1887
Volume 27, Issue 2
  • ISSN: 1354-0793
  • E-ISSN:
PDF

Abstract

In order to calibrate equations for fault seal capacities to a specific basin, faults were analysed using core material from several Neogene hydrocarbon fields in the Vienna Basin, Austria. All studied specimens are siliciclastic rocks that were sampled from a depth interval of <2000 m, and share a similar depth at time of faulting, diagenetic conditions and maximum burial depth. Laboratory results showed a permeability reduction in all fault rocks compared to the host rocks. Both the highest and the lowest fault seal capacities were observed in the same fault rock type with a low phyllosilicate and clay content, and classifying as cataclastic deformation bands. Investigating the strong permeability variations within these fault rocks, microscopic analyses revealed that the fault seal potential is strongly linked to the detrital dolomite content in the host rock. Grain-size reduction processes occur preferably in the dolomite grains, accompanied by cementation. Our study suggests that – in addition to using standard fault seal analysis algorithms – accounting for host rock composition and grain-size reduction therein might help to further constrain fault seal behaviour in shallow depths. Fault seal mechanisms need to be understood on field, formation and micro scales before drawing conclusions for a full basin calibration.

This article is part of the Fault and top seals collection available at: https://www.lyellcollection.org/cc/fault-and-top-seals-2019

[open-access]

Loading

Article metrics loading...

/content/journals/10.1144/petgeo2020-014
2020-10-19
2021-07-29
Loading full text...

Full text loading...

/deliver/fulltext/pg/27/2/petgeo2020-014.html?itemId=/content/journals/10.1144/petgeo2020-014&mimeType=html&fmt=ahah

