1887
Volume 26, Issue 3
  • ISSN: 1354-0793
  • E-ISSN:

Abstract

Fault seal analysis is a key part of understanding the hydrocarbon trapping mechanisms in the petroleum industry. Fault seal research has also been expanded to CO–brine systems for the application to carbon capture and storage (CCS). The wetting properties of rock-forming minerals in the presence of hydrocarbons or CO are a source of uncertainty in the calculations of capillary threshold pressure, which defines the fault sealing capacity. Here, we explore this uncertainty in a comparison study between two fault-sealed fields located in the Otway Basin, SE Australia. The Katnook Field in the Penola Trough is a methane field, while Boggy Creek in Port Campbell contains a high-CO–methane mixture. Two industry standard fault seal modelling methods, one based on laboratory measurements of fault samples and the other based on a calibration of a global dataset of known sealing faults, are used to discuss their relative strengths and applicability to the CO storage context. We identify a range of interfacial tensions and contact angle values in the hydrocarbon–water system under the conditions assumed by the second method. Based on this, the uncertainty related to the spread in fluid properties was determined to be 24% of the calculated threshold capillary pressure value. We propose a methodology of threshold capillary pressure conversion from hydrocarbons–brine to the CO–brine system, using an input of appropriate interfacial tension and contact angle under reservoir conditions. The method can be used for any fluid system where fluid properties are defined by these two parameters.

(1) Fault seal modelling methods and calculations, and (2) hydrocarbon and CO interfacial tensions and contact angle values collected in the literature are available at https://doi.org/10.6084/m9.figshare.c.4877049

This article is part of the Energy Geoscience Series available at https://www.lyellcollection.org/cc/energy-geoscience-series

Loading

Article metrics loading...

/content/journals/10.1144/petgeo2019-126
2020-04-08
2024-03-29
Loading full text...

Full text loading...

References

  1. Alipour Tabrizy, V., Denoyel, R. and Hamouda, A.A.
    2011. Characterization of wettability alteration of calcite, quartz and kaolinite: Surface energy analysis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 384, 98–108, https://doi.org/10.1016/j.colsurfa.2011.03.021
    [Google Scholar]
  2. Allan, U.S.
    1989. Model for hydrocarbon migration and entrapment within faulted structures. AAPG Bulletin, 73, 803–811.
    [Google Scholar]
  3. Andrew, M., Bijeljic, B. and Blunt, M.J.
    2014. Pore-scale contact angle measurements at reservoir conditions using X-ray microtomography. Advances in Water Resources, 68, 24–31, https://doi.org/10.1016/j.advwatres.2014.02.014
    [Google Scholar]
  4. Arif, M., Al-yaseri, A.Z., Barifcani, A., Lebedev, M. and Iglauer, S.
    2016. Impact of pressure and temperature on CO2–brine–mica contact angles and CO2–brine interfacial tension : Implications for carbon geo-sequestration. Journal of Colloid and Interface Science, 462, 208–215, https://doi.org/10.1016/j.jcis.2015.09.076
    [Google Scholar]
  5. Asquith, G.B., Krygowski, D. and Gibson, C.R.
    2004. Basic Well Log Analysis. AAPG, Tulsa, OK.
    [Google Scholar]
  6. Bachu, S. and Bennion, D.B.
    2009. Interfacial tension between CO2, freshwater, and brine in the range of pressure from (2 to 27) MPa, temperature from (20 to 125) °C, and water salinity from (0 to 334 000) mg L−1 . Journal of Chemical & Engineering Data, 54, 765–775, https://doi.org/10.1021/je800529x
    [Google Scholar]
  7. Barclay, S.A. and Worden, R.H.
    2009. Effects of reservoir wettability on quartz cementation in oil fields. International Association of Sedimentologists Special Publications , 29, 103–117, https://doi.org/10.1002/9781444304237.ch8
    [Google Scholar]
  8. Bense, V.F., Shipton, Z.K., Kremer, Y. and Kampman, N.
    2016. Fault zone hydrogeology: introduction to the special issue. Geofluids, 16, 655–657, https://doi.org/10.1111/gfl.12205
    [Google Scholar]
