1887
Volume 26, Issue 4
  • ISSN: 1354-0793
  • E-ISSN:

Abstract

Evidence of hydrocarbon leakage has been well documented across the SW Barents Sea and is commonly associated with exhumation in the Cenozoic. While fault leakage is thought to be the most likely cause, other mechanisms are possible and should be considered. Further study is required to understand what specific mechanism(s) facilitate such leakage, and why this occurs in some locations and not others. In a case study of the Snøhvit Field, we use seismic and well data to quantify fault- and top-seal strength based on mechanical and capillary threshold pressure properties of fault and cap rocks. Magnitude and timing of fault slip are measured to acknowledge the role that faults play in controlling fluid flow over time. Results based on theoretical and hydrocarbon column heights strongly indicate that across-fault and top-seal breach by capillary threshold pressure, and top-seal breach by mechanical failure are highly unlikely to have caused hydrocarbon leakage. Instead, top-seal breach caused by tectonic reactivation of identified faults is likely to have facilitated hydrocarbon leakage from structural traps. The results of this case study acknowledge the different mechanisms by which hydrocarbons can leak from a structural trap. Employing both a holistic and quantitative approach to assessing different seal capacities reduces the likelihood that a particular cause of hydrocarbon leakage is overlooked. This is particularly relevant for the Snøhvit Field in its dual capacity as a producing gas field and as a carbon sequestration site since both systems rely on a thorough understanding of seal capacity and leakage potential.

Loading

Article metrics loading...

/content/journals/10.1144/petgeo2019-094
2020-02-07
2024-04-18
Loading full text...

Full text loading...

References

  1. Allan, U.S.
    1989. Model for hydrocarbon migration and entrapment within faulted structures. AAPG Bulletin, 73, 803–811.
    [Google Scholar]
  2. Anka, Z., Rodrigues, E., di Primio, R., Ostanin, I., Stoddart, D. & Horsfield, B.
    2011. A large thermogenic-methane release event in the SW Barents Sea, during the Last Glacial Maximum. Indications from numerical modelling and seismic reflection data. Abstract GC511-08 presented at theAmerican Geophysical Union Fall Meeting, 5–9 December 2011, San Francisco, California, USA.
    [Google Scholar]
  3. Aydin, A.
    2000. Fractures, faults, and hydrocarbon entrapment, migration and flow. Marine and Petroleum Geology, 17, 797–814, https://doi.org/10.1016/S0264-8172(00)00020-9
    [Google Scholar]
  4. Baig, I., Faleide, J.I., Jahren, J. & Mondol, N.H.
    2016. Cenozoic exhumation on the southwestern Barents Shelf: Estimates and uncertainties constrained from compaction and thermal maturity analyses. Marine and Petroleum Geology, 73, 105–130, https://doi.org/10.1016/j.marpetgeo.2016.02.024
    [Google Scholar]
  5. Barton, C.A., Zoback, M.D. & Moos, D.
    1995. Fluid flow along potentially active faults in crystalline rock. Geology, 23, 683–686, https://doi.org/10.1130/0091-7613(1995)023<0683:FFAPAF>2.3.CO;2
    [Google Scholar]
  6. Bastesen, E. & Rotevatn, A.
    2012. Evolution and structural style of relay zones in layered limestone–shale sequences: insights from the Hammam Faraun Fault Block, Suez rift, Egypt. Journal of the Geological Society, London, 169, 477–488, https://doi.org/10.1144/0016-76492011-100
    [Google Scholar]
  7. Baudon, C. & Cartwright, J.
    2008. The kinematics of reactivation of normal faults using high resolution throw mapping. Journal of Structural Geology, 30, 1072–1084, https://doi.org/10.1016/j.jsg.2008.04.008
    [Google Scholar]
  8. Berg, R.R.
    1975. Capillary pressures in stratigraphic traps. AAPG Bulletin, 59, 939–956.
    [Google Scholar]
  9. Bernal, A.
    2009. Controls on economical hydrocarbon accumulations in the Askeladd Field, Barents Sea–A post-mortem fault seal analysis. In:Proceedings of the 2nd EAGE International Conference on Fault and Top Seals – From Pore to Basin Scale, 21–24 September 2009, Montpellier, France. European Association of Geoscientists and Engineers (EAGE), Houten, The Netherlands, https://doi.org/10.3997/2214-4609.20147192
    [Google Scholar]
  10. Bhuyan, K. & Passey, Q.R.
    1994. Clay estimation from GR and neutron-density porosity logs. Presented at theSPWLA 35th Annual Logging Symposium, 19–22 June 1994, Tulsa, Oklahoma.
