1887
Volume 27, Issue 2
  • ISSN: 1354-0793
  • E-ISSN:

Abstract

A significant knowledge gap exists when analysing and predicting the hydraulic behaviour of faults within carbonate reservoirs. To improve this, a large database of carbonate fault rock properties has been collected from 42 exposed faults, from seven countries. Faults analysed cut a range of lithofacies, tectonic histories, burial depths and displacements. Porosity and permeability measurements from 400 samples have been made, with the goal of identifying key controls on the flow properties of fault rocks in carbonates. Intrinsic and extrinsic factors have been examined, such as host lithofacies, juxtaposition, host porosity and permeability, tectonic regime, displacement, and maximum burial depth, as well as the depth at the time of faulting. The results indicate which factors may have had the most significant influence on fault rock permeability, improving our ability to predict the sealing or baffle behaviour of faults in carbonate reservoirs. Intrinsic factors, such as host porosity, permeability and texture, appear to play the most important role in fault rock development. Extrinsic factors, such as displacement and kinematics, have shown lesser or, in some instances, a negligible control on fault rock development. This conclusion is, however, subject to two research limitations: lack of sufficient data from similar lithofacies at different displacements, and a low number of samples from thrust regimes.

This article is part of the Fault and top seals collection available at: https://www.lyellcollection.org/cc/fault-and-top-seals-2019

Loading

Article metrics loading...

/content/journals/10.1144/petgeo2020-034
2020-11-10
2021-07-29
Loading full text...

Full text loading...