  9. Berg, R.R.
    1975. Capillary pressures in stratigraphic traps. AAPG Bulletin, 59, 939–956.
    [Google Scholar]
  10. Bikkina, P.K.
    2011. Contact angle measurements of CO2–water–quartz/calcite systems in the perspective of carbon sequestration. International Journal of Greenhouse Gas Control, 5, 1259–1271, https://doi.org/10.1016/j.ijggc.2011.07.001
    [Google Scholar]
  11. Boreham, C.J., Hope, J.M. et al.
    2004. Gas–oil–source correlations in the Otway Basin, southern Australia. In: Boult, P.J., Johns, D.R. and Lang, S.C. (eds) PESA's Eastern Australasian Basin Symposium II: Conference Proceedings . Petroleum Exploration Society of Australia (PESA), Perth, WA, Australia, 603–627.
    [Google Scholar]
  12. Boult, P.J. and Hibburt, J.E.
    2002. The Petroleum Geology of South Australia. Volume 1: Otway Basin. 2nd edn. Department of Primary Industries and Resources, Adelaide, SA, Australia.
    [Google Scholar]
  13. Boult, P.J., Johns, D.R. and Lang, S.C.
    2004. Subsurface plumbing of the Crayfish Group in the Penola Trough: Otway Basin. In: Boult, P.J., Johns, D.R. and Lang, S.C. (eds) PESA's Eastern Australasian Basin Symposium II: Conference Proceedings. Petroleum Exploration Society of Australia (PESA), Perth, WA, Australia, 483–498.
    [Google Scholar]
  14. Boult, P., Lyon, P., Camac, B., Hunt, S. and Zwingmann, H.
    2008. Unravelling the complex structural history of the Penola Trough – revealing the St George Fault. In: Blevin, J.E., Bradshaw, B.E. and Uruski, C. (eds) PESA's Eastern Australasian Basin Symposium III: Conference Proceedings. Petroleum Exploration Society of Australia (PESA), Perth, WA, Australia, 14–17.
    [Google Scholar]
  15. Bouvier, J.D., Kaars-Sijpesteijn, C.H., Kluesner, D.F., Onyejekwe, C.C. and Van der Pal, R.C.
    1989. Three-dimensional seismic interpretation and fault sealing investigations, Nun River Field, Nigeria. AAPG Bulletin, 73, 1397–1414. https://doi.org/10.1306/44B4AA5A-170A-11D7-8645000102C1865D
    [Google Scholar]
  16. Bretan, P.
    2016. Trap Analysis: an automated approach for deriving column height predictions in fault-bounded traps. Petroleum Geoscience, 23, 56–69, https://doi.org/10.1144/10.44petgeo2016-022
    [Google Scholar]
  17. Bretan, P., Yielding, G. and Jones, H.
    2003. Using calibrated shale gouge ratio to estimate hydrocarbon column heights. AAPG Bulletin, 87, 397–413. https://doi.org/10.1306/08010201128
    [Google Scholar]
  18. Bretan, P., Yielding, G., Mathiassen, O.M. and Thorsnes, T.
    2011. Fault-seal analysis for CO2 storage: an example from the Troll area, Norwegian Continental Shelf. Petroleum Geoscience, 17, 181–192, https://doi.org/10.1144/1354-079310-025
    [Google Scholar]
  19. Briguglio, D., Hall, M. and Keetley, J.
    2015. Structural evolution of the Early Cretaceous depocentres, Otway Basin, Victoria. Australian Journal of Earth Sciences, 1–17, https://doi.org/10.1080/08120099.2015.1084048
    [Google Scholar]
  20. Buckley, J.S., Liu, Y., Xie, X. and Morrow, N.R.
    1997. Asphaltenes and crude oil wetting-the effect of oil composition. SPE Journal, 2, 107–119, https://doi.org/10.2118/35366-PA
    [Google Scholar]