    [Google Scholar]
  11. Bjørkum, P.A., Walderhaug, O. & Nadeau, P.H.
    1998. Physical constraints on hydrocarbon leakage and trapping revisited. Petroleum Geoscience, 4, 237–239, https://doi.org/10.1144/petgeo.4.3.237
    [Google Scholar]
  12. Bolås, H.M.N. & Hermanrud, C.
    2003. Hydrocarbon leakage processes and trap retention capacities offshore Norway. Petroleum Geoscience, 9, 321–332, https://doi.org/10.1144/1354-079302-549
    [Google Scholar]
  13. Boles, J.R., Eichhubl, P., Garven, G. & Chen, J.
    2004. Evolution of a hydrocarbon migration pathway along basin-bounding faults: Evidence from fault cement. AAPG Bulletin, 88, 947–970, https://doi.org/10.1306/02090403040
    [Google Scholar]
  14. Bretan, P.
    2017. Trap Analysis: an automated approach for deriving column height predictions in fault-bounded traps. Petroleum Geoscience, 23, 56–69, https://doi.org/10.1144/10.44petgeo2016-022
    [Google Scholar]
  15. Bretan, P., Yielding, G. & Jones, H.
    2003. Using calibrated shale gouge ratio to estimate hydrocarbon column heights. AAPG Bulletin, 87, 397–413, https://doi.org/10.1306/08010201128
    [Google Scholar]
  16. Brown, A.R.
    2011. Interpretation of Three-Dimensional Seismic Data. AAPG Memoirs, 42/SEG Investigations in Geophysics, 9.
    [Google Scholar]
  17. Caillet, G.
    1993. The caprock of the Snorre Field, Norway: a possible leakage by hydraulic fracturing. Marine and Petroleum Geology, 10, 42–50, https://doi.org/10.1016/0264-8172(93)90098-D
    [Google Scholar]
  18. Caine, J.S., Evans, J.P. & Forster, C.B.
    1996. Fault zone architecture and permeability structure. Geology, 24, 1025–1028, https://doi.org/10.1130/0091-7613(1996)024<1025:FZAAPS>2.3.CO;2
    [Google Scholar]
  19. Cartwright, J., Bouroullec, R., James, D. & Johnson, H.
    1998. Polycyclic motion history of some Gulf Coast growth faults from high-resolution displacement analysis. Geology, 26, 819–822, https://doi.org/10.1130/0091-7613(1998)026<0819:PMHOSG>2.3.CO;2
    [Google Scholar]
  20. Cartwright, J., Huuse, M. & Aplin, A.
    2007. Seal bypass systems. AAPG Bulletin, 91, 1141–1166, https://doi.org/10.1306/04090705181
    [Google Scholar]
  21. Cartwright, J.A., Trudgill, B.D. & Mansfield, C.S.
    1995. Fault growth by segment linkage: an explanation for scatter in maximum displacement and trace length data from the Canyonlands Grabens of SE Utah. Journal of Structural Geology, 17, 1319–1326, https://doi.org/10.1016/0191-8141(95)00033-A
    [Google Scholar]
  22. Cavanagh, A. & Wildgust, N.
    2011. Pressurization and brine displacement issues for deep saline formation CO2 storage. Energy Procedia, 4, 4814–4821, https://doi.org/10.1016/j.egypro.2011.02.447
    [Google Scholar]
  23. Cavanagh, A.J., Di Primio, R., Scheck-Wenderoth, M. & Horsfield, B.
    2006. Severity and timing of Cenozoic exhumation in the southwestern Barents Sea. Journal of the Geological Society. London, 163, 761–774, https://doi.org/10.1144/0016-76492005-146
    [Google Scholar]
  24. Chand, S., Thorsnes, T. et al.
    2012. Multiple episodes of fluid flow in the SW Barents Sea (Loppa High) evidenced by gas flares, pockmarks and gas hydrate accumulation. Earth and Planetary Science Letters, 331, 305–314, https://doi.org/10.1016/j.epsl.2012.03.021
    [Google Scholar]
  25. Childs, C., Walsh, J.J. & Watterson, J.
    1997. Complexity in fault zone structure and implications for fault seal prediction. Norwegian Petroleum Society Special Publications, 7, 61–72, https://doi.org/10.1016/S0928-8937(97)80007-0
    [Google Scholar]
  26. Corcoran, D.V. & Doré, A.G.
    2002. Top seal assessment in exhumed basin settings – Some insights from Atlantic margin and borderland basins. Norwegian Petroleum Society Special Publications, 11, 89–107, https://doi.org/10.1016/S0928-8937(02)80009-1
    [Google Scholar]
  27. Davatzes, N.C. & Hickman, S.
    2005. Controls on fault-hosted fluid flow: Preliminary results from the Coso Geothermal Field, CA. Geothermal Resources Council Transactions, 29, 343–348, https://doi.org/10.1029/2007JB004962
    [Google Scholar]
  28. Dewhurst, D.N. & Jones, R.M.
    2003. Influence of physical and diagenetic processes on fault geomechanics and reactivation. Journal of Geochemical Exploration, 78, 153–157, https://doi.org/10.1016/S0375-6742(03)00124-9
    [Google Scholar]
  29. Dewhurst, D.N. & Yielding, G.
    2017. Introduction to the thematic set: Fault and top seals. In:Proceedings of the 4th EAGE International Conference on Fault and Top Seals – From Pore to Basin Scale, 20–24 September 2015, Almeria, Spain. European Association of Geoscientists and Engineers (EAGE), Houten, The Netherlands, https://doi.org/10.1144/petgeo2016-303
    [Google Scholar]
