1887
Volume 26, Issue 2
  • ISSN: 1354-0793
  • E-ISSN:

Abstract

Exploration success at Breagh demonstrates that western parts of the Mid North Sea High area are prospective despite the absence of an Upper Permian (Rotliegend Group) Leman Sandstone Formation reservoir and source rocks belonging to the Upper Carboniferous Westphalian Coal Measures Group. Detailed seismic and well interpretation shows that the Breagh trap was a long-lived footwall high, the prospectivity of which was enhanced by Variscan folding and uplift, leading to the truncation (subcrop) of Lower Carboniferous reservoirs beneath the Base Permian Unconformity. Its drape (supra-crop) by Upper Permian (Zechstein Super Group) evaporites creates the seal. The complexity of its overburden means that an accurate picture of the Breagh structure only emerges after accurate depth-conversion that takes the effects of the Mesozoic graben into account. Pronounced easterly tilting during the Cenozoic affected the area and controlled gas migration into the structure from palaeostructures lying to the east. However, evidence that Breagh is not filled to spill point (underfill) suggests that charge limitation remained an issue. The study demonstrates that a poorly-documented and under-explored Lower Carboniferous play exists in Southern North Sea, which relies upon careful structural mapping and basin modelling to be undertaken for the play to be understood and its further potential to be realized.

This article is part of the Under-explored plays and frontier basins of the UK continental shelf collection available at: https://www.lyellcollection.org/cc/under-explored-plays-and-frontier-basins-of-the-uk-continental-shelf

Loading

Article metrics loading...

/content/journals/10.1144/petgeo2019-100
2020-04-16
2024-04-19
Loading full text...

Full text loading...

References

  1. Alberts, M.A.
    and Underhill, J.R. 1991. The effect of Tertiary structuration on Permian gas prospectivity, Cleaver Bank area, southern North Sea, UK. In: Spencer, A.M. (ed.) Generation, Accumulation, and Production of Europe's Hydrocarbons. Oxford University Press, Oxford, 161–173.
    [Google Scholar]
  2. Allen, P.A. and Allen, J.R.
    2013. Basin Analysis: Principles and Application to Petroleum Play Assessment. 3rd edn. Wiley-Blackwell.
    [Google Scholar]
  3. Allen, M.R., Griffiths, P.A., Craig, J., Fitches, W.R. and Whittington, R. J.
    1994. Halokinetic initiation of Mesozoic tectonics in the southern North Sea: a regional model. Geological Magazine, 131, 559–561, https://doi.org/10.1017/S0016756800012164
    [Google Scholar]
  4. Allsop, J.M.
    1987. Patterns of late Caledonian intrusive activity in eastern and northern England from geophysics, radiometric dating and basement geology. Proceedings of the Yorkshire Geological Society, 46, 335–353, https://doi.org/10.1144/pygs.46.4.335
    [Google Scholar]
  5. Andersen, O.B., Knudsen, P. and Trimmer, R.
    2005. Improved High Resolution Altimetric Gravity Field Mapping (KMS2002 Global Marine Gravity Field). Springer, Berlin, 326–331.
    [Google Scholar]
  6. Anderson, J.E., Cartwright, J., Drysdall, S.J. and Vivian, N.
    2000. Controls on turbidite sand deposition during gravity-driven extension of a passive margin: examples from Miocene sediments in Block 4, Angola. Marine and Petroleum Geology, 17, 1165–1203, https://doi.org/10.1016/S0264-8172(00)00059-3
    [Google Scholar]
  7. Arsenikos, S., Quinn, M.F., Pharaoh, T., Sankey, M. and Monaghan, A.A.
    2015. Seismic Interpretation and Generation of Key Depth Structure Surfaces within the Devonian and Carboniferous of the Central North Sea, Quadrants 25–44 Area. British Geological Survey Commissioned Report CR/15/118.
    [Google Scholar]
  8. Arsenikos, S., Quinn, M., Kimbell, G., Williamson, P., Pharaoh, T., Leslie, G. and Monaghan, A.
    2018. Structural development of the Devono-Carboniferous plays of the UK North Sea. Geological Society, London, Special Publications , 471, 65–90, https://doi.org/10.1144/SP471.3
    [Google Scholar]
  9. Arthur, T.J.
    1993. Mesozoic structural evolution of the UK Southern North Sea: insights from analysis of fault systems. Geological Society, London, Petroleum Geology Conference Series, 4, 1269–1279, https://doi.org/10.1144/0041269
    [Google Scholar]
  10. Bachmann, G.H. and Kozur, H.W.
    2004. The Germanic Triassic: correlations with the international chronostratigraphic scale, numerical ages and Milankovitch cyclicity. Hallesches Jahrbuch für Geowissenschaften, B26, 17–62.
    [Google Scholar]
  11. Bachmann, G.H., Voigt, T., Bayer, U., von Eynatten, H., Legler, B. and Littke, R.
    2008. Depositional history and sedimentary cycles in the Central European Basin System. In: Littke, R., Bayer, U., Gajewski, D. and Nelskamp, S. (eds) Dynamics of Complex Intracontinental Basins: The Central European Basin System. Springer, Berlin, 157–172.