  21. Chalbaud, C., Robin, M., Lombard, J.-M., Martin, F., Egermann, P. and Bertin, H.
    2009. Interfacial tension measurements and wettability evaluation for geological CO2 storage. Advances in Water Resources, 32, 98–109, https://doi.org/10.1016/j.advwatres.2008.10.012
    [Google Scholar]
  22. Chiquet, P., Daridon, J.-L., Broseta, D. and Thibeau, S.
    2007a. CO2/water interfacial tensions under pressure and temperature conditions of CO2 geological storage. Energy Conversion and Management, 48, 736–744, https://doi.org/10.1016/j.enconman.2006.09.011
    [Google Scholar]
  23. Chiquet, P., Daridon, J.L., Broseta, D. and Thibeau, S.
    2007b. CO2/water interfacial tensions under pressure and temperature conditions of CO2 geological storage. Energy Conversion and Management, 48, 736–744, https://doi.org/10.1016/j.enconman.2006.09.011
    [Google Scholar]
  24. Chivas, A.R., Barnes, I., Evans, W.C., Lupton, J.E. and Stone, J.O.
    1987. Liquid carbon dioxide of magmatic origin and its role in volcanic eruptions. Nature, 326, 587–589, https://doi.org/10.1038/326587a0
    [Google Scholar]
  25. Cockshell, C.D., O'Brien, G.W., McGee, A., Lovibond, R., Perincek, D. and Higgins, R.
    1995. Western Otway Crayfish Group troughs. The APPEA Journal, 35, 385–404, https://doi.org/10.1071/AJ94025
    [Google Scholar]
  26. Dance, T.
    2013. Assessment and geological characterisation of the CO2CRC Otway Project CO2 storage demonstration site: From prefeasibility to injection. Marine and Petroleum Geology, 46, 251–269, https://doi.org/10.1016/j.marpetgeo.2013.06.008
    [Google Scholar]
  27. Danesh, A.
    1998. PVT and Phase Behaviour of Petroleum Reservoir Fluids. Elsevier, Amsterdam.
    [Google Scholar]
  28. Daniel, R.F. and Kaldi, J.G.
    2009. Evaluating seal capacity of cap rocks and intraformational barriers for CO2 containment. AAPG Studies in Geology , 59, 335–345, https://doi.org/10.1306/13171247St59227
    [Google Scholar]
  29. Duddy, I.R.
    1997. Focussing exploration in the Otway Basin: understanding timing of source rock maturation. The APPEA Journal, 37, 178–191, https://doi.org/10.1071/AJ96010
    [Google Scholar]
  30. Espinoza, D.N. and Santamarina, J.C.
    2010. Water–CO2–mineral systems: Interfacial tension, contact angle, and diffusion – Implications to CO2 geological storage. Water Resources Research, 46, W07537, https://doi.org/10.1029/2009WR008634
    [Google Scholar]
  31. Farokhpoor, R., Bjørkvik, B.J.A., Lindeberg, E. and Torsæter, O.
    2013. CO2 wettability behavior during CO2 sequestration in saline aquifer – An experimental study on minerals representing sandstone and carbonate. Energy Procedia, 37, 5339–5351, https://doi.org/10.1016/j.egypro.2013.06.452
    [Google Scholar]
  32. Faulkner, D.R., Jackson, C.A.L., Lunn, R.J., Schlische, R.W., Shipton, Z.K., Wibberley, C.A.J. and Withjack, M.O.
    2010. A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. Journal of Structural Geology, 32, 1557–1575, https://doi.org/10.1016/j.jsg.2010.06.009
    [Google Scholar]
  33. Fisher, Q.J. and Knipe, R.J.
    1998. Fault sealing processes in siliciclastic sediments. Geological Society, London, Special Publications, 147, 117–134, https://doi.org/10.1144/GSL.SP.1998.147.01.08
    [Google Scholar]
  34. Flock, D.L., Le, T.H. and Gibeau, J.P.
    1986. The effect of temperature on the interfacial tension of heavy crude oils using the pendent drop apparatus. Journal of Canadian Petroleum Technology, 3, 72–77, https://doi.org/10.2118/86-02-06
    [Google Scholar]