  30. Dimmen, V., Rotevatn, A., Peacock, D.C., Nixon, C.W. & Nærland, K.
    2017. Quantifying structural controls on fluid flow: Insights from carbonate-hosted fault damage zones on the Maltese Islands. Journal of Structural Geology, 101, 43–57, https://doi.org/10.1016/j.jsg.2017.05.012
    [Google Scholar]
  31. Dolson, J.
    2016. Understanding Oil and Gas Shows and Seals in the Search for Hydrocarbons. Springer.
    [Google Scholar]
  32. Doré, A.G.
    1995. Barents Sea geology, petroleum resources and commercial potential. Arctic, 48, 207–221.
    [Google Scholar]
  33. Doré, A.G. & Jensen, L.N.
    1996. The impact of late Cenozoic uplift and erosion on hydrocarbon exploration: offshore Norway and some other uplifted basins. Global and Planetary Change, 12, 415–436, https://doi.org/10.1016/0921-8181(95)00031-3
    [Google Scholar]
  34. Doré, A.G. & Lundin, E.R.
    1996. Cenozoic compressional structures on the NE Atlantic margin; nature, origin and potential significance for hydrocarbon exploration. Petroleum Geoscience, 2, 299–311, https://doi.org/10.1144/petgeo.2.4.299
    [Google Scholar]
  35. Doré, A.G., Scotchman, I.C. & Corcoran, D.
    2000. Cenozoic exhumation and prediction of the hydrocarbon system on the NW European margin. Journal of Geochemical Exploration, 69, 615–618, https://doi.org/10.1016/S0375-6742(00)00137-0
    [Google Scholar]
  36. Doré, A.G., Cartwright, J.A., Stoker, M.S., Turner, J.P.
    & White, N.J. (eds). 2002. Exhumation of the North Atlantic Margin: Timing, Mechanisms and Implications for Petroleum Exploration. Geological Society, London, Special Publications, 196, https://doi.org/10.1144/GSL.SP.2002.196.01.26
    [Google Scholar]
  37. Downey, M.W.
    1984. Evaluating seals for hydrocarbon accumulations. AAPG Bulletin, 68, 1752–1763.
    [Google Scholar]
  38. 1994. Hydrocarbon seal rocks. AAPG Memoirs, 60, 59–164.
    [Google Scholar]
  39. Duran, E.R., di Primio, R., Anka, Z., Stoddart, D. & Horsfield, B.
    2013. 3D-basin modelling of the Hammerfest Basin (southwestern Barents Sea): A quantitative assessment of petroleum generation, migration and leakage. Marine and Petroleum Geology, 45, 281–303, https://doi.org/10.1016/j.marpetgeo.2013.04.023
    [Google Scholar]
  40. Færseth, R.B., Johnsen, E. & Sperrevik, S.
    2007. Methodology for risking fault seal capacity: Implications of fault zone architecture. AAPG Bulletin, 91, 1231–1246, https://doi.org/10.1306/03080706051
    [Google Scholar]
  41. Faleide, J.I., Gudlaugsson, S.T. & Jacquart, G.
    1984. Evolution of the western Barents Sea. Marine and Petroleum Geology, 1, 123–150, https://doi.org/10.1016/0264-8172(84)90082-5
    [Google Scholar]
  42. Faleide, J.I., Vågnes, E. & Gudlaugsson, S.T.
    1993. Late Mesozoic–Cenozoic evolution of the southwestern Barents Sea. Geological Society, London, Petroleum Geology Conference Series, 4, 933–950, https://doi.org/10.1144/0040933
    [Google Scholar]
  43. Faleide, J.I., Tsikalas, F. et al.
    2008. Structure and evolution of the continental margin off Norway and the Barents Sea. Episodes, 31, 82–91, https://doi.org/10.18814/epiiugs/2008/v31i1/012
    [Google Scholar]
  44. Faulkner, D.R., Jackson, C.A.L., Lunn, R.J., Schlische, R.W., Shipton, Z.K., Wibberley, C.A.J. & Withjack, M.O.
    2010. A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. Journal of Structural Geology, 32, 1557–1575, https://doi.org/10.1016/j.jsg.2010.06.009
    [Google Scholar]
  45. Fisher, Q.J. & Knipe, R.
    1998. Fault sealing processes in siliciclastic sediments. Geological Society, London, Special Publications, 147, 117–134, https://doi.org/10.1144/GSL.SP.1998.147.01.08
    [Google Scholar]
  46. Fjeldskaar, W., Lindholm, C., Dehls, J.F. & Fjeldskaar, I.
    2000. Postglacial uplift, neotectonics and seismicity in Fennoscandia. Quaternary Science Reviews, 19, 1413–1422, https://doi.org/10.1016/S0277-3791(00)00070-6
    [Google Scholar]
  47. Fossen, H.
    2016. Structural Geology. Cambridge University Press.
    [Google Scholar]