    [Google Scholar]
  12. Bailey, J.B., Arbin, P., Daffinoti, O., Gibson, P. and Ritchie, J.S.
    1993. Permo-Carboniferous plays of the Silver Pit Basin. Geological Society, London, Petroleum Geology Conference Series , 4, 707–715, https://doi.org/10.1144/0040707
    [Google Scholar]
  13. Barnard, P.C. and Richards, F.
    1988. A Petroleum Geochemical Evaluation of the interval 600′ to 8660′ of the Amoco 42/22-1 Well, drilled in the U.K. Southern North Sea. Report prepared for Amoco (UK) Limited by the Robertson Group plc.
    [Google Scholar]
  14. Besly, B.
    2018. Exploration and development in the Carboniferous of the Southern North Sea: a 30  year retrospective. Geological Society, London, Special Publications , 471, 17–64, https://doi.org/10.1144/SP471.10
    [Google Scholar]
  15. Besly, B.M.
    1998. Carboniferous. In: Glennie, K.W. (ed.) Petroleum Geology of the North Sea: Basic Concepts and Recent Advances. Blackwell Science, Oxford, UK, 104–136.
    [Google Scholar]
  16. Booth, M., Underhill, J.R., Gardner, A. and McLean, D.
    2020. Sedimentary and tectonic controls on Lower Carboniferous (Visean) mixed carbonate–siliciclastic deposition in NE England and the Southern North Sea: implications for reservoir architecture. Petroleum Geoscience, https://doi.org/10.1144/petgeo2019-101
    [Google Scholar]
  17. Brackenridge, R.E., Underhill, J.R., Jamieson, R. and Bell, A.
    2020. Structural and stratigraphic evolution of the Mid North Sea High region of the UK Continental Shelf. Petroleum Geoscience, https://doi.org/10.1144/petgeo2019-076
    [Google Scholar]
  18. Breunese, J.N., Andersen, J.H. et al.
    2010. Reserves and production history. In: Doornenbal, J.C. and Stevenson, A.G. (eds) Petroleum Geological Atlas of the Southern Permian Basin Area. EAGE, Houten, The Netherlands, 271–281.
    [Google Scholar]
  19. Bristow, C.S. and Best, J.L.
    1993. Braided rivers: perspectives and problems. Geological Society, London, Special Publications , 75, 1–11, https://doi.org/10.1144/GSL.SP.1993.075.01.01
    [Google Scholar]
  20. Cameron, N. and Ziegler, T.
    1997. Probing the lower limits of a fairway: further pre-Permian potential in the southern North Sea. Geological Society, London, Special Publications , 123, 123–141, https://doi.org/10.1144/GSL.SP.1997.123.01.08
    [Google Scholar]
  21. Cameron, T.D.J.
    1993. 5. Carboniferous and Devonian of the Southern North Sea. In: Knox, R.W.O'B. and Cordey, W.G. (eds) Lithostratigraphic Nomenclature of the UK North Sea. British Geological Survey, Nottingham, UK, 1–95.
    [Google Scholar]
  22. Cameron, T.D.J., Crosby, A., Balson, P.S., Jeffery, D.H., Lott, G.K., Bulat, J. and Harrison, D.J.
    1992. United Kingdom Offshore Regional Report: The Geology of the Southern North Sea. HMSO for the British Geological Survey, London.
    [Google Scholar]
  23. Cameron, D., Munns, J.W. and Stoker, M.S.
    2005. Remaining exploration potential of the Carboniferous fairway, UK Southern North Sea. In: Collinson, J.D., Evans, D.J., Holliday, D.W. & Jones, N.S. (eds.) Carboniferous Hydrocarbon Geology, the Southern North Sea and Surrounding Onshore Areas. Yorkshire Geological Society, Occasional Publication, 209–224.
    [Google Scholar]
  24. Catto, R., Taggart, S. and Poole, G.
    2017. Petroleum geology of the Cygnus gas field, UK North Sea: from discovery to development. Geological Society, London, Petroleum Geology Conference Series , 8, 307–318, https://doi.org/10.1144/PGC8.39
    [Google Scholar]
  25. Chopra, S. and Marfurt, K.
    2007. Seismic Attributes for Prospect Identification and Reservoir Characterization. SEG Geophysical Developments, 11.
    [Google Scholar]
  26. Collinson, J.D.
    2005. Dinantian and Namurian depositional systems in the southern North Sea. Yorkshire Geological Society Occasional Publication , 7, 35–56.
    [Google Scholar]
  27. Collinson, J.D., Jones, C.M., Blackbourn, G.A., Besly, B.M., Archard, G.M. and McMahon, A.H.
    1993. Carboniferous depositional systems of the Southern North Sea. Geological Society, London, Petroleum Geology Conference Series , 4, 677–687, https://doi.org/10.1144/0040677
    [Google Scholar]
  28. Cooper, M.M., Easton, S.D.W., Lynch, J.J. and Fozdar, I.M.
    2005. The Caister–Murdoch System (CMS) III Carboniferous cluster development, UK Southern North Sea. Geological Society, London, Petroleum Geology Conference Series , 6, 317–326, https://doi.org/10.1144/0060317
    [Google Scholar]
  29. Corfield, S.M., Gawthorpe, R.L., Gage, M., Fraser, A.J. and Besly, B.M.
    1996. Inversion tectonics of the Variscan foreland of the British Isles. Journal of the Geological Society, London, 153, 17–32, https://doi.org/10.1144/gsjgs.153.1.0017
    [Google Scholar]
  30. Cornford, C.
    1998. Source rocks and hydrocarbons of the North Sea. In: Glennie, K.W. (ed.) Petroleum Geology of the North Sea. Blackwell Science, Oxford, UK, 376–462.