  35. Fulljames, J.R., Zijerveld, L.J.J., Franssen, R., Møller-Pedersen, P. and Koestler, A.G.
    1997. Fault seal processes: systematic analysis of fault seals over geological and production time scales. Norwegian Petroleum Society Special Publications, 7, 51–59, https://doi.org/10.1016/S0928-8937(97)80006-9
    [Google Scholar]
  36. Garing, C. and Benson, S.M.
    2019. CO2 wettability of sandstones: Addressing conflicting capillary behaviors. Geophysical Research Letters, 46, 776–782, https://doi.org/10.1029/2018GL081359
    [Google Scholar]
  37. Georgiadis, A., Maitland, G., Trusler, J.P.M. and Bismarck, A.
    2010. Interfacial tension measurements of the (H2O  +  CO2) system at elevated pressures and temperatures. Journal of Chemical & Engineering Data, 55, 4168–4175, https://doi.org/10.1021/je100198g
    [Google Scholar]
  38. Ghorbani, M. and Mohammadi, A.H.
    2017. Effects of temperature, pressure and fluid composition on hydrocarbon gas–oil interfacial tension (IFT): An experimental study using ADSA image analysis of pendant drop test method. Journal of Molecular Liquids, 227, 318–323, https://doi.org/10.1016/j.molliq.2016.11.110
    [Google Scholar]
  39. Gibson, R.G.
    1998. Physical character and fluid-flow properties of sandstone-derived fault zones. Geological Society, London, Special Publications, 127, 83–97, https://doi.org/10.1144/GSL.SP.1998.127.01.07
    [Google Scholar]
  40. Gluyas, J.G. and Hichens, H.M.
    (eds). 2003. United Kingdom Oil and Gas Fields: Commemorative Millennium Volume. Geological Society, London, Memoirs, 20, https://doi.org/10.1144/GSL.MEM.2003.020.01.01
    [Google Scholar]
  41. Guariguata-Rojas, G.J. and Underhill, J.R.
    2017. Implications of Early Cenozoic uplift and fault reactivation for carbon storage in the Moray Firth. Interpretation, 5, SS1–SS21, https://doi.org/10.1190/int-2017-0009.1
    [Google Scholar]
  42. Hassan, M.E., Nielsen, R.F. and Calhoun, J.C.
    1953. Effect of pressure and temperature on oil–water interfacial tensions for a series of hydrocarbons. Journal of Petroleum Technology, 5, 299–306, https://doi.org/10.2118/298-G
    [Google Scholar]
  43. Higgs, K.E., Haese, R.R., Golding, S.D., Schacht, U. and Watson, M.N.
    2015. The Pretty Hill Formation as a natural analogue for CO2 storage: An investigation of mineralogical and isotopic changes associated with sandstones exposed to low, intermediate and high CO2 concentrations over geological time. Chemical Geology, 399, 36–64, https://doi.org/10.1016/j.chemgeo.2014.10.019
    [Google Scholar]
  44. Hough, E.W., Rzasa, M.J. and Wood, B.B.
    1951. Interfacial tensions at reservoir pressures and temperatures; apparatus and the water–methane system. Journal of Petroleum Technology, AIME, 2, 57–60. https://doi.org/10.2118/951057-G
    [Google Scholar]
  45. Iglauer, S.
    2018. Optimum storage depths for structural CO2 trapping. International Journal of Greenhouse Gas Control, 77, 82–87, https://doi.org/10.1016/j.ijggc.2018.07.009
    [Google Scholar]
  46. Iglauer, S., Pentland, C.H. and Busch, A.
    2015. CO2 wettability of seal and reservoir rocks and the implications for carbon geo-sequestration. Water Resources Research, 51, 729–774, https://doi.org/10.1002/2014WR015553
    [Google Scholar]
  47. Jung, J.-W. and Wan, J.
    2012. Supercritical CO2 and ionic strength effects on wettability of silica surfaces: equilibrium contact angle measurements. Energy & Fuels, 26, 6053–6059, https://doi.org/10.1021/ef300913t
    [Google Scholar]
  48. Kalantari Meybodi, M., Daryasafar, A. and Karimi, M.
    2016. Determination of hydrocarbon–water interfacial tension using a new empirical correlation. Fluid Phase Equilibria, 415, 42–50, https://doi.org/10.1016/j.fluid.2016.01.037
    [Google Scholar]
  49. Karolytė, R.
    2018. The Migration and Retention of CO2 and Methane in the Otway Basin and South-east Australia: An Integrated Geochemical and Structural Analysis. PhD thesis, University of Edinburgh, Edinburgh, UK.
