013, Napa Valley, California, USA.
    [Google Scholar]
  47. Manzocchi, T., Walsh, J.J., Nell, P. & Yielding, G.
    1999. Fault transmissibility multipliers for flow simulation models. Petroleum Geoscience, 5, 53–63, https://doi.org/10.1144/petgeo.5.1.53
    [Google Scholar]
  48. Micarelli, L., Benedicto, A. & Wibberley, C.A.J.
    2006. Structural evolution and permeability of normal fault zones in highly porous carbonate rocks. Journal of Structural Geology, 28, 1214–1227, https://doi.org/10.1016/j.jsg.2006.03.036
    [Google Scholar]
  49. Michie, E.A.H.
    2015. Influence of host lithofacies on fault rock variation in carbonate fault zones: A case study from the Island of Malta. Journal of Structural Geology, 76, 61–79, https://doi.org/10.1016/j.jsg.2015.04.005
    [Google Scholar]
  50. Michie, E.A.H. & Haines, T.J.
    2016. Variability and heterogeneity of the petrophysical properties of extensional carbonate fault rocks, Malta. Petroleum Geoscience, 23, 136–152, https://doi.org/10.1144/petgeo2015-027
    [Google Scholar]
  51. Michie, E.A.H., Haines, T.J., Healy, D., Neilson, J.E., Timms, N.E. & Wibberley, C.A.J.
    2014. Influence of carbonate facies on fault zone architecture. Journal of Structural Geology, 65, 82–99, https://doi.org/10.1016/j.jsg.2014.04.007
    [Google Scholar]
  52. Michie, E.A.H., Yielding, G. & Fisher, Q.J.
    2017. Predicting transmissibilities of carbonate-hosted fault zones. In: Ashton, M., Dee, S.J. & Wennberg, O.P. (eds) Subseismic-Scale Reservoir Deformation. Geological Society, London, Special Publications, 459, 121–137, https://doi.org/10.1144/SP459.9
    [Google Scholar]
  53. Pedley, H.M.
    1978. A New Lithostratigraphical and Palaeoenvironmental Interpretation for the Coralline Limestone Formations (Miocene) of the Maltese Islands. Overseas Geology and Mineral Resources, 54. HMSO, London.
    [Google Scholar]
  54. Pedley, H.M. & Bennett, S.M.
    1985. Phosphorites, hardgrounds and syndepositional solution subsidence: a palaeoenvironmental model from the Miocene of the Maltese Islands. Sedimentary Geology, 45, 1–34, https://doi.org/10.1016/0037-0738(85)90022-3
    [Google Scholar]
  55. Pedley, H.M., House, M.R. & Waugh, B.
    1976. The geology of Malta and Gozo. Proceedings of the Geologists’ Association, 87, 325–341, https://doi.org/10.1016/S0016-7878(76)80005-3
    [Google Scholar]
  56. Pomar, L. & Ward, W.C.
    1999. Reservoir-scale heterogeneity in depositional packages and diagenetic patterns on a reef-rimmed platform, Upper Miocene, Mallorca, Spain. AAPG Bulletin, 83, 1759–1773, https://doi.org/10.1306/e4fd425b-1732-11d7-8645000102c1865d
    [Google Scholar]
  57. Ran, G., Shalev, E., Yechieli, Y., Sagy, A. & Weisbrod, N.
    2014. The permeability of fault zones: a case study of the Dead Sea rift (Middle East). Hydrogeology Journal, 22, 425–440, https://doi.org/10.1007/s10040-013-1055-3
    [Google Scholar]
  58. Rath, A., Exner, U., Tschegg, C., Grasemann, B., Laner, R. & Draganits, E.
    2011. Diagenetic control of deformation mechanisms in deformation bands in a carbonate grainstone. AAPG Bulletin, 95, 1369–1381, https://doi.org/10.1306/01031110118
    [Google Scholar]
  59. Rawling, G.C. & Goodwin, L.B.
    2006. Structural record of the mechanical evolution of mixed zones in faulted poorly lithified sediments, Rio Grande rift, New Mexico, USA. Journal of Structural Geology, 28, 1623–1639, https://doi.org/10.1016/j.jsg.2006.06.008
    [Google Scholar]
  60. Rotevatn, A., Thorsheim, E., Bastesen, E., Fossmark, H.S.S., Torabi, A. & Sælen, G.
    2016. Sequential growth of deformation bands in carbonate grainstones in the hangingwall of an active growth fault: Implications for deformation mechanisms in different tectonic regimes. Journal of Structural Geology, 90, 27–47, https://doi.org/10.1016/j.jsg.2016.07.003
    [Google Scholar]