    [Google Scholar]
  31. Crittenden, S.
    1987. The ‘Albian transgression’ in the southern North Sea basin. Journal of Petroleum Geology, 10, 395–414, https://doi.org/10.1111/j.1747-5457.1987.tb00581.x
    [Google Scholar]
  32. Donato, J.A.
    1993. A buried granite batholith and the origin of the Sole Pit Basin, UK Southern North Sea. Journal of the Geological Society, London, 150, 255–258, https://doi.org/10.1144/gsjgs.150.2.0255
    [Google Scholar]
  33. Donato, J.A., Martindale, W. and Tully, M.C.
    1983. Buried granites within the Mid North Sea High. Journal of the Geological Society, London 140, 825–837, https://doi.org/10.1144/gsjgs.140.5.0825
    [Google Scholar]
  34. Donato, J.A. and Megson, J.B.
    1990. A buried granite batholith beneath the East Midland Shelf of the Southern North Sea Basin. Journal of the Geological Society, London, 147, 133–140, https://doi.org/10.1144/gsjgs.147.1.0133
    [Google Scholar]
  35. Duguid, C. and Underhill, J.R.
    2010. Geological controls on Upper Permian Plattendolomit Formation reservoir prospectivity, Wissey Field, UK Southern North Sea. Petroleum Geoscience, 16, 331–348, https://doi.org/10.1144/1354-0793/10-021
    [Google Scholar]
  36. Dutton, D.M. and Trudgill, B.D.
    2009. Four-dimensional analysis of the Sembo relay system, offshore Angola: Implications for fault growth in salt-detached settings. AAPG Bulletin, 93, 763–794, https://doi.org/10.1306/02230908094
    [Google Scholar]
  37. Duval, B., Cramez, C. and Jackson, M.P.A.
    1992. Raft tectonics in the Kwanza Basin, Angola. Marine and Petroleum Geology, 9, 389–404, https://doi.org/10.1016/0264-8172(92)90050-O
    [Google Scholar]
  38. Fiduk, J.C., Brush, E.R., Anderson, L.E., Gibbs, P.B. and Rowan, M.G.
    2004. Salt deformation, magmatism and hydrocarbon prospectivity in the Espirito Santo Basin, offshore Brazil. In: Post, P.J. (ed.) Salt-sediment Interactions and Hydrocarbon Prospectivity: Concepts, Applications and Case Studies for the 21st Century. Papers presented at the 24th Annual Gulf Coast Section SEPM Foundation Bob F. Perkins Research Conference, Houston TX, December 5–8, 2004. Gulf Coast Section SEPM, Houston, TX, 640–668 (CD publication).
    [Google Scholar]
  39. Fisher, M.J.
    1986. Triassic. In: Glennie, K.W. (ed.) Introduction to the Petroleum Geology of the North Sea. Blackwell Scientific, Oxford, 113–132.
    [Google Scholar]
  40. Fisher, M.J. and Mudge, D.C.
    1998. Triassic. In: Glennie, K.W. (ed.) Petroleum Geology of the North Sea: Basic concepts and recent advances. Blackwell Science, Oxford, UK, 212–244.
    [Google Scholar]
  41. Fraser, A.J. and Gawthorpe, R.L.
    2003. An Atlas of Carboniferous Basin Evolution in Northern England. Geological Society, London, Memoirs, 28, https://doi.org/10.1144/GSL.MEM.2003.028.01.08
    [Google Scholar]
  42. Garland, C.R.
    1991. The Amethyst field, blocks 47/8a, 47/9a, 47/13a, 47/14a, 47,15a, UK North Sea. Geological Society, London, Memoirs , 14, 387–393, https://doi.org/10.1144/GSL.MEM.1991.014.01.48
    [Google Scholar]
  43. Gast, R.E., Dusar, M. et al.
    2010. Rotliegend. In: Doornenbal, J.C. and Stevenson, A.G. (eds) Petroleum Geological Atlas of the Southern Permian Basin Area. EAGE, Houten, The Netherlands, 101–121.
    [Google Scholar]
  44. Gawthorpe, R.L. and Leeder, M.R.
    2000. Tectono-sedimentary evolution of active extensional basins. Basin Research, 12, 195–218, https://doi.org/10.1046/j.1365-2117.2000.00121.x
    [Google Scholar]
  45. Geluk, M.C.
    1999. Late Permian (Zechstein) rifting in the Netherlands: models and implications for petroleum geology. Petroleum Geoscience, 5, 189–199, https://doi.org/10.1144/petgeo.5.2.189
    [Google Scholar]
  46. Geluk, M.C
    . 2005. Stratigraphy and Tectonics of Permo-Triassic Basins in the Netherlands and Surrounding Areas. PhD thesis, Utrecht University, Utrecht, The Netherlands.