    [Google Scholar]
  50. Karolytė, R., Johnson, G., Györe, D., Serno, S., Flude, S., Stuart, F.M., Chivas, A.R., Boyce, A. and Gilfillan, S.M.V.
    2019. Tracing the migration of mantle CO2 in gas fields and mineral water springs in south-east Australia using noble gas and stable isotopes. Geochimica et Cosmochimica Acta, 259, 109–128, https://doi.org/10.1016/j.gca.2019.06.002
    [Google Scholar]
  51. Kashefi, K.
    2012. Measurement and Modelling of Interfacial Tension and Viscosity of Reservoir Fluids. Doctoral thesis, Heriot-Watt University, Edinburgh, UK.
    [Google Scholar]
  52. Knipe, R.J.
    1997. Juxtaposition and seal diagrams to help analyze fault seals in hydrocarbon reservoirs. AAPG Bulletin, 81, 187–195.
    [Google Scholar]
  53. Lehner, F.K. and Pilaar, W.F.
    1997. The emplacement of clay smears in synsedimentary normal faults: inferences from field observations near Frechen, Germany. Norwegian Petroleum Society Special Publications, 7, 39–50, https://doi.org/10.1016/S0928-8937(97)80005-7
    [Google Scholar]
  54. Lindsay, N.G., Murphy, F.C., Walsh, J.J., Watterson, J., Flint, S. and Bryant, I.D.
    1993. Outcrop studies of shale smears on fault surfaces. International Association of Sedimentologists Special Publications , 15, 113–123.
    [Google Scholar]
  55. Lisk, M.
    2004. Constraints on the oil prospectivity of the Penola Trough, onshore Otway Basin. In: Boult, P.J., Johns, D.R. and Lang, S.C. (eds) PESA's Eastern Australasian Basin Symposium II: Conference Proceedings. Petroleum Exploration Society of Australia (PESA), Perth, WA, Australia, 629–641.
    [Google Scholar]
  56. Little, B.M. and Phillips, S.E.
    1995. Detrital and authigenic mineralogy of the Pretty Hill Formation in the Penola Trough, Otway Basin: implications for future exploration and production. The APPEA Journal, 35, 538–557, https://doi.org/10.1071/AJ94034
    [Google Scholar]
  57. Liu, Y., Li, H.A. and Okuno, R.
    2016. Measurements and modeling of interfacial tension for CO2/CH4/brine systems under reservoir conditions. Industrial & Engineering Chemistry Research, 55, 12358–12375, https://doi.org/10.1021/acs.iecr.6b02446
    [Google Scholar]
  58. Lovibond, R., Suttill, R.J., Skinner, J.E. and Aburas, A.N.
    1995. The hydrocarbon potential of the Penola Trough, Otway Basin. The APPEA Journal, 35, 358–371, https://doi.org/10.1071/AJ94023
    [Google Scholar]
  59. Lyon, P.J., Boult, P.J., Mitchell, A. and Hillis, R.R.
    2004. Improving fault geometry interpretation through ‘pseudo-depth’ conversion of seismic data in the Penola Trough, Otway Basin. In: Boult, P.J., Johns, D.R. and Lang, S.C. (eds) PESA's Eastern Australasian Basin Symposium II: Conference Proceedings. Petroleum Exploration Society of Australia (PESA), Perth, WA, Australia, 19–22.