  48. Fossen, H. & Rotevatn, A.
    2016. Fault linkage and relay structures in extensional settings – A review. Earth-Science Reviews, 154, 14–28, https://doi.org/10.1016/j.earscirev.2015.11.014
    [Google Scholar]
  49. Fredman, N., Tveranger, J., Semshaug, S., Braathen, A. & Sverdrup, E.
    2007. Sensitivity of fluid flow to fault core architecture and petrophysical properties of fault rocks in siliciclastic reservoirs: a synthetic fault model study. Petroleum Geoscience, 13, 305–320, https://doi.org/10.1144/1354-079306-721
    [Google Scholar]
  50. Fristad, T., Groth, A., Yielding, G. & Freeman, B.
    1997. Quantitative fault seal prediction: a case study from Oseberg Syd. Norwegian Petroleum Society Special Publications, 7, 107–124, https://doi.org/10.1016/S0928-8937(97)80010-0
    [Google Scholar]
  51. Gaarenstroom, L., Tromp, R.A.J. & Brandenburg, A.M.
    1993. Overpressures in the Central North Sea: implications for trap integrity and drilling safety. Geological Society, London, Petroleum Geology Conference Series, 4, 1305–1313, https://doi.org/10.1144/0041305
    [Google Scholar]
  52. Gabrielsen, R.H.
    1984. Long-lived fault zones and their influence on the tectonic development of the southwestern Barents Sea. Journal of the Geological Society, London, 141, 651–662, https://doi.org/10.1144/gsjgs.141.4.0651
    [Google Scholar]
  53. Gabrielsen, R.H. & Kløvjan, O.S.
    1997. Late Jurassic–early Cretaceous caprocks of the southwestern Barents Sea: fracture systems and rock mechanical properties. Norwegian Petroleum Society Special Publications, 7, 73–89, https://doi.org/10.1016/S0928-8937(97)80008-2
    [Google Scholar]
  54. Gabrielsen, R.H., Faerseth, R.B. & Jensen, L.N.
    1990. Structural Elements of the Norwegian Continental Shelf. Part. 1. The Barents Sea Region. Norwegian Petroleum Directorate.
    [Google Scholar]
  55. Gabrielsen, R.H., Grunnaleite, I. & Rasmussen, E.
    1997. Cretaceous and tertiary inversion in the Bjørnøyrenna Fault Complex, south-western Barents Sea. Marine and Petroleum Geology, 14, 165–178, https://doi.org/10.1016/S0264-8172(96)00064-5
    [Google Scholar]
  56. Gartrell, A., Zhang, Y., Lisk, M. & Dewhurst, D.
    2004. Fault intersections as critical hydrocarbon leakage zones: integrated field study and numerical modelling of an example from the Timor Sea, Australia. Marine and Petroleum Geology, 21, 1165–1179, https://doi.org/10.1016/j.marpetgeo.2004.08.001
    [Google Scholar]
  57. Gartrell, A., Bailey, W.R. & Brincat, M.
    2006. A new model for assessing trap integrity and oil preservation risks associated with postrift fault reactivation in the Timor Sea. AAPG Bulletin, 90, 1921–1944, https://doi.org/10.1306/06200605195
    [Google Scholar]
  58. Grollimund, B. & Zoback, M.D.
    2003. Impact of glacially induced stress changes on fault-seal integrity offshore Norway. AAPG Bulletin, 87, 493–506, https://doi.org/10.1306/08010201134
    [Google Scholar]
  59. Grunau, H.R.
    1987. A worldwide look at the cap-rock problem. Journal of Petroleum Geology, 10, 245–265, https://doi.org/10.1111/j.1747-5457.1987.tb00945.x
    [Google Scholar]
  60. Gudlaugsson, S.T., Faleide, J.I., Johansen, S.E. & Breivik, A.J.
    1998. Late Palaeozoic structural development of the south-western Barents Sea. Marine and Petroleum Geology, 15, 73–102, https://doi.org/10.1016/S0264-8172(97)00048-2
    [Google Scholar]
  61. Heggland, R.
    2005. Using gas chimneys in seal integrity analysis: A discussion based on case histories. AAPG Hedberg Series , 2, 237–245, https://doi.org/10.1306/1060767H23170
    [Google Scholar]
  62. Henriksen, E., Ryseth, A.E., Larssen, G.B., Heide, T., Rønning, K., Sollid, K. & Stoupakova, A.V.
    2011. Tectonostratigraphy of the greater Barents Sea: implications for petroleum systems. Geological Society, London, Memoirs, 35, 163–195, https://doi.org/10.1144/M35.10
    [Google Scholar]
  63. Hermanrud, C., Halkjelsvik, M.E., Kristiansen, K., Bernal, A. & Strömbäck, A.C.
    2014. Petroleum column-height controls in the western Hammerfest Basin, Barents Sea. Petroleum Geoscience, 20, 227–240, https://doi.org/10.1144/petgeo2013-041
    [Google Scholar]