    [Google Scholar]
  47. Geluk, M.C.
    2007. Permian. In: Wong, T.E., Batjes, D.A.J. and de Jager, J. (eds) Geology of the Netherlands. Royal Netherlands Academy of Arts and Sciences, Amsterdam, 63–83.
    [Google Scholar]
  48. George, G.T. and Berry, J.K.
    1997. Permian (Upper Rotliegend) synsedimentary tectonics, basin development and palaeogeography of the southern North Sea. Geological Society, London, Special Publications , 123, 31–61, https://doi.org/10.1144/GSL.SP.1997.123.01.04
    [Google Scholar]
  49. Gerling, P., Geluk, M.C., Kockel, F., Lokhorst, A., Lott, G.K. and Nicholson, R.A.
    1999. ‘NW European Gas Atlas’ – new implications for the Carboniferous gas plays in the western part of the Southern Permian Basin. Geological Society, London, Petroleum Geology Conference Series , 5, 799–808, https://doi.org/10.1144/0050799
    [Google Scholar]
  50. Glennie, K.W.
    1990. Rotliegend sediment distribution: a result of late Carboniferous movements. Geological Society, London, Special Publications , 55, 127–138, https://doi.org/10.1144/GSL.SP.1990.055.01.06
    [Google Scholar]
  51. 1997a. History of exploration in the southern North Sea. Geological Society, London, Special Publications , 123, 5–16, https://doi.org/10.1144/GSL.SP.1997.123.01.02
    [Google Scholar]
  52. 1997b. Recent advances in understanding the southern North Sea Basin: a summary. Geological Society, London, Special Publications , 123, 17–29, https://doi.org/10.1144/GSL.SP.1997.123.01.03
    [Google Scholar]
  53. 1998. Lower Permian – Rotliegend. In: Glennie, K.W. (ed.) Petroleum Geology of the North Sea: Basic Concepts and Recent Advances. 4th edn. Blackwell Science, Oxford, UK, 137–173.
    [Google Scholar]
  54. 2005. Regional tectonics in relation to Permo-Carboniferous hydrocarbon potential, Southern North Sea Basin. Yorkshire Geological Society Occasional Publication , 7, 1–12.
    [Google Scholar]
  55. Glennie, K.W. and Boegner, P.
    1981. Sole Pit inversion tectonics. In: Illing, L.V. and Hobson, D.G. (eds) Petroleum Geology of the Continental Shelf of North-West Europe: Proceedings of the Second Conference on Petroleum Geology of the Continental Shelf of North-West Europe. Insitute of Petroleum, London, 110–120.
    [Google Scholar]
  56. Glennie, K.W. and Underhill, J.R.
    1998. Origin, development and evolution of structural styles. In: Glennie, K.W. (ed.) Petroleum Geology of the North Sea. Blackwell Science, Oxford, UK, 42–84.
    [Google Scholar]
  57. Grant, R.J.
    2019. Controls on the Permian and Mesozoic evolution of the Southern North Sea. PhD thesis, Heriot-Watt University, Edinburgh, UK.
    [Google Scholar]
  58. Grant, R.J., Underhill, J.R., Hernández-Casado, J., Barker, S.M. and Jamieson, R.J.
    2019a. Upper Permian Zechstein Supergroup carbonate–evaporite platform palaeomorphology in the UK Southern North Sea. Marine and Petroleum Geology, 100, 484–518, https://doi.org/10.1016/j.marpetgeo.2017.11.029
    [Google Scholar]
  59. Grant, R.J., Underhill, J.R., Hernández-Casado, J., Jamieson, R.J. and Williams, R.M.
    2019b. The evolution of the Dowsing Graben System: implications for petroleum prospectivity in the UK Southern North Sea. Petroleum Geoscience, https://doi.org/10.1144/petgeo2018-064
    [Google Scholar]
  60. Griffiths, P.A., Allen, M.R., Craig, J., Fitches, W.R. and Whittington, R.J.
    1995. Distinction between fault and salt control of Mesozoic sedimentation on the southern margin of the Mid-North Sea High. In: Boldy, S.A.R. (ed.) Permian and Triassic Rifting in Northwest Europe. Geological Society, London, Special Publications, 145–159, https://doi.org/10.1144/GSL.SP.1995.091.01.08
    [Google Scholar]
  61. Guariguata-Rojas, G.J. and Underhill, J.R.
    2017. Implications of Early Cenozoic uplift and fault reactivation for carbon storage in the Moray Firth Basin. Interpretation, SS1–SS21, https://doi.org/10.1190/INT-2017-0009.1
    [Google Scholar]
  62. Hallett, D., Durant, G.P. and Farrow, G.E.
    1985. Oil exploration and production in Scotland. Scottish Journal of Geology, 21, 547–570, https://doi.org/10.1144/sjg21040547
    [Google Scholar]
  63. Heeremans, M., Timmerman, M.J., Kirstein, L.A. and Faleide, J.I.
    2004. New constraints on the timing of late Carboniferous–early Permian volcanism in the central North Sea. Geological Society, London, Special Publications , 223, 177–193, https://doi.org/10.1144/GSL.SP.2004.223.01.08
    [Google Scholar]
  64. Hickens, P.L. and Hughes, O.J.
    1998. Geological Final Well Report Well: 42/13-2. Mobil North Sea Ltd.
    [Google Scholar]
  65. Hillis, R.R.
    1995. Quantification of Tertiary exhumation in the United Kingdom Southern North Sea using sonic velocity data. AAPG Bulletin, 79, 130–152.