    [Google Scholar]
  60. Lyon, P.J., Boult, P.J., Hillis, R.R. and Mildren, S.D.
    2005a. Sealing by shale gouge and subsequent seal breach by reactivation: A case study of the Zema Prospect, Otway Basin. AAPG Hedberg Series , 2, 179–197, https://doi.org/10.1306/1060764H23169
    [Google Scholar]
  61. Lyon, P.J., Boult, P.J., Watson, M.N. and Hillis, R.
    2005b. A systematic fault seal evaluation of the Ladbroke Grove and Pyrus traps of the Penold Trough, Otway Basin. The APPEA Journal, 45, 459–476, https://doi.org/10.1071/AJ04036
    [Google Scholar]
  62. Lyon, P.J., Boult, P.J., Hillis, R.R. and Bierbrauer, K.
    2007. Basement controls on fault development in the Penola Trough, Otway Basin, and implications for fault-bounded hydrocarbon traps. Australian Journal of Earth Sciences, 54, 675–689, https://doi.org/10.1080/08120090701305228
    [Google Scholar]
  63. Miocic, J.M., Gilfillan, S.M.V., Roberts, J.J., Edlmann, K., McDermott, C.I. and Haszeldine, R.S.
    2016. Controls on CO2 storage security in natural reservoirs and implications for CO2 storage site selection. International Journal of Greenhouse Gas Control, 51, 118–125, https://doi.org/10.1016/j.ijggc.2016.05.019
    [Google Scholar]
  64. Miocic, J.M., Johnson, G. and Bond, C.E.
    2019. Uncertainty in fault seal parameters: implications for CO2 column height retention and storage capacity in geological CO2 storage projects. Solid Earth, 10, 951–967, https://doi.org/10.5194/se-10-951-2019
    [Google Scholar]
  65. Najafi-Marghmaleki, A., Tatar, A., Barati-Harooni, A., Mohebbi, A., Kalantari-Meybodi, M. and Mohammadi, A.H.
    2016. On the prediction of interfacial tension (IFT) for water–hydrocarbon gas system. Journal of Molecular Liquids, 224, 976–990, https://doi.org/10.1016/j.molliq.2016.10.083
    [Google Scholar]
  66. Naylor, M., Wilkinson, M. and Haszeldine, R.S.
    2010. Calculation of CO2 column heights in depleted gas fields from known pre-production gas column heights. Marine and Petroleum Geology, 28, 1083–1093, https://doi.org/10.1016/j.marpetgeo.2010.10.005
    [Google Scholar]
  67. Nordgard Bolas, H.M., Hermanrud, C. and Teige, G.M.G.
    2005. Seal capacity estimation from subsurface pore pressures. Basin Research, 17, 583–599, https://doi.org/10.1111/j.1365-2117.2005.00281.x
    [Google Scholar]
  68. Øren, P.-E. and Bakke, S.
    2003. Reconstruction of Berea sandstone and pore-scale modelling of wettability effects. Journal of Petroleum Science and Engineering, 39, 177–199, https://doi.org/10.1016/S0920-4105(03)00062-7
    [Google Scholar]
  69. Pei, Y., Paton, D.A., Knipe, R.J. and Wu, K.
    2015. A review of fault sealing behaviour and its evaluation in siliciclastic rocks. Earth-Science Reviews, 150, 121–138, https://doi.org/10.1016/j.earscirev.2015.07.011
    [Google Scholar]
  70. Peng, D.-Y. and Robinson, D.B.
    1976. A new two-constant equation of state. Industrial & Engineering Chemistry Fundamentals, 15, 59–64, https://doi.org/10.1021/i160057a011
    [Google Scholar]
  71. Radke, C.J., Kovscek, A.R. and Wong, H.
    1992. A pore-level scenario for the development of mixed wettability in oil reservoirs. Paper SPE-24880 presented at theSPE Annual Technical Conference and Exhibition, 4–7 October 1992, Washington, DC, USA, https://doi.org/10.2118/24880-MS
    [Google Scholar]
  72. Rajayi, M. and Kantzas, A.
    2011. Effect of temperature and pressure on contact angle and interfacial tension of quartz/water/bitumen systems. Journal of Canadian Petroleum Technology, 50, 61–67, https://doi.org/10.2118/148631-PA
    [Google Scholar]