  64. Holba, A.G., Wright, L., Levinson, R., Huizinga, B. & Scheihing, M.
    2004. Effects and impact of early-stage anaerobic biodegradation on Kuparuk River Field, Alaska. Geological Society, London, Special Publications, 237, 53–88, https://doi.org/10.1144/GSL.SP.2004.237.01.05
    [Google Scholar]
  65. Ibrahim, M.A., Tek, M.R. & Katz, D.L.
    1970. Threshold Pressure in Gas Storage. American Gas Association, Arlington, VA.
    [Google Scholar]
  66. Ingram, G.M. & Urai, J.L.
    1999. Top-seal leakage through faults and fractures: the role of mudrock properties. Geological Society, London, Special Publications, 158, 125–135, https://doi.org/10.1144/GSL.SP.1999.158.01.10
    [Google Scholar]
  67. Jackson, C.A.L. & Rotevatn, A.
    2013. 3D seismic analysis of the structure and evolution of a salt-influenced normal fault zone: a test of competing fault growth models. Journal of Structural Geology, 54, 215–234, https://doi.org/10.1016/j.jsg.2013.06.012
    [Google Scholar]
  68. Johansen, S.E., Ostisty, B.K. et al.
    1993. Hydrocarbon potential in the Barents Sea region: play distribution and potential. Norwegian Petroleum Society Special Publications, 2, 273–320, https://doi.org/10.1016/B978-0-444-88943-0.50024-1
    [Google Scholar]
  69. Karlo, J.
    2018. Your next dry hole will most likely be caused by seal failure. The Houston Geological Society Bulletin, 60, 21.
    [Google Scholar]
  70. Karlsen, D.A. & Skeie, J.E.
    2006. Petroleum migration, faults and overpressure, part I: calibrating basin modelling using petroleum in traps – a review. Journal of Petroleum Geology, 29, 227–256, https://doi.org/10.1111/j.1747-5457.2006.00227.x
    [Google Scholar]
  71. Karlsen, D.A., Skeie, J.E. et al.
    2004. Petroleum migration, faults and overpressure. Part II. Case history: the Haltenbanken Petroleum Province, offshore Norway. Geological Society, London, Special Publications, 237, 305–372, https://doi.org/10.1144/GSL.SP.2004.237.01.18
    [Google Scholar]
  72. Kearey, P., Brooks, M. & Hill, I.
    2013. An Introduction to Geophysical Exploration. John Wiley & Sons.
    [Google Scholar]
  73. Knipe, R.J.
    1993. The influence of fault zone processes and diagenesis on fluid flow. AAPG Studies in Geology, 36, 135–151.
    [Google Scholar]
  74. 1997. Juxtaposition and seal diagrams to help analyze fault seals in hydrocarbon reservoirs. AAPG Bulletin, 81, 187–195.
    [Google Scholar]
  75. Knipe, R.J., Fisher, Q.J. et al.
    1997. Fault seal analysis: successful methodologies, application and future directions. Norwegian Petroleum Society Special Publications, 7, 15–38, https://doi.org/10.1016/S0928-8937(97)80004-5
    [Google Scholar]
  76. Larsen, R.M., Fjaeran, T. & Skarpnes, O.
    1993. Hydrocarbon potential of the Norwegian Barents Sea based on recent well results. Norwegian Petroleum Society Special Publications, 2, 321–331, https://doi.org/10.1016/B978-0-444-88943-0.50025-3
    [Google Scholar]
  77. Lasabuda, A., Laberg, J.S., Knutsen, S.M. & Høgseth, G.
    2018. Early to middle Cenozoic paleoenvironment and erosion estimates of the southwestern Barents Sea: Insights from a regional mass-balance approach. Marine and Petroleum Geology, 96, 501–521, https://doi.org/10.1016/j.marpetgeo.2018.05.039
    [Google Scholar]
  78. Leith, T.L., Kaarstad, I., Connan, J., Pierron, J. & Caillet, G.
    1993. Recognition of caprock leakage in the Snorre field, Norwegian North Sea. Marine and Petroleum Geology, 10, 29–41, https://doi.org/10.1016/0264-8172(93)90097-C
    [Google Scholar]
  79. Ligtenberg, J.H.
    2005. Detection of fluid migration pathways in seismic data: implications for fault seal analysis. Basin Research, 17, 141–153, https://doi.org/10.1111/j.1365-2117.2005.00258.x
    [Google Scholar]
  80. Lindsay, N.G., Murphy, F.C., Walsh, J.J., Watterson, J., Flint, S. & Bryant, I.
    1993. Outcrop studies of shale smears on fault surfaces. International Association of Sedimentologists Special Publications, 15, 113–123, https://doi.org/10.1002/9781444303957.ch6
    [Google Scholar]
  81. Linjordet, A. & Olsen, R.G.
    1992. The Jurassic Snøhvit gas field, Hammerfest Basin, offshore northern Norway. AAPG Memoirs, 54, 349–370.
    [Google Scholar]
  82. Løseth, H., Gading, M. & Wensaas, L.
    2009. Hydrocarbon leakage interpreted on seismic data. Marine and Petroleum Geology, 26, 1304–1319, https://doi.org/10.1016/j.marpetgeo.2008.09.008
    [Google Scholar]
  83. Losh, S., Eglinton, L., Schoell, M. & Wood, J.
    1999. Vertical and lateral fluid flow related to a large growth fault, South Eugene Island Block 330 Field, offshore Louisiana. AAPG Bulletin, 83, 244–276.