References

  1. Abate, B., Incandela, A. and Renda, P.
    1997. Carta Geologica delle Isole di Favignana e Levanzo. Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Rome.
    [Google Scholar]
  2. Agosta, F.
    2008. Fluid flow properties of basin-bounding normal faults in platform carbonates, Fucino Basin, central Italy. Geological Society, London, Special Publications, 299, 277–291, https://doi.org/10.1144/SP299.17
    [Google Scholar]
  3. Agosta, F. and Kirschner, D.L.
    2003. Fluid conduits in carbonate-hosted seismogenic normal faults of central Italy. Journal of Geophysical Research: Solid Earth, 108, 2221, https://doi.org/10.1029/2002JB002013
    [Google Scholar]
  4. Agosta, F., Prasad, M. and Aydin, A.
    2007. Physical properties of carbonate fault rocks, fucino basin (Central Italy): implications for fault seal in platform carbonates. Geofluids, 7, 19–32, https://doi.org/10.1111/j.1468-8123.2006.00158.x
    [Google Scholar]
  5. Agosta, F., Alessandroni, M., Antonellini, M., Tondi, E. and Giorgioni, M.
    2010. From fractures to flow: A field-based quantitative analysis of an outcropping carbonate reservoir. Tectonophysics, 490, 197–213, https://doi.org/10.1016/j.tecto.2010.05.005
    [Google Scholar]
  6. Agosta, F., Wilson, C. and Aydin, A.
    2015. The role of mechanical stratigraphy on normal fault growth across a Cretaceous carbonate multi-layer, central Texas (USA). Italian Journal of Geosciences, 134, 423–441, https://doi.org/10.3301/IJG.2014.20
    [Google Scholar]
  7. Al-Anzi, E., Al-Mutawa, M. et al.
    2003. Positive reactions in carbonate reservoir stimulation. Oilfield Review, 15, 28–45.
    [Google Scholar]
  8. Al-Kindi, M.H. and Richard, P.D.
    2014. The main structural styles of the hydrocarbon reservoirs in Oman. Geological Society, London, Special Publications, 392, 409–445, https://doi.org/10.1144/SP392.20
    [Google Scholar]
  9. Alsharhan, A.S.
    1989. Petroleum geology of the United Arab Emirates. Journal of Petroleum Geology, 12, 253–288, https://doi.org/10.1111/j.1747-5457.1989.tb00197.x
    [Google Scholar]
  10. Ameen, M.S.
    1995. Fracture characterization in the Chalk and the evolution of the Thanet monocline, Kent, southern England. Geological Society, London, Special Publications, 92, 149–174, https://doi.org/10.1144/GSL.SP.1995.092.01.08
    [Google Scholar]
  11. Antonellini, M., Petracchini, L., Billi, A. and Scrocca, D.
    2014. First reported occurrence of deformation bands in a platform limestone, the Jurassic Calcare Massiccio Fm., northern Apennines, Italy. Tectonophysics, 628, 85–104, https://doi.org/10.1016/j.tecto.2014.04.034
    [Google Scholar]
  12. Bastesen, E. and Braathen, A.
    2010. Extensional faults in fine grained carbonates – analysis of fault core lithology and thickness–displacement relationships. Journal of Structural Geology, 32, 1609–1628, https://doi.org/10.1016/j.jsg.2010.09.008
    [Google Scholar]
  13. Bastesen, E., Braathen, A., Nøttveit, H., Gabrielsen, R.H. and Skar, T.
    2009. Extensional fault cores in micritic carbonate–case studies from the Gulf of Corinth, Greece. Journal of Structural Geology, 31, 403–420, https://doi.org/10.1016/j.jsg.2009.01.005
    [Google Scholar]
  14. Bauer, H., Schröckenfuchs, T.C. and Decker, K.
    2016. Hydrogeological properties of fault zones in a karstified carbonate aquifer (Northern Calcareous Alps, Austria). Hydrogeology Journal, 24, 1147–1170, https://doi.org/10.1007/s10040-016-1388-9
    [Google Scholar]
  15. Bauer, H., Rogowitz, A., Grasemann, B. and Decker, K.
    2018. Crystal plastic deformation in carbonate fault rocks from a shallow crustal strike-slip fault, Northern Calcareous Alps (Austria). EGU General Assembly Conference Abstracts, 20, 9227.
    [Google Scholar]
  16. Bergerat, F.T. and Vandycke, S.
    1994. Palaeostress analysis and geodynamical implications of Cretaceous–Tertiary faulting in Kent and the Boulonnais. Journal of the Geological Society, London, 151, 439–448, https://doi.org/10.1144/gsjgs.151.3.0439
    [Google Scholar]
  17. Billi, A., Salvini, F. and Storti, F.
    2003. The damage zone-fault core transition in carbonate rocks: implications for fault growth, structure and permeability. Journal of Structural Geology, 25, 1779–1794, https://doi.org/10.1016/S0191-8141(03)00037-3
    [Google Scholar]
  18. Bonson, C.G., Childs, C., Walsh, J.J., Schöpfer, M.P. and Carboni, V.
    2007. Geometric and kinematic controls on the internal structure of a large normal fault in massive limestones: the Maghlaq Fault, Malta. Journal of Structural Geology, 29, 336–354, https://doi.org/10.1016/j.jsg.2006.06.016
    [Google Scholar]