References

  1. Allan, U.S.
    1989. Model for hydrocarbon migration and entrapment within faulted structures. AAPG Bulletin, 73, 803–811. https://doi.org/10.1306/44B4A271-170A-11D7-8645000102C1865D.
    [Google Scholar]
  2. Antonellini, M.A., Aydin, A. and Orr, L.
    1999. Outcrop aided characterization of a faulted hydrocarbon reservoir: Arroyo Grande oil field, California, USA. American Geophysical Union Geophysical Monograph Series , 113, 7–26.
    [Google Scholar]
  3. Arzmüller, G., Buchta, S., Ralbovsky, E. and Wessely, G.
    2006. The Vienna basin. AAPG Memoirs , 84, 191–204.
    [Google Scholar]
  4. Austin, N.J. and Kennedy, L.
    2005. Textural controls on the brittle deformation of dolomite: Variations in peak strength. Geological Society, London, Special Publications , 243, 37–49, https://doi.org/10.1144/GSL.SP.2005.243.01.05
    [Google Scholar]
  5. Ballas, G., Fossen, H. and Soliva, R.
    2015. Factors controlling permeability of cataclastic deformation bands and faults in porous sandstone reservoirs. Journal of Structural Geology, 76, 1–21, https://doi.org/10.1016/j.jsg.2015.03.013
    [Google Scholar]
  6. Barber, D.J., Heard, H.C. and Wenk, H.R.
    1981. Deformation of dolomite single crystals from 20–800°C. Physics and Chemistry of Minerals, 7, 271–286, https://doi.org/10.1007/BF00311980
    [Google Scholar]
  7. Bauer, H., Schröckenfuchs, T.C. and Decker, K.
    2016. Hydrogeological properties of fault zones in a karstified carbonate aquifer (Northern Calcareous Alps, Austria). Hydrogeology Journal, 24, 1147–1170, https://doi.org/10.1007/s10040-016-1388-9
    [Google Scholar]
  8. Beke, B., Fodor, L., Millar, L. and Petrik, A.
    2019. Deformation band formation as a function of progressive burial: Depth calibration and mechanism change in the Pannonian Basin (Hungary). Marine and Petroleum Geology, 105, 1–16, https://doi.org/10.1016/j.marpetgeo.2019.04.006
    [Google Scholar]
  9. Bouvier, J.D., Kaars-Sijpesteijn, C.H., Kluesner, D.F., Onyejekwe, C.C. and van der Pal, R.C.
    1989. Three-dimensional seismic interpretation and fault sealing investigations, Nun River Field, Nigeria. AAPG Bulletin, 73, 1397–1414, https://doi.org/10.1306/44B4AA5A-170A-11D7-8645000102C1865D.
    [Google Scholar]
  10. Bretan, P.
    2017. Trap Analysis: an automated approach for deriving column height predictions in fault-bounded traps. Petroleum Geoscience, 23, 56–69, https://doi.org/10.1144/10.44petgeo2016-022
    [Google Scholar]
  11. Bretan, P., Yielding, G. and Jones, H.
    2003. Using calibrated shale gouge ratio to estimate hydrocarbon column heights. AAPG Bulletin, 87, 397–413, https://doi.org/10.1306/08010201128
    [Google Scholar]
  12. Brix, F. and Schultz, O.
    (eds) 1993. Erdöl und Erdgas in Österreich, 2. Auflage, Verlag Naturhistorisches Museum Wien and F. Berger Horn, Vienna, 688 pp.
  13. Childs, C., Walsh, J.J. et al.
    2007. Definition of a fault permeability predictor from outcrop studies of a faulted turbidite sequence, Taranaki, New Zealand. Geological Society, London, Special Publications , 292, 235–258, https://doi.org/10.1144/SP292.14
    [Google Scholar]
  14. Crawford, B.R., Myers, R.D., Woronow, A., Faulkner, D.R. and Rutter, E.H.
    2002. Porosity–permeability relationships in clay-bearing fault gouge. Paper SPE-78214 presented at theSPE/ISRM Rock Mechanics Conference, 20–23 October 2002, Irving, Texas, USA, https://doi.org/10.2118/78214-MS
    [Google Scholar]
  15. Decker, K.
    1996. Miocene tectonics at the Alpine–Carpathian junction and the evolution of the Vienna Basin. Mitteilungen der Gesellschaft der Geologie- und Bergbaustudenten der Österreichischen, 41, 33–44.
    [Google Scholar]
  16. Decker, K., Peresson, H. and Hinsch, R.
    2005. Active tectonics and Quaternary basin formation along the Vienna Basin Transform fault. Quaternary Science Reviews, 24, 307–322, https://doi.org/10.1016/j.quascirev.2004.04.012
    [Google Scholar]
  17. Dickson, J.A.D.
    1965. A modified staining technique for carbonates in thin-section. Nature, 205, 587, https://doi.org/10.1038/205587a0
    [Google Scholar]
  18. Eichhubl, P., D'Onfro, P., Aydin, A., Waters, J. and McCarty, D.
    2005. Structure, petrophysics, and diagenesis of shale entrained along a normal fault at Black Diamond Mines, California – Implications for fault seal. AAPG Bulletin, 89, 1113–1137, https://doi.org/10.1306/04220504099