  73. Ren, Q.Y., Chen, G.J., Yan, W. and Guo, T.M.
    2000. Interfacial tension of (CO2   +  CH4)  +  water from 298K to 373K and pressures up to 30MPa. Journal of Chemical & Engineering Data, 45, 610–612, https://doi.org/10.1021/je990301s
    [Google Scholar]
  74. Rimstidt, J.D. and Barnes, H.L.
    1980. The kinetics of silica–water reactions. Geochimica et Cosmochimica Acta, 44, 1683–1699, https://doi.org/10.1016/0016-7037(80)90220-3
    [Google Scholar]
  75. Schowalter, T.T.
    1974. Mechanics of secondary hydrocarbon migration and entrapment, AAPG Bulletin, 63, 723–760, https://doi.org/10.1306/2F9182CA-16CE-11D7-8645000102C1865D
    [Google Scholar]
  76. Shipton, Z.K. and Cowie, P.A.
    2001. Damage zone and slip-surface evolution over μm to km scales in high-porosity Navajo sandstone, Utah. Journal of Structural Geology, 23, 1825–1844, https://doi.org/10.1016/S0191-8141(01)00035-9
    [Google Scholar]
  77. Shipton, Z.K., Evans, J.P., Robeson, K.R., Forster, C.B. and Snelgrove, S.
    2002. Structural heterogeneity and permeability in faulted eolian sandstone: Implications for subsurface modeling of faults. AAPG Bulletin, 86, 863–883, https://doi.org/10.1306/61EEDBC0-173E-11D7-8645000102C1865D
    [Google Scholar]
  78. Singh, K., Bijeljic, B. and Blunt, M.J.
    2016. Imaging of oil layers, curvature and contact angle in a mixed-wet and a water-wet carbonate rock. Water Resources Research, 52, 1716–1728, https://doi.org/10.1002/2015WR018072
    [Google Scholar]
  79. Sneider, R.M., Sneider, J.S., Bolger, G.W. and Neasham, J.W.
    1997. Comparison of seal capacity determinations: Conventional cores vs. cuttings. AAPG Memoirs , 67, 1–12.
    [Google Scholar]
  80. Sperrevik, S., Gillespie, P.A., Fisher, Q.J., Halvorsen, T. and Knipe, R.J.
    2002. Empirical estimation of fault rock properties. Norwegian Petroleum Society Special Publications , 11, 109–125. https://doi.org/10.1016/S0928-8937(02)80010-8
    [Google Scholar]
  81. Sutjiadi-Sia, Y., Jaeger, P. and Eggers, R.
    2008. Interfacial phenomena of aqueous systems in dense carbon dioxide. The Journal of Supercritical Fluids, 46, 272–279, https://doi.org/10.1016/j.supflu.2008.06.001
    [Google Scholar]
  82. Sutton, R.P.
    2006. Oil system correlations. In: Fanchi, J.R. (ed.) Petroleum Engineering Handbook, Volume 1: General Engineering. Society of Petroleum Engineers, Richardson, TX, 258–306.
    [Google Scholar]
  83. Tassone, D.R., Holford, S.P., Duddy, I.R., Green, P.F. and Hillis, R.R.
    2014. Quantifying Cretaceous–Cenozoic exhumation in the Otway Basin, southeastern Australia, using sonic transit time data: Implications for conventional and unconventional hydrocarbon prospectivity. AAPG Bulletin, 98, 67–117, https://doi.org/10.1306/04011312111.
    [Google Scholar]
  84. Teasdale, J.P., Pryer, L.L., Stuart-Smith, P.G., Romine, K.K., Etheridge, M.A., Loutit, T.S. and Kyan, D.M.
    2003. Structural framework and basin evolution of Australia's southern margin. The APPEA Journal, 43, 13–37, https://doi.org/10.1071/AJ02001
    [Google Scholar]
  85. Tenthorey, E., Dance, T., Cinar, Y., Ennis-King, J. and Strand, J.
    2014. Fault modelling and geomechanical integrity associated with the CO2CRC Otway 2C injection experiment. International Journal of Greenhouse Gas Control, 30, 72–85, https://doi.org/10.1016/j.ijggc.2014.08.021
    [Google Scholar]