    [Google Scholar]
  66. Hoggard, M.J., White, N. and Al-Attar, D.
    2016. Global dynamic topography observations reveal limited influence of large-scale mantle flow. Nature Geoscience, 9, 456, https://doi.org/10.1038/ngeo2709
    [Google Scholar]
  67. IHS Markit
    . 2019. Breagh Field Summary Report. EDIN Summary Report.
    [Google Scholar]
  68. Jackson, C.A.L. and Stewart, S.A.
    2017. Composition, tectonics, and hydrocarbon significance of Zechstein Supergroup salt on the United Kingdom and Norwegian continental shelves: a review. In: Soto, J.I., Flinch, J.F. and Tari, G. (eds) Permo-Triassic Salt Provinces of Europe, North Africa and the Atlantic Margins. Elsevier, Amsterdam, 175–201, https://doi.org/10.1016/B978-0-12-809417-4.00009-4
    [Google Scholar]
  69. Johnson, H., Warrington, G. and Stoker, S.J.
    1994. 6. Permian and Triassic of the Southern North Sea. In: Knox, R.W.O'B. and Cordey, W.G. (eds) Lithostratigraphic Nomenclature of the UK North Sea. British Geological Survey, Nottingham, UK.
    [Google Scholar]
  70. Johnson, H.D. and Fisher, M.J.
    1998. North Sea plays: geological controls on hydrocarbon distribution. In: Glennie, K.W. (ed.) Petroleum Geology of the North Sea. Blackwell Science, Oxford, UK, 463–547.
    [Google Scholar]
  71. Jones, S.M., Lovell, B. and Crosby, A.G.
    2012. Comparison of modern and geological observations of dynamic support from mantle convection. Journal of the Geological Society, London, 169, 745–758, https://doi.org/10.1144/jgs2011-118
    [Google Scholar]
  72. Karnin, W.-D., Rockenbauch, K. and Ruijtenberg, P.A.
    1992. The effect of the success of 3D seismic data on the exploration and appraisal of Zechstein targets in NW Germany. First Break, 10, 233–240.
    [Google Scholar]
  73. Karnin, W.-D., Idiz, E., Merkel, D. and Ruprecht, E.
    1996. The Zechstein Stassfurt carbonate hydrocarbon system of the Thuringian Basin, Germany. Petroleum Geoscience, 2, 53–58, https://doi.org/10.1144/petgeo.2.1.53
    [Google Scholar]
  74. Kearsey, T.I., Millward, D., Ellen, R., Whitbread, K. and Monaghan, A.A.
    2018. Revised stratigraphic framework of pre-Westphalian Carboniferous petroleum system elements from the Outer Moray Firth to the Silverpit Basin, North Sea, UK. Geological Society, London, Special Publications , 471, 91–113, https://doi.org/10.1144/SP471.11
    [Google Scholar]
  75. Kiersnowski, H., Paul, J., Peryt, T. and Smith, D.B.
    1995. Facies, paleogeography, and sedimentary history of the Southern Permian Basin in Europe. In: Scholle, P., Peryt, T. and Ulmer-Scholle, D. (eds) The Permian of Northern Pangea. Springer, Berlin, 119–136.
    [Google Scholar]
  76. Kimbell, G.S. and Williamson, J.P.
    2015. A Gravity Interpretation of the Central North Sea. British Geological Survey Commissioned Report CR/15/119N.
    [Google Scholar]
  77. Kirby, G.A. and Swallow, P.W.
    1987. Tectonism and sedimentation in the Flamborough Head region of north-east England. Proceedings of the Yorkshire Geological Society, 46, 301–309, https://doi.org/10.1144/pygs.46.4.301
    [Google Scholar]
  78. Kombrink, H.
    2008. The Carboniferous of the Netherlands and Surrounding Areas; A Basin Analysis. Ph.D. thesis, Utrecht University, Utrecht, The Netherlands.
    [Google Scholar]
  79. Kombrink, H., Besly, B. et al.
    2010. Carboniferous. In: Doornenbal, J.C. and Stevenson, A.G. (eds) Petroleum Geological Atlas of the Southern Permian Basin Area. EAGE, Houten, The Netherlands, 81–99.