  19. Braathen, A., Tveranger, J. et al.
    2009. Fault facies and its application to sandstone reservoirs. AAPG Bulletin, 93, 891–917, https://doi.org/10.1306/03230908116
    [Google Scholar]
  20. Bretan, P., Yielding, G. and Jones, H.
    2003. Using calibrated shale gouge ratio to estimate hydrocarbon column heights. AAPG Bulletin, 87, 397–413, https://doi.org/10.1306/08010201128
    [Google Scholar]
  21. Brink, H.J.
    2011. The crustal structure around the Harz Mountains (Germany): review and analysis. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 162, 235–250, https://doi.org/10.1127/1860-1804/2011/0162-0235
    [Google Scholar]
  22. Brown, A.
    1997. Porosity variation in carbonates as a function of depth. AAPG Memoirs, 69, 29–46.
    [Google Scholar]
  23. Bussolotto, M., Benedicto, A., Invernizzi, C., Micarelli, L., Plagnes, V. and Deiana, G.
    2007. Deformation features within an active normal fault zone in carbonate rocks: The Gubbio fault (Central Apennines, Italy). Journal of Structural Geology, 29, 2017–2037, https://doi.org/10.1016/j.jsg.2007.07.014
    [Google Scholar]
  24. Bussolotto, M., Benedicto, A., Moen-Maurel, L. and Invernizzi, C.
    2015. Fault deformation mechanisms and fault rocks in micritic limestones: Examples from Corinth rift normal faults. Journal of Structural Geology, 77, 191–212, https://doi.org/10.1016/j.jsg.2015.05.004
    [Google Scholar]
  25. Caine, J.S., Evans, J.P. and Forster, C.B.
    1996. Fault zone architecture and permeability structure. Geology, 24, 1025–1028, https://doi.org/10.1130/0091-7613(1996)024<1025:FZAAPS>2.3.CO;2
    [Google Scholar]
  26. Casolari, E., Negri, A., Picotti, V. and Bertotti, G.
    2000. Neogene stratigraphy and sedimentology of the Gargano Promontory (southern Italy). Eclogae Geologicae Helvetiae, 93, 7–24.
    [Google Scholar]
  27. Catalano, R., D'argenio, B., Montanari, L., Morlotti, E. and Torelli, L.
    1985. Marine geology of the NW Sicily offshore (Sardinia Channel) and its relationships with mainland structures. Bollettino Della Societa Geologica Italiana, 104, 207–215.
    [Google Scholar]
  28. Celico, F., Petrella, E. and Celico, P.
    2006. Hydrogeological behaviour of some fault zones in a carbonate aquifer of Southern Italy: an experimentally based model. Terra Nova, 18, 308–313, https://doi.org/10.1111/j.1365-3121.2006.00694.x
    [Google Scholar]
  29. Childs, C., Nicol, A., Walsh, J.J. and Watterson, J.
    1996. Growth of vertically segmented normal faults. Journal of Structural Geology, 18, 1389–1397, https://doi.org/10.1016/S0191-8141(96)00060-0
    [Google Scholar]
  30. Childs, C., Manzocchi, T., Walsh, J.J., Bonson, C.G., Nicol, A. and Schöpfer, M.P.
    2009. A geometric model of fault zone and fault rock thickness variations. Journal of Structural Geology, 31, 117–127, https://doi.org/10.1016/j.jsg.2008.08.009
    [Google Scholar]
  31. Chilovi, C., de Feyter, A.J. and Pompucci, A.
    2000. Wrench zone reactivation in the Adriatic Block; the example of the Mattinata fault system (SE Italy). Bollettino della Società Geologica Italiana, 119, 3–8.
    [Google Scholar]
  32. Cilona, A., Baud, P., Tondi, E., Agosta, F., Vinciguerra, S., Rustichelli, A. and Spiers, C.J.
    2012. Deformation bands in porous carbonate grainstones: Field and laboratory observations. Journal of Structural Geology, 45, 137–157, https://doi.org/10.1016/j.jsg.2012.04.012
    [Google Scholar]
  33. Cilona, A., Solum, J.G., Lucca, A., Storti, F., Balsamo, F. and Taberner, C.
    2019. Evolution of pore types and petrophysical properties of fault rocks in low-porosity carbonates. Journal of Sedimentary Research, 18, 94–107, https://doi.org/10.2110/sepmsp.112.10
    [Google Scholar]
  34. Cooke, A.P., Fisher, Q.J., Michie, E.A.H. and Yielding, G.
    2018. Investigating the controls on fault rock distribution in normal faulted shallow burial limestones, Malta, and the implications for fluid flow. Journal of Structural Geology, 114, 22–42, https://doi.org/10.1016/j.jsg.2018.05.024
    [Google Scholar]
  35. 2019. Permeability of carbonate fault rocks: a case study from Malta. Petroleum Geoscience, 26, 418–433, https://doi.org/10.1144/petgeo2019-055
    [Google Scholar]
  36. Cornée, J.J., Moissette, P. et al.
    2006. Tectonic and climatic controls on coastal sedimentation: the Late Pliocene–Middle Pleistocene of northeastern Rhodes, Greece. Sedimentary Geology, 187, 159–181, https://doi.org/10.1016/j.sedgeo.2005.12.026
    [Google Scholar]
  37. Corrado, S., Invernizzi, C. and Mazzoli, S.
    2002. Tectonic burial and exhumation in a foreland fold and thrust belt: the Monte Alpi case history (Southern Apennines, Italy). Geodinamica Acta, 15, 159–177, https://doi.org/10.1080/09853111.2002.10510750