    [Google Scholar]
  84. Lundin, E. & Doré, A.G.
    2002. Mid-Cenozoic post-breakup deformation in the ‘passive'margins bordering the Norwegian–Greenland Sea. Marine and Petroleum Geology, 19, 79–93, https://doi.org/10.1016/S0264-8172(01)00046-0
    [Google Scholar]
  85. Magoon, L.B.
    & Dow, W.G. (eds). 1994. The Petroleum System – From Source to Trap. AAPG Memoirs, 60.
    [Google Scholar]
  86. Makurat, A., Torudbakken, B., Monsen, K. & Rawlings, C.
    1992. Cenezoic uplift and caprock seal in the Barents Sea: fracture modelling and seal risk evaluation. Paper SPE-24740 presented at theSPE Annual Technical Conference and Exhibition, 4–7 October 1992, Washington, DC, USA, https://doi.org/10.2118/24740-MS
    [Google Scholar]
  87. Mansfield, C.S. & Cartwright, J.A.
    1996. High resolution fault displacement mapping from three-dimensional seismic data: evidence for dip linkage during fault growth. Journal of Structural Geology, 18, 249–263, https://doi.org/10.1016/S0191-8141(96)80048-4
    [Google Scholar]
  88. Mathieu, C.J.
    2018. Exploration well failures from the UK North Sea. Geological Society, London, Petroleum Geology Conference Series, 8, 267–272, https://doi.org/10.1144/PGC8.3
    [Google Scholar]
  89. Mohammedyasin, S.M., Lippard, S.J., Omosanya, K.O., Johansen, S.E. & Harishidayat, D.
    2016. Deep-seated faults and hydrocarbon leakage in the Snøhvit Gas Field, Hammerfest Basin, southwestern Barents Sea. Marine and Petroleum Geology, 77, 160–178, https://doi.org/10.1016/j.marpetgeo.2016.06.011
    [Google Scholar]
  90. Moretti, I.
    1998. The role of faults in hydrocarbon migration. Petroleum Geoscience, 4, 81–94, https://doi.org/10.1144/petgeo.4.1.81
    [Google Scholar]
  91. Muskat, M.
    1981. Physical Principles of Oil Production. International Human Resources Development Cooperation, Boston, MA.
    [Google Scholar]
  92. NPD
    . 2018. Resource Report Exploration 2018. Norwegian Petroleum Directorate (NPD), Stavanger, Norway, http://www.npd.no/en/Publications[last accessed June 2019].
    [Google Scholar]
  93. Nyland, B., Jensen, L.N., Skagen, J.L., Skarpnes, O. & Vorren, T.
    1992. Tertiary uplift and erosion in the Barents Sea: magnitude, timing and consequences. Norwegian Petroleum Society Special Publications , 1, 153–162. https://doi.org/10.1016/B978-0-444-88607-1.50015-2
    [Google Scholar]
  94. Ohm, S.E., Karlsen, D.A. & Austin, T.J.F.
    2008. Geochemically driven exploration models in uplifted areas: Examples from the Norwegian Barents Sea. AAPG Bulletin, 92, 1191–1223, https://doi.org/10.1306/06180808028
    [Google Scholar]
  95. Ostanin, I., Anka, Z., di Primio, R. & Bernal, A.
    2012. Identification of a large Upper Cretaceous polygonal fault network in the Hammerfest basin: Implications on the reactivation of regional faulting and gas leakage dynamics, SW Barents Sea. Marine Geology, 332, 109–125, https://doi.org/10.1016/j.margeo.2012.03.005
    [Google Scholar]
  96. 2013. Hydrocarbon plumbing systems above the Snøhvit gas field: structural control and implications for thermogenic methane leakage in the Hammerfest Basin, SW Barents Sea. Marine and Petroleum Geology, 43, 127–146, https://doi.org/10.1016/j.marpetgeo.2013.02.012
    [Google Scholar]
  97. Ostanin, I., Anka, Z. & di Primio, R.
    2017. Role of faults in hydrocarbon leakage in the Hammerfest Basin, SW Barents Sea: Insights from seismic data and numerical modelling. Geosciences, 7, 28, https://doi.org/10.3390/geosciences7020028
    [Google Scholar]
  98. Peacock, D.C.P. & Sanderson, D.J.
    1991. Displacements, segment linkage and relay ramps in normal fault zones. Journal of Structural Geology, 13, 721–733, https://doi.org/10.1016/0191-8141(91)90033-F
    [Google Scholar]
  99. Pickell, J.J. & Heacock, J.G.
    1960. Density logging. Geophysics, 25, 891–904, https://doi.org/10.1190/1.1438769
    [Google Scholar]
  100. Poelchau, H.S., Baker, D.R., Hantschel, T., Horsfield, B. & Wygrala, B.
    1997. Basin simulation and the design of the conceptual basin model. In: Welte, D.H., Horsfield, B. & Baker, D.R. (eds) Petroleum and Basin Evolution. Springer, Berlin, 3–70.