    [Google Scholar]
  80. Leeder, M.R. and Hardman, M.
    1990. Carboniferous geology of the Southern North Sea Basin and controls on hydrocarbon prospectivity. Geological Society, London, Special Publications , 55, 87–105, https://doi.org/10.1144/GSL.SP.1990.055.01.04
    [Google Scholar]
  81. Lokhorst, A.
    1998. The Northwest European Gas Atlas. NITG-TNO, Haarlem, The Netherlands.
    [Google Scholar]
  82. Lorenz, V. and Nicholls, I.A.
    1984. Plate and intraplate processes of Hercynian Europe during the late paleozoic. Tectonophysics, 107, 25–56, https://doi.org/10.1016/0040-1951(84)90027-1
    [Google Scholar]
  83. Lott, G.K. and Knox, R.W.O'B.
    1994. 7. Post-Triassic of the Southern North Sea. In: Knox, R.W.O'B. and Cordey, W.G. (eds) Lithostratigraphic Nomenclature of the UK North Sea. British Geological Society, Nottingham, UK.
    [Google Scholar]
  84. Lott, G.K., Wong, T.E., Dusar, M., Andsbjerg, J., Mönnig, E., Feldman-Olszewska, A. and Verreussel, R.
    2010. Jurassic. In: Doornenbal, J.C. and Stevenson, A.G. (eds) Petroleum Geological Atlas of the Southern Permian Basin Area. EAGE, Houten, The Netherlands, 175–193.
    [Google Scholar]
  85. Maynard, J.R. and Dunay, R.E.
    1999. Reservoirs of the Dinantian (Lower Carboniferous) play of the Southern North Sea. Geological Society, London, Petroleum Geology Conference Series , 5, 729–745, https://doi.org/10.1144/0050729
    [Google Scholar]
  86. McRae, D., Littlejohn, D. and Trimble, T.
    2009. Breagh 42/13-4 Well: Subsurface Evaluation Report. Sterling Resources.
    [Google Scholar]
  87. Milton-Worssell, R., Smith, K., McGrandle, A., Watson, J. and Cameron, D.
    2010. The search for a Carboniferous petroleum system beneath the Central North Sea. Geological Society, London, Petroleum Geology Conference Series , 7, 57–75, https://doi.org/10.1144/0070057
    [Google Scholar]
  88. Monaghan, A.A., Arsenikos, S. et al.
    2017. Carboniferous petroleum systems around the Mid North Sea High, UK. Marine and Petroleum Geology, 88, 282–302, https://doi.org/10.1016/j.marpetgeo.2017.08.019
    [Google Scholar]
  89. Mulholland, P., Esestime, P., Rodriguez, K. and Hargreaves, P.J.
    2018. The role of palaeorelief in the control of Permian facies distribution over the Mid North Sea High, UK Continental Shelf. Geological Society, London, Special Publications , 471, 155–175, https://doi.org/10.1144/SP471.8
    [Google Scholar]
  90. Oakman, C.D. and Partington, M.A.
    1998. Cretaceous. In: Glennie, K.W. (ed.) Petroleum Geology of the North Sea: Basic Concepts and Recent Advances. Blackwell Science, Oxford, UK, 294–349.
    [Google Scholar]
  91. Oele, J.A., Hol, A.C.P.J. and Tiemens, J.
    1981. Some Rotliegend gas fields of the K and L blocks, Netherlands offshore (1968–1978) – a case history. In: Illing, L.V. and Hobson, D.G. (eds) The Petroleum Geology of the Continental Shelf of North West Europe. Heyden for the Institute of Petroleum, London, 289–300.
    [Google Scholar]
  92. Oudmayer, B.C. and de Jager, J.
    1993. Fault reactivation and oblique-slip in the Southern North Sea. Geological Society, London, Petroleum Geology Conference Series , 4, 1281–1290, https://doi.org/10.1144/0041281
    [Google Scholar]
  93. Patruno, S., Reid, W., Jackson, C.A.-L. and Davies, C.
    2017. New insights into the unexploited reservoir potential of the Mid North Sea High (UKCS quadrants 35–38 and 41–43): a newly described intra-Zechstein sulphate–carbonate platform complex. Geological Society, London, Petroleum Geology Conference Series , 8, 87–124, https://doi.org/10.1144/PGC8.9
    [Google Scholar]
  94. Paul, J.
    1987. Der Zechstein am Harzrand: Querprofil über eine permische Schwelle. In: Internationales Symposium Zechstein 1987: Exkursionsführer, 28 April–9 Mai 1987, Kassel/Hannover, Germany. Stratigraphischen Kommission DUGW/IUGS, Wiesbaden,Germany, 193–276.
    [Google Scholar]
  95. Peryt, T.M., Geluk, M.C., Mathiesen, A., Paul, J. and Smith, K.
    2010. Zechstein. In: Doornenbal, J.C. and Stevenson, A.G. (eds) Petroleum Geological Atlas of the Southern Permian Basin Area. EAGE, Houten, The Netherlands, 123–147.
    [Google Scholar]
  96. Pharaoh, T.C., Dusar, M. et al.
    2010. Tectonic evolution. In: Doornenbal, J.C. and Stevenson, A.G. (eds) Petroleum Geological Atlas of the Southern Permian Basin Area. EAGE, Houten, The Netherlands, 25–57.
    [Google Scholar]
  97. Pletsch, T., Appel, J. et al.
    2010. Petroleum generation and migration. In: Doornenbal, J.C. and Stevenson, A.G. (eds) Petroleum Geological Atlas of the Southern Permian Basin Area. EAGE, Houten, The Netherlands, 225–253.