    [Google Scholar]
  38. Dart, C.J., Bosence, D.W.J. and McClay, K.R.
    1993. Stratigraphy and structure of the Maltese graben system. Journal of the Geological Society, London, 150, 1153–1166, https://doi.org/10.1144/gsjgs.150.6.1153
    [Google Scholar]
  39. De Bresser, J.H.P. and Spiers, C.J.
    1997. Strength characteristics of the r, f, and c slip systems in calcite. Tectonophysics, 272, 1–23, https://doi.org/10.1016/S0040-1951(96)00273-9
    [Google Scholar]
  40. Delle Piane, C., Clennell, M.B., Keller, J.V., Giwelli, A. and Luzin, V.
    2017. Carbonate hosted fault rocks: A review of structural and microstructural characteristic with implications for seismicity in the upper crust. Journal of Structural Geology, 103, 17–36, https://doi.org/10.1016/j.jsg.2017.09.003
    [Google Scholar]
  41. Droste, H. and Van Steenwinkel, M.
    2004. Stratal geometries and patterns of platform carbonates: the Cretaceous of Oman. AAPG Memoirs, 81, 185–206.
    [Google Scholar]
  42. Dunham, R.J.
    1962. Classification of carbonate rocks according to depositional textures. AAPG Memoirs, 1, 108–121.
    [Google Scholar]
  43. Evans, J.P.
    1990. Thickness–displacement relationships for fault zones. Journal of Structural Geology, 12, 1061–1065, https://doi.org/10.1016/0191-8141(90)90101-4
    [Google Scholar]
  44. Færseth, R.B.
    2006. Shale smear along large faults: continuity of smear and the fault seal capacity. Journal of the Geological Society, London, 163, 741–751, https://doi.org/10.1144/0016-76492005-162
    [Google Scholar]
  45. Ferraro, F., Grieco, D.S., Agosta, F. and Prosser, G.
    2018. Space-time evolution of cataclasis in carbonate fault zones. Journal of Structural Geology, 110, 45–64, https://doi.org/10.1016/j.jsg.2018.02.007
    [Google Scholar]
  46. Ferraro, F., Agosta, F., Ukar, E., Grieco, D.S., Cavalcante, F., Belviso, C. and Prosser, G.
    2019. Structural diagenesis of carbonate fault rocks exhumed from shallow crustal depths: An example from the central-southern Apennines, Italy. Journal of Structural Geology, 122, 58–80, https://doi.org/10.1016/j.jsg.2019.02.008
    [Google Scholar]
  47. Ferraro, F., Agosta, F., Prasad, M., Vinciguerra, S., Violay, M. and Giorgioni, M.
    2020. Pore space properties in carbonate fault rocks of peninsular Italy. Journal of Structural Geology, 130, 103913, https://doi.org/10.1016/j.jsg.2019.103913
    [Google Scholar]
  48. Ferrill, D.A. and Morris, A.P.
    2008. Fault zone deformation controlled by carbonate mechanical stratigraphy, Balcones fault system, Texas. AAPG Bulletin, 92, 359–380, https://doi.org/10.1306/10290707066
    [Google Scholar]
  49. Ferrill, D.A., Morris, A.P., McGinnis, R.N., Smart, K.J. and Ward, W.C.
    2011. Fault zone deformation and displacement partitioning in mechanically layered carbonates: The Hidden Valley fault, central Texas. AAPG Bulletin, 95, 1383–1397, https://doi.org/10.1306/12031010065
    [Google Scholar]
  50. Fisher, Q.J. and Knipe, R.J.
    1998. Fault sealing processes in siliciclastic sediments. Geological Society, London, Special Publications, 147, 117–134, https://doi.org/10.1144/GSL.SP.1998.147.01.08
    [Google Scholar]
  51. Fisher, Q. and Knipe, R.
    2001. The permeability of faults within siliciclastic petroleum reservoirs of the North Sea and Norwegian Continental Shelf. Marine and Petroleum Geology, 18, 1063–1081, https://doi.org/10.1016/S0264-8172(01)00042-3
    [Google Scholar]
  52. Flodin, E., Gerdes, M., Aydin, A. and Wiggins, W.
    2005. Petrophysical properties and sealing capacity of fault rock, Aztec Sandstone, Nevada. AAPG Memoirs, 85, 197–218.
    [Google Scholar]
  53. Fondriest, M., Aretusini, S., Di Toro, G. and Smith, S.A.
    2015. Fracturing and rock pulverization along an exhumed seismogenic fault zone in dolostones: The Foiana Fault Zone (Southern Alps, Italy). Tectonophysics, 654, 56–74, https://doi.org/10.1016/j.tecto.2015.04.015
    [Google Scholar]
  54. Fuchs, A.
    1987. Conodont biostratigraphy of the Elbingerode reef complex, Harz Mountains. Acta Geologica Polonica, 37, 33–50.
    [Google Scholar]
  55. Giunta, G., Nigro, F. and Renda, P.
    2000. Extensional tectonics during Maghrebides chain building since late Miocene: examples from Northern Sicily. Annales Societatis Geologorum Poloniae, 70, 81–98.
    [Google Scholar]
  56. Griggs, D.T., Turner, F.J. and Heard, H.C.
    1960. Deformation of rocks at 500° to 800°C. Geological Society of America Memoirs, 79, 39–104, https://doi.org/10.1130/MEM79-p39
    [Google Scholar]
  57. Grobe, A., Urai