    [Google Scholar]
  19. Exner, U. and Tschegg, C.
    2012. Preferential cataclastic grain size reduction of feldspar in deformation bands in poorly consolidated arkosic sands. Journal of Structural Geology, 43, 63–72, https://doi.org/10.1016/j.jsg.2012.08.005
    [Google Scholar]
  20. Exner, U., Kaiser, J. and Gier, S.
    2013. Deformation bands evolving from dilation to cementation bands in a hydrocarbon reservoir (Vienna Basin, Austria). Marine and Petroleum Geology, 43, 504–515, https://doi.org/10.1016/j.marpetgeo.2012.10.001
    [Google Scholar]
  21. Fisher, Q.J. and Knipe, R.J.
    1998. Fault sealing processes in siliciclastic sediments. Geological Society, London, Special Publications , 147, 117–134, https://doi.org/10.1144/GSL.SP.1998.147.01.08
    [Google Scholar]
  22. Fossen, H. and Bale, A.
    2007. Deformation bands and their influence on fluid flow. AAPG Bulletin, 91, 1685–1700, https://doi.org/10.1306/07300706146
    [Google Scholar]
  23. Fossen, H., Soliva, R., Ballas, G., Trzaskos, B., Cavalcante, C. and Schultz, R.A.
    2017. A review of deformation bands in reservoir sandstones: geometries, mechanisms and distribution. Geological Society, London, Special Publications , 459, 9–33, https://doi.org/10.1144/SP459.4
    [Google Scholar]
  24. Francu, J., Radke, M., Schaefer, R.G., Poelchau, H.S., Caslavsky, J. and Bohacek, Z.
    1996. Oil–oil and oil–source rock correlations in the northern Vienna basin and adjacent Carpathian Flysch zone (Czech and Slovak area). EAGE Special Publications , 5, 343–353.
    [Google Scholar]
  25. Freeman, B., Yielding, G., Needham, D.T. and Badley, M.E.
    1998. Fault seal prediction: the gouge ratio method. Geological Society, London, Special Publications , 127, 19–25, https://doi.org/10.1144/GSL.SP.1998.127.01.03
    [Google Scholar]
  26. Fristad, T., Groth, A., Yielding, G. and Freeman, B.
    1997. Quantitative fault seal prediction: a case study from Oseberg Syd. In: Møller-Pedersen, P. and Koestler, A.G. (eds) Hydrocarbon Seals: Importance for Exploration and Production. Norwegian Petroleum Society, Trondheim, Norway, 107–124.
    [Google Scholar]
  27. Fuchs, R. and Hamilton, W.
    2006. New depositional architecture for an old giant: The Matzen Field, Austria. AAPG Memoirs, 84, 205–219, https://doi.org/10.1306/985609M843069
    [Google Scholar]
  28. Gier, S., Worden, R., Johns, W. and Kurzweil, H.
    2008. Diagenesis and reservoir quality of Miocene sandstones in the Vienna Basin, Austria. Marine and Petroleum Geology, 25, 681–695, https://doi.org/10.1016/j.marpetgeo.2008.06.001
    [Google Scholar]
  29. Griffiths, J., Faulkner, D.R., Edwards, A.P. and Worden, R.H.
    2016. Deformation band development as a function of intrinsic host-rock properties in Triassic Sherwood Sandstone. Geological Society London Special Publications, 435, 161–176, https://doi.org/10.1144/SP435.11
    [Google Scholar]
  30. Harzhauser, M., Grunert, P. et al.
    2018. Middle and late Badenian palaeoenvironments in the northern Vienna Basin and their potential link to the Badenian Salinity Crisis. Geologica Carpathica, 69, 149–168, https://doi.org/10.1515/geoca-2018-0009
    [Google Scholar]
  31. Hatzor, Y.H., Zur, A. and Mimran, Y.
    1997. Microstructure effects on microcracking and brittle failure of dolomites. Tectonophysics, 281, 141–161, https://doi.org/10.1016/S0040-1951(97)00073-5
    [Google Scholar]
  32. Hinsch, R., Decker, K. and Peresson, H.
    2005. 3-D seismic interpretation and structural modeling in the Vienna Basin: implications for Miocene to recent kinematics. Austrian Journal of Earth Sciences, 97, 38–50.
    [Google Scholar]
  33. Jiřiček, R. and Seifert, P.
    1990. Paleogeography of the Neogene in the Vienna basin and the adjacent part of the foredeep. In: Minaříková, D. and Lobitzer, H. (eds) Thirty Years of Geological Cooperation Between Austria and Czechoslovakia. Geological Survey, Prague, 89–105.
    [Google Scholar]
  34. Kimberley, J., Ramesh, K.T. and Barnouin, O.S.
    2010. Visualization of the failure of quartz under quasi-static and dynamic compression. Journal of Geophysical Research: Solid Earth, 115, B08207, https://doi.org/10.1029/2009JB007006
    [Google Scholar]
  35. Knipe, R.J.
    1992. Faulting processes and fault seal. Norwegian Petroleum Society (NPF) Special Publications, 1, 325–342.
    [Google Scholar]