    [Google Scholar]
  98. Premier Oil
    . 2007. Relinquishment Report Blocks 42/10 and 42/15 P1229 Licence. Premier Oil, London.
    [Google Scholar]
  99. Rodriguez, K., Hodgson, N., Wrigley, R. and Nicholls, H.
    2014. Southern North Sea: Unexplored multi-level exploration potential revealed. First Break, 32, 107–113.
    [Google Scholar]
  100. Rollin, K.E.
    1982. Interpretation of the Main Features of the Humber-Trent 1:250000 Bouguer Anomaly Map. Institute of Geological Sciences Report 74.
    [Google Scholar]
  101. Rouby, D., Raillard, S., Guillocheau, F., Bouroullec, R. and Nalpas, T.
    2002. Kinematics of a growth fault/raft system on the West African margin using 3-D restoration. Journal of Structural Geology, 24, 783–796, https://doi.org/10.1016/S0191-8141(01)00108-0
    [Google Scholar]
  102. RWE Dea
    . 2011. Relinquishment Report License Number: P1525 42/18. RWE Dea AG, Hamberg, Germany.
    [Google Scholar]
  103. Smit, J., van Wees, J.-D. and Cloetingh, S.
    2018. Early Carboniferous extension in East Avalonia: 350  My record of lithospheric memory. Marine and Petroleum Geology, 92, 1010–1027, https://doi.org/10.1016/j.marpetgeo.2018.01.004
    [Google Scholar]
  104. Smith, D.B.
    1970a. The palaeogeography of the British Zechstein. In: Rau, J.L. and Dellwid, L.F. (eds) Third Symposium on Salt. Northern Ohio Geological Society, Cleveland, OH, 20–23.
    [Google Scholar]
  105. 1970b. Permian and Trias. Transactions of the Natural History Society of Northumberland , 41, 66–91.
    [Google Scholar]
  106. 1979. Rapid marine transgressions and regressions of the Upper Permian Zechstein Sea. Journal of the Geological Society, London, 136, 155–156, https://doi.org/10.1144/gsjgs.136.2.0155
    [Google Scholar]
  107. 1980. The evolution of the English Zechstein basin. Contributions to Sedimentology , 9, 7–34.
    [Google Scholar]
  108. Stewart, S.A.
    2007. Salt tectonics in the North Sea Basin: a structural style template for seismic interpreters. Geological Society, London, Special Publications , 272, 361–396, https://doi.org/10.1144/GSL.SP.2007.272.01.19
    [Google Scholar]
  109. Stewart, S.A. and Coward, M.P.
    1995. Synthesis of salt tectonics in the southern North Sea, UK. Marine and Petroleum Geology, 12, 457–475, https://doi.org/10.1016/0264-8172(95)91502-G
    [Google Scholar]
  110. Stewart, S.A., Harvey, M.J., Otto, S.C. and Weston, P.J.
    1996. Influence of salt on fault geometry: examples from the UK salt basins. Geological Society, London, Special Publications, 100, 175–202, https://doi.org/10.1144/GSL.SP.1996.100.01.12
    [Google Scholar]
  111. Strohmenger, C., Voigt, E. and Zimdars, J.
    1996. Sequence stratigraphy and cyclic development of Basal Zechstein carbonate–evaporite deposits with emphasis on Zechstein 2 off-platform carbonates (Upper Permian, Northeast Germany). Sedimentary Geology, 102, 33–54, https://doi.org/10.1016/0037-0738(95)00058-5
    [Google Scholar]
  112. Symonds, R., Lippman, R., Mueller, B. and Kohok, A.
    2015. Yoredale sandstone architecture in the Breagh field (UK SNS). Presented at theSedimentology of Paralic Reservoirs: Recent Advances and their Applications. Conference, 18–21 May 2015, London, UK.
    [Google Scholar]
  113. Taggart, S.
    2015. New opportunities on the northern feather-edge play of the Silverpit basin: sedimentology and facies distribution of the Permian Lower Leman and Carboniferous Ketch formations, Cygnus field, Southern North Sea. Presented at thePetroleum Geology of Northwest Europe Conference, 28–30 September 2015, London, UK.
    [Google Scholar]
  114. Taylor, J.C.M.
    1998. Upper Permian – Zechstein. In: Glennie, K.W. (ed.) Petroleum Geology of the North Sea: Basic Concepts and Recent Advances. 4th edn. Blackwell Science, Oxford, UK, 174–211.
    [Google Scholar]
  115. ter Borgh, M.M., Eikelenboom, W. and & Jaarsma, B.
    2018. Hydrocarbon potential of the Visean and Namurian in the northern Dutch offshore. Geological Society, London, Special Publications, 471, 133–153, https://doi.org/10.1144/SP471.5
    [Google Scholar]
  116. Tucker, M.E.
    1991. Sequence stratigraphy of carbonate–evaporite basins: models and application to the Upper Permian (Zechstein) of northeast England and adjoining North Sea. Journal of the Geological Society, London, 148, 1019–1036, https://doi.org/10.1144/gsjgs.148.6.1019
    [Google Scholar]
  117. Tucker, M.E., Gallagher, J., Lemon, K. and Leng, M.
    2003. The Yoredale cycles of Northumbria: high-frequency clastic–carbonate sequences of the Mid-Carboniferous icehouse world. Open Unversity Geological Society Journal, 24, 5–10.