    [Google Scholar]
  101. Purcell, W.R.
    1949. Capillary pressures – their measurement using mercury and the calculation of permeability therefrom. Journal of Petroleum Technology, 1, 39–48, https://doi.org/10.2118/949039-G
    [Google Scholar]
  102. Revil, A. & Cathles, L.M.III
    2002. Fluid transport by solitary waves along growing faults: A field example from the South Eugene Island Basin, Gulf of Mexico. Earth and Planetary Science Letters, 202, 321–335, https://doi.org/10.1016/S0012-821X(02)00784-7
    [Google Scholar]
  103. Rider, M. & Kennedy, M.
    2011. The Geological Interpretation of Well Logs. 3rd edn. Rider–French Consulting Ltd, Aberdeen, UK.
    [Google Scholar]
  104. Rodrigues, E., di Primio, R., Anka, Z., Stoddart, D. & Horsfield, B.
    2011. Leakage of hydrocarbons in a glacially influenced marine environment: Hammerfest Basin (Southwestern Barents Sea.). Geophysical Research Abstracts, 13, EGU2011-765.
    [Google Scholar]
  105. Rotevatn, A. & Jackson, C.A.L.
    2014. 3D structure and evolution of folds during normal fault dip linkage. Journal of the Geological Society, London, 171, 821–829, https://doi.org/10.1144/jgs2014-045
    [Google Scholar]
  106. Rotevatn, A., Sandve, T.H., Keilegavlen, E., Kolyukhin, D. & Fossen, H.
    2013. Deformation bands and their impact on fluid flow in sandstone reservoirs: the role of natural thickness variations. Geofluids, 13, 359–371, https://doi.org/10.1111/gfl.12030
    [Google Scholar]
  107. Rudolph, K.W. & Goulding, F.J.
    2017. Benchmarking exploration predictions and performance using 20+ yr of drilling results: One company's experience. AAPG Bulletin, 101, 161–176, https://doi.org/10.1306/06281616060
    [Google Scholar]
  108. Sales, J.K.
    1993. Closure vs. seal capacity – A fundamental control on the distribution of oil and gas. Norwegian Petroleum Society Special Publications, 3, 399–414.
    [Google Scholar]
  109. Sanderson, D.J. & Zhang, X.
    1999. Critical stress localization of flow associated with deformation of well-fractured rock masses, with implications for mineral deposits. Geological Society, London, Special Publications, 155, 69–81, https://doi.org/10.1144/GSL.SP.1999.155.01.07
    [Google Scholar]
  110. Saunders, D.F., Burson, K.R. & Thompson, C.K.
    1999. Model for hydrocarbon microseepage and related near-surface alterations. AAPG Bulletin, 83, 170–185.
    [Google Scholar]
  111. Schlömer, S. & Krooss, B.M.
    1997. Experimental characterisation of the hydrocarbon sealing efficiency of cap rocks. Marine and Petroleum Geology, 14, 565–580, https://doi.org/10.1016/S0264-8172(97)00022-6
    [Google Scholar]
  112. Schowalter, T.T.
    1979. Mechanics of secondary hydrocarbon migration and entrapment. AAPG Bulletin, 63, 723–760.
    [Google Scholar]
  113. Schowalter, T.T. & Hess, P.D.
    1982. Interpretation of subsurface hydrocarbon shows. AAPG Bulletin, 66, 1302–1327.
    [Google Scholar]
  114. Secor, D.T.
    1965. Role of fluid pressure in jointing. American Journal of Science, 263, 633–646, https://doi.org/10.2475/ajs.263.8.633
    [Google Scholar]
  115. Sibson, R.H.
    1981. Fluid flow accompanying faulting: field evidence and model. American Geophysical Union, Maurice Ewing Series, 4, 593–603, https://doi.org/10.1029/ME004p0593
    [Google Scholar]
  116. 1992. Earthquake faulting, induced fluid flow, and fault-hosted gold-quartz mineralization. In: Bartholomew, M.J., Hyndman, D.W., Mogk, D.W. & Mason, R. (eds) Basement Tectonics 8. Proceedings of the International Conferences on Basement Tectonics, 2, Springer, Dordrecht, https://doi.org/10.1007/978-94-011-1614-5_42
    [Google Scholar]
  117. 1995. Selective fault reactivation during basin inversion: potential for fluid redistribution through fault-valve action. Geological Society, London, Special Publications, 88, 3–19, https://doi.org/10.1144/GSL.SP.1995.088.01.02
    [Google Scholar]
  118. Simm, R. & Bacon, M.
    2014. Seismic Amplitude: An Interpreter's Handbook. Cambridge University Press.
    [Google Scholar]
  119. Simmenes, T.H., Hermanrud, C., Ersland, R., Georgescu, L. & Sollie, O.C.E.
    2017. Relationships between bright amplitudes in overburden rocks and leakage from underlying reservoirs on the Norwegian Continental Shelf. Petroleum Geoscience, 23, 10–16, https://doi.org/10.1144/petgeo2016-093
    [Google Scholar]