  86. Tian, Y.-L., Xiao., Y.-F. et al.
    1997. Interfacial tensions between water and non-polar fluids at high pressures and high temperatures. Acta Physico-Chimica Sinica, 13, 89–95. https://doi.org/10.3866/PKU.WHXB19970120
    [Google Scholar]
  87. Treiber, L.E. and Owens, W.W.
    1972. A laboratory evaluation of the wettability of fifty oil-producing reservoirs. Society of Petroleum Engineers Journal, 12, 531–540, https://doi.org/10.2118/3526-PA
    [Google Scholar]
  88. Vavra, C.L., Kaldi, J.G. and Sneider, R.M.
    1992. Geological applications of capillary pressure: a review (1). AAPG Bulletin, 76, 840–850.
    [Google Scholar]
  89. Watson, M.N., Zwingmann, N., Lemon, N.M. and Tingate, P.R.
    2003. Onshore Otway Basin carbon dioxide accumulations: CO2-induced diagenesis in natural analogues for underground storage of greenhouse gas. The APPEA Journal, 43, 637–653, https://doi.org/10.1071/AJ02036
    [Google Scholar]
  90. Watson, M.N., Boreham, C.J. and Tingate, P.R.
    2004. Carbon dioxide and carbonate cements in the Otway Basin; implications for geological storage of carbon dioxide. The APPEA Journal, 44, 703–720, https://doi.org/10.1071/AJ03035
    [Google Scholar]
  91. Watts, N.L.
    1987. Theoretical aspects of cap-rock and fault seals for single- and two-phase hydrocarbon columns. Marine and Petroleum Geology, 4, 274–307, https://doi.org/10.1016/0264-8172(87)90008-0
    [Google Scholar]
  92. Wiegand, G. and Franck, E.U.
    1994. Interfacial tension between water and non-polar fluids up to 473  K and 2800  bar. Berichte der Bunsengesellschaft für physikalische Chemie, 98, 809–817, https://doi.org/10.1002/bbpc.19940980608
    [Google Scholar]
  93. Worden, R.H. and Morad, S.
    2000. Economic evaluation of a petroleum accumulation demands a quartz cementation in oil field sandstones: a review of the key controversies. International Association of Sedimentologists Special Publications , 29, 1–20, https://doi.org/10.1002/9781444304237.ch1
    [Google Scholar]
  94. Yielding, G.
    2002. Shale Gouge Ratio – calibration by geohistory. Norwegian Petroleum Society Special Publications , 11, 1–15. https://doi.org/10.1016/S0928-8937(02)80003-0
    [Google Scholar]
  95. Yielding, G. and Freeman, B.
    2016. 3-D Seismic-Structural Workflows - Examples Using the Hat Creek Fault System, in: 3-D Structural Interpretation. American Association of Petroleum Geologists, 155–171, https://doi.org/10.1306/13561991M1111540
    [Google Scholar]
  96. Yielding, G., Freeman, B. and Needham, D.T.
    1997. Quantitative fault seal prediction. AAPG Bulletin, 81, 897–917.
    [Google Scholar]
  97. Yielding, G., Bretan, P. and Freeman, B.
    2010. Fault seal calibration: a brief review. Geological Society, London, Special Publications , 347, 243–255, https://doi.org/10.1144/SP347.14
    [Google Scholar]
  98. Yielding, G., Lykakis, N. and Underhill, J.R.
    2011. The role of stratigraphic juxtaposition for seal integrity in proven CO2 fault-bound traps of the Southern North Sea. Petroleum Geoscience , 17, 193–203, https://doi.org/10.1144/1354-0793/10-026
    [Google Scholar]
  99. Ziesch, J., Aruffo, C.M. et al.
    2015. Geological structure and kinematics of normal faults in the Otway Basin, Australia, based on quantitative analysis of 3-D seismic reflection data. Basin Research, 29, 129–148, https://doi.org/10.1111/bre.12146
    [Google Scholar]
  100. 2017. Geological structure and kinematics of normal faults in the Otway Basin, Australia, based on quantitative analysis of 3-D seismic reflection data. Basin Research, 29, 129–148, https://doi.org/10.1111/bre.12146
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1144/petgeo2019-126
Loading
/content/journals/10.1144/petgeo2019-126
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error