  36. 1997. Juxtaposition and seal diagrams to help analyze fault seals in hydrocarbon reservoirs. AAPG Bulletin, 81, 187–195, https://doi.org/10.1306/522B42DF-1727-11D7-8645000102C1865D.
    [Google Scholar]
  37. Ladwein, H.W.
    1988. Organic geochemistry of Vienna Basin: Model for hydrocarbon generation in overthrust belts. AAPG Bulletin, 72, 586–599.
    [Google Scholar]
  38. Lee, E.Y. and Wagreich, M.
    2017. Polyphase tectonic subsidence evolution of the Vienna Basin inferred from quantitative subsidence analysis of the northern and central parts. International Journal of Earth Sciences (Geologische Rundschau), 106, 687–705, https://doi.org/10.1007/s00531-016-1329-9
    [Google Scholar]
  39. Lewis, H. and Couples, G.D.
    1993. Production evidence for geological heterogeneities in the Anschutz Ranch East Field, western USA. Geological Society, London, Special Publications , 73, 321–338, https://doi.org/10.1144/GSL.SP.1993.073.01.19
    [Google Scholar]
  40. Lindsay, N.G., Walsh, J.J., Watterson, J. and Murphy, F.C.
    1993. Outcrop studies of shale smears on fault surfaces. In: Flint, S.S. and Bryant, I.D. (eds) The Geological Modelling of Hydrocarbon Reservoirs and Outcrop Analogues. Blackwell Scientific, Oxford, UK, 113–123.
    [Google Scholar]
  41. Linzer, H.-G., Decker, K., Peresson, H., Dell'Mour, R. and Frisch, W.
    2002. Balancing lateral orogenic float of the Eastern Alps. Tectonophysics, 354, 211–237, https://doi.org/10.1016/S0040-1951(02)00337-2
    [Google Scholar]
  42. Main, I., Mair, K., Kwon, O., Elphick, S. and Ngwenya, B.
    2001. Experimental constraints on the mechanical and hydraulic properties of deformation bands in porous sandstones; a review. Geological Society, London, Special Publications , 186, 43–63, https://doi.org/10.1144/GSL.SP.2001.186.01.04
    [Google Scholar]
  43. Manzocchi, T., Walsh, J.J., Nell, P. and Yielding, G.
    1999. Fault transmissibility multipliers for flow simulation models. Petroleum Geoscience, 5, 53–63, https://doi.org/10.1144/petgeo.5.1.53
    [Google Scholar]
  44. Ogilvie, S.R. and Glover, P.W.J.
    2001. The petrophysical properties of deformation bands in relation to their microstructure. Earth and Planetary Science Letters, 193, 129–142, https://doi.org/10.1016/S0012-821X(01)00492-7
    [Google Scholar]
  45. Ogilvie, S.R., Dee, S.J., Wilson, R.W. and Bailey, W.R.
    2020. Integrated fault seal analysis: an introduction. Geological Society, London, Special Publications , 496, 1–8, https://doi.org/10.1144/SP496-2020-51
    [Google Scholar]
  46. Palchik, V.
    2011. On the ratios between elastic modulus and uniaxial compressive strength of heterogeneous carbonate rocks. Rock Mechanics and Rock Engineering, 44, 121–128, https://doi.org/10.1007/s00603-010-0112-7
    [Google Scholar]
  47. Passchier, C.W. and Trouw, R.A.J.
    2005. Microtectonics. 2nd edn. Springer, Berlin, https://doi.org/10.1007/978-3-662-08734-3
    [Google Scholar]
  48. Peresson, H. and Decker, K.
    1997. Far-field effects of Late Miocene subduction in the Eastern Carpathians: E–W compression and inversion of structures in the Alpine–Carpathian–Pannonian region. Tectonics, 16, 38–56, https://doi.org/10.1029/96TC02730
    [Google Scholar]
  49. Pettijohn, F.J., Potter, P.E. and Siever, R.
    1973. Sand and Sandstones. Springer, New York, http://dx.doi.org/10.1007/978-1-4615-9974-6
    [Google Scholar]
  50. Pierce, M., Gaida, M. and DeGagne, D.
    2009. Estimation of rock block strength. In: Diederichs, M. and Grassell, G. (eds) RockEng09. Rock Engineering In Difficult Conditions: Proceedings of the 3rd Canada–US Rock Mechanical Symposium, May 2009, Toronto, Paper 4360.
    [Google Scholar]
  51. Poellitzer, S., Florian, T. and Clemens, T.
    2009. Revitalising a medium viscous oil field by polymer injection, Pirawarth Field, Austria. Paper SPE-120991 presented at theEUROPEC/EAGE Conference and Exhibition, 8–11 June, Amsterdam, The Netherlands, https://doi.org/10.2118/120991-MS
    [Google Scholar]
  52. Ratschbacher, L., Frisch, W., Linzer, H-G and Merle, O.
    1991. Lateral extrusion in the eastern Alps, Part 2: Structural analysis. Tectonics, 10, 257–271, https://doi.org/10.1029/90TC02623
    [Google Scholar]
  53. Royden, L.H.
    1985. The Vienna Basin: a thin-skinned pull-apart basin. SEPM Special Publications , 37, 319–338.
    [Google Scholar]
  54. Rupprecht, B.J., Sachsenhofer, R.F., Zach, C., Bechtel, A., Gratzer, R. and Kucher, F.