  120. Skagen, J.I.
    1993. Effects on hydrocarbon potential caused by Tertiary uplift and erosion in the Barents Sea. Norwegian Petroleum Society Special Publications, 2, 711–719, https://doi.org/10.1016/B978-0-444-88943-0.50048-4
    [Google Scholar]
  121. Smith, D.A.
    1966. Theoretical considerations of sealing and non-sealing faults. AAPG Bulletin, 50, 363–374.
    [Google Scholar]
  122. Sperrevik, S., Gillespie, P.A., Fisher, Q.J., Halvorsen, T. & Knipe, R.J.
    2002. Empirical estimation of fault rock properties. Norwegian Petroleum Society Special Publications, 11, 109–125, https://doi.org/10.1016/S0928-8937(02)80010-8
    [Google Scholar]
  123. Tamagawa, T. & Pollard, D.D.
    2008. Fracture permeability created by perturbed stress fields around active faults in a fractured basement reservoir. AAPG Bulletin, 92, 743–764, https://doi.org/10.1306/02050807013
    [Google Scholar]
  124. Tvedt, A.B., Rotevatn, A., Jackson, C.A.L., Fossen, H. & Gawthorpe, R.L.
    2013. Growth of normal faults in multilayer sequences: A 3D seismic case study from the Egersund Basin, Norwegian North Sea. Journal of Structural Geology, 55, 1–20, https://doi.org/10.1016/j.jsg.2013.08.002
    [Google Scholar]
  125. Vassenden, F., Sylta, Ø. & Zwach, C.
    2003. Secondary migration in a 2D visual laboratory model. In: Proceedings of the 1st EAGE International Conference on Fault and Top Seals – What do we know and where do we go? EAGE Fault and Top Seal Meeting, 8–11 September, Montpellier, France. European Association of Geoscientists and Engineers (EAGE), Houten, The Netherlands, https://doi.org/10.3997/2214-4609.201405814
    [Google Scholar]
  126. Vavra, C.L., Kaldi, J.G. & Sneider, R.M.
    1992. Geological applications of capillary pressure: a review (1). AAPG Bulletin, 76, 840–850.
    [Google Scholar]
  127. Watts, N.L.
    1987. Theoretical aspects of cap-rock and fault seals for single- and two-phase hydrocarbon columns. Marine and Petroleum Geology, 4, 274–307, https://doi.org/10.1016/0264-8172(87)90008-0
    [Google Scholar]
  128. Wibberley, C.A., Gonzalez-Dunia, J. & Billon, O.
    2017. Faults as barriers or channels to production-related flow: insights from case studies. Petroleum Geoscience, 23, 134–147, https://doi.org/10.1144/petgeo2016-057
    [Google Scholar]
  129. Wilhelms, A., Larter, S.R., Head, I., Farrimond, P., Di-Primio, R. & Zwach, C.
    2001. Biodegradation of oil in uplifted basins prevented by deep-burial sterilization. Nature, 411, 1034, https://doi.org/10.1038/35082535
    [Google Scholar]
  130. Wiprut, D. & Zoback, M.D.
    2002. Fault reactivation, leakage potential, and hydrocarbon column heights in the northern North Sea. Norwegian Petroleum Society Special Publications, 11, 203–219, https://doi.org/10.1016/S0928-8937(02)80016-9
    [Google Scholar]
  131. Yielding, G.
    2002. Shale gouge ratio – Calibration by geohistory. Norwegian Petroleum Society Special Publications, 11, 1–15, https://doi.org/10.1016/S0928-8937(02)80003-0
    [Google Scholar]
  132. Yielding, G., Freeman, B. & Needham, D.T.
    1997. Quantitative fault seal prediction. AAPG Bulletin, 81, 897–917.
    [Google Scholar]
  133. Yielding, G., Bretan, P. & Freeman, B.
    2010. Fault seal calibration: a brief review. Geological Society, London, Special Publications, 347, 243–255, https://doi.org/10.1144/SP347.14
    [Google Scholar]
  134. Yun, J.W., Orange, D.L. & Field, M.E.
    1999. Subsurface gas offshore of northern California and its link to submarine geomorphology. Marine Geology, 154, 357–368, https://doi.org/10.1016/S0025-3227(98)00123-6
    [Google Scholar]
  135. Zhang, Y., Schaubs, P.M., Zhao, C., Ord, A., Hobbs, B.E. & Barnicoat, A.C.
    2008. Fault-related dilation, permeability enhancement, fluid flow and mineral precipitation patterns: numerical models. Geological Society, London, Special Publications, 299, 239–255, https://doi.org/10.1144/SP299.15
    [Google Scholar]
  136. Zieglar, D.L.
    1992. Hydrocarbon columns, buoyancy pressures, and seal efficiency: Comparisons of oil and gas accumulations in California and the Rocky Mountain area (1). AAPG Bulletin, 76, 501–508.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1144/petgeo2019-094
Loading
/content/journals/10.1144/petgeo2019-094
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error