    [Google Scholar]
  118. Underhill, J.R.
    2003. The tectonic and stratigraphic framework of the United Kingdom's oil and gas fields. Geological Society, London, Memoirs , 20, 17–59, https://doi.org/10.1144/GSL.MEM.2003.020.01.04
    [Google Scholar]
  119. 2009. Role of intrusion-induced salt mobility in controlling the formation of the enigmatic ‘Silverpit Crater’, UK Southern North Sea. Petroleum Geoscience, 15, 197–216, https://doi.org/10.1144/1354-079309-843
    [Google Scholar]
  120. Underhill, J.R. and Hunter, K.L.
    2008. Effect of Zechstein Supergroup (Z1 cycle) Werrahalit pods on prospectivity in the southern North Sea. AAPG Bulletin, 92, 827–851, https://doi.org/10.1306/02270807064
    [Google Scholar]
  121. Underhill, J.R., Lykakis, N. and Shafique, S.
    2009. Turning exploration risk into a carbon storage opportunity in the UK SouNorth Sea. Petroleum Geoscience, 15, 291–304, https://doi.org/10.1144/1354-079309-839
    [Google Scholar]
  122. 2009. Turning exploration risk into a carbon storage opportunity in the UK Southern North Sea. Petroleum Geoscience, 15, 291–304, https://doi.org/10.1144/1354-079309-839
    [Google Scholar]
  123. Underhill, J.R. and Paterson, S.
    1998. Genesis of tectonic inversion structures: seismic evidence for the development of key structures along the Purbeck–Isle of Wight Disturbance. Journal of the Geological Society, London, 155, 975–992, https://doi.org/10.1144/gsjgs.155.6.0975
    [Google Scholar]
  124. Underhill, J.R. and Stoneley, R.
    1998. Introduction to the development, evolution and petroleum geology of the Wessex Basin. Geological Society, London, Special Publications , 133, 1–18, https://doi.org/10.1144/GSL.SP.1998.133.01.01
    [Google Scholar]
  125. Underhill, J.R ., Monaghan, A.A. and Browne, M.A.E.
    , 2008. Controls on structural styles, basin development and petroleum prospectivity in the Midland Valley of Scotland. Marine and Petroleum Geology, 25, 1000–1022, https://doi.org/10.1016/j.marpetgeo.2007.12.002
    [Google Scholar]
  126. Unternehr, P. and van den Driessche, J.
    2004. Lithospheric folding in the southern North Sea: combined effects of Alpine compression and North Atlantic Ocean opening. Geodinamica Acta, 17, 401–405, https://doi.org/10.3166/ga.17.401-405
    [Google Scholar]
  127. Van der Baan, D.
    1990. Zechstein reservoirs in The Netherlands. Geological Society, London, Special Publications , 50, 379–398, https://doi.org/10.1144/GSL.SP.1990.050.01.24
    [Google Scholar]
  128. Vane, C.H., Uguna, C., Kim, A.W., Johnson, K. and Monaghan, A.A.
    2015. Organic Geochemistry of Palaeozoic Source Rocks, Central North Sea (CNS). British Geological Survey Commissoned Report CR/15/132.
    [Google Scholar]
  129. Van Hoorn, B.
    1987. Structural evolution, timing and tectonic style of the Sole Pit inversion. Tectonophysics, 137, 239–284, https://doi.org/10.1016/0040-1951(87)90322-2
    [Google Scholar]
  130. Vejbæk, O.V., Andersen, C. et al.
    2010. Cretaceous. In: Doornenbal, J.C. and Stevenson, A.G. (eds) Petroleum Geological Atlas of the Southern Permian Basin Area. EAGE, Houten, The Netherlands, 195–209.
    [Google Scholar]
  131. Vincent, C.J.
    2015. Maturity Modelling of Selected Wells in the Central North Sea. British Geological Survey Internal Report CR/15/122N.
    [Google Scholar]
  132. Warren, J.K.
    2016. Evaporites – A Geological Compendium. Springer, New York.
    [Google Scholar]
  133. Waters, C.N. and Davies, S.J.
    2006. Carboniferous: extensional basins, advancing deltas and coal swamps. In: Brenchley, P.J. and Rawson, P.F. (eds) The Geology of England and Wales. Geological Society, London, 173–223.
    [Google Scholar]
  134. Werngren, O.C., Manley, D. and Heward, A.P.
    2003. The Pickerill Field, Blocks 48/11a, 48/11b, 48/12c, 48/17b, UK North Sea. Geological Society, London, Memoirs , 20, 799–809, https://doi.org/10.1144/GSL.MEM.2003.020.01.67
    [Google Scholar]
  135. Woodcock, N.H. and Strachan, R.A.
    2012. Geological History of Britain and Ireland, 2nd edn. Wiley-Blackwell, Chichester, UK.
    [Google Scholar]
  136. Ziegler, P.A.
    1990. Geological Atlas of Western and Central Europe. 2nd edn. Shell International Petroleum/Geological Society, London.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1144/petgeo2019-100
Loading
/content/journals/10.1144/petgeo2019-100
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error