    2019. Oil and gas in the Vienna Basin: hydrocarbon generation and alteration in a classical hydrocarbon province. Petroleum Geoscience, 25, 3–29, https://doi.org/10.1144/petgeo2017-056
    [Google Scholar]
  55. Sauer, R., Seifert, P. and Wessely, G.
    1992. Guidebook to Excursions in the Vienna Basin and the Adjacent Alpine–Carpathian Thrustbelt in Austria. Mitteilugen der Österreichischen Geologischen Gesellschaft, 85.
    [Google Scholar]
  56. Schroeckenfuchs, G.
    1975. Hydrogeologie, geochemie und hydrodynamik der formationswässer des raumes Matzen–Schoenkirchen tief. Erdoel-Erdgas Zeitschrift, 91, 299–321.
    [Google Scholar]
  57. Schröckenfuchs, T., Bauer, H., Grasemann, B. and Decker, K.
    2015. Rock pulverization and localization of a strike-slip fault zone in dolomite rocks (Salzach–Ennstal–Mariazell–Puchberg fault, Austria). Journal of Structural Geology, 78, 67–85, https://doi.org/10.1016/j.jsg.2015.06.009
    [Google Scholar]
  58. Schultz, L.G.
    1964. Quantitative Interpretation of Mineralogical Composition from X-ray and Chemical Data for the Pierre Shale. United States Geological Survey Professional Papers, 391-C, https://doi.org/10.3133/pp391C
    [Google Scholar]
  59. Schumi, W. and Gager, H.
    2002. Optimisation of oil production in the mature oil field of Matzen. Paper WPC-32139 presented at the17th World Petroleum Congress, 1–5 September 2002, Rio de Janeiro, Brazil.
    [Google Scholar]
  60. Singh, V.K. and Singh, D.P.
    1993. Correlation between point load index and compressive strength for quartzite rocks. Geotechnical and Geological Engineering, 11, 269–272, https://doi.org/10.1007/BF00466369
    [Google Scholar]
  61. Soxhlet, F.
    1879. Die gewichtsanalytische Bestimmung des Milchfettes. Dinglers Polytechnisches Journal, 232, 461–465.
    [Google Scholar]
  62. Sperrevik, S., Gillespie, P.A., Fisher, Q.J., Knipe, R.J. and Halvorsen, T.
    2002. Empirical estimation of fault rock properties. In: Koestler, A.G. and Hunsdale, R. (eds) Hydrocarbon Seal Quantification. Norwegian Petroleum Society (NPF) Special Publications , 11, 109–125.
    [Google Scholar]
  63. Strauss, P., Harzhauser, M., Hinsch, R. and Wagreich, M.
    2006. Sequence stratigraphy in a classic pull-apart basin (Neogene, Vienna Basin). A 3D seismic based integrated approach. Geologica Carpathica, 57, 185–197.
    [Google Scholar]
  64. Torabi, A., Fossen, H. and Braathen, A.
    2013. Insight into petrophysical properties of deformed sandstone reservoirs. AAPG Bulletin, 97, 619–637, https://doi.org/10.1306/10031212040
    [Google Scholar]
  65. Tueckmantel, C., Fisher, Q.J., Grattoni, C.A. and Aplin, A.C.
    2012. Single-and two-phase fluid flow properties of cataclastic fault rocks in porous sandstone. Marine and Petroleum Geology, 29, 129–142, https://doi.org/10.1016/j.marpetgeo.2011.07.009
    [Google Scholar]
  66. van Ojik, K., Silvius, A., Kremer, Y. and Shipton, Z.K.
    2019. Fault seal behaviour in Permian Rotliegend reservoir sequences: case studies from the Dutch Southern North Sea. Geological Society, London, Special Publications , 496, 9–38, https://doi.org/10.1144/SP496-2018-189
    [Google Scholar]
  67. Vrolijk, P.J., Urai, J.L. and Kettermann, M.
    2016. Clay smear: Review of mechanisms and applications. Journal of Structural Geology, 86, 95–152, https://doi.org/10.1016/j.jsg.2015.09.006
    [Google Scholar]
  68. Weisenberger, T., Eichhubl, P., Laubach, S.E. and Fall, A.
    2019. Degradation of fracture porosity in sandstone by carbonate cement, Piceance Basin, Colorado, USA. Petroleum Geoscience, 25, 354–370, https://doi.org/10.1144/petgeo2018-162
    [Google Scholar]
  69. Yielding, G.
    2002. Shale Gouge Ratio – calibration by geohistory. Norwegian Petroleum Society (NPF) Special Publications , 11, 1–15, https://doi.org/10.1016/S0928-8937(02)80003-0
    [Google Scholar]
  70. Yielding, G., Freeman, B. and Needham, D.T.
    1997. Quantitative fault seal prediction. AAPG Bulletin, 81, 897–917.
    [Google Scholar]
  71. Yielding, G., Bretan, P. and Freeman, B.
    2010. Fault seal calibration: a brief review. Geological Society, London, Special Publications , 347, 243–255, https://doi.org/10.1144/SP347.14
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1144/petgeo2020-014
Loading
/content/journals/10.1144/petgeo2020-014
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error