  61. Rutter, E.H. & Hadizadeh, J.
    1991. On the influence of porosity on the low-temperature brittle–ductile transition in siliciclastic rocks. Journal of Structural Geology, 13, 609–614, https://doi.org/10.1016/0191-8141(91)90047-M
    [Google Scholar]
  62. Scholz, C.H., Dawers, N.H., Yu, J.-Z., Anders, M.H. & Cowie, P.A.
    1993. Fault growth and fault scaling laws: Preliminary results. Journal of Geophysical Research: Solid Earth, 98, 21  951–21  961, https://doi.org/10.1029/93JB01008
    [Google Scholar]
  63. Schultz, R.A. & Siddharthan, R.
    2005. A general framework for the occurrence and faulting of deformation bands in porous granular rocks. Tectonophysics, 411, 1–18, https://doi.org/10.1016/j.tecto.2005.07.008
    [Google Scholar]
  64. Shipton, Z.K., Soden, A.M., Kirkpatrick, J.D., Bright, A.M. & Lunn, R.J.
    2006. How thick is a fault? Fault displacement–thickness scaling revisited. In: Abercrombie, R. (ed.) Earthquakes: Radiated Energy and Physics of Faulting. American Geophysical Union Geophysical Monograph Series, 170, 193–198, https://doi.org/10.1029/170GM19
    [Google Scholar]
  65. Sibson, R.H.
    1977. Fault rocks and fault mechanisms. Journal of the Geological Society, London, 133, 191–213, https://doi.org/10.1144/gsjgs.133.3.0191
    [Google Scholar]
  66. Sperrevik, S., Gillespie, P.A., Fisher, Q., Halvorsen, T. & Knipe, R.J.
    2002. Empirical estimation of fault rock properties. In: Koestler, A.G. &  Hunsdale, R. (eds) Hydrocarbon Seal Quantification. Norwegian Petroleum Society Special Publications, 11, 109–125, https://doi.org/10.1016/S0928-8937(02)80010-8
    [Google Scholar]
  67. Tondi, E.
    2007. Nucleation, development and petrophysical properties of faults in carbonate grainstones: Evidence from the San Vito Lo Capo peninsula (Sicily, Italy). Journal of Structural Geology, 29, 614–628, https://doi.org/10.1016/j.jsg.2006.11.006
    [Google Scholar]
  68. Ukar, E. & Laubach, S.E.
    2016. Syn- and postkinematic cement textures in fractured carbonate rocks: Insights from advanced cathodoluminescence imaging. Tectonophysics, 690, 190–205, https://doi.org/10.1016/j.tecto.2016.05.001
    [Google Scholar]
  69. Vajdova, V., Baud, P. & Wong, T.
    2004. Compaction, dilatancy, and failure in porous carbonate rocks. Journal of Geophysical Research, 109, 1–16, https://doi.org/10.1029/2003JB002508
    [Google Scholar]
  70. Wibberley, C.A.J. & Shimamoto, T.
    2003. Internal structure and permeability of major strike-slip fault zones: the Median Tectonic Line in Mie Prefecture, Southwest Japan. Journal of Structural Geology, 25, 59–78, https://doi.org/10.1016/S0191-8141(02)00014-7
    [Google Scholar]
  71. Wibberley, C.A.J., Petit, J.-P. & Rives, T.
    2007. The mechanics of fault distribution and localization in high-porosity sands, Provence, France. In: Lewis, H. & C ouples, G.D. (eds) The Relationship between Damage and Localization. Geological Society, London, Special Publications, 289, 19–46, https://doi.org/10.1144/SP289.3
    [Google Scholar]
  72. Woodcock, N.H. & Mort, K.M.
    2008. Classification of fault breccias and related fault rocks. Geological Magazine, 145, 435–440, https://doi.org/10.1017/S0016756808004883
    [Google Scholar]
  73. Wong, T., David, C. & Zhu, W.
    1997. The transition from brittle faulting to cataclastic flow in porous sandstones: Mechanical deformation. Journal of Geophysical Research: Solid Earth, 102, 3009–3025, https://doi.org/10.1029/96JB03281
    [Google Scholar]
  74. Yaxley, L.M.
    1987. Effect of a partially communicating fault on transient pressure behavior. SPE Formation Evaluation, 2, 590–598, https://doi.org/10.2118/14311-PA
    [Google Scholar]
  75. Zhang, J., Wong, T.-F. & Davis, D.M.
    1990. Micromechanics of pressure-induced grain crushing in porous rocks. Journal of Geophysical Research: Solid Earth, 95, 341–352, https://doi.org/10.1029/JB095iB01p00341
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1144/petgeo2019-055
Loading
/content/journals/10.1144/petgeo2019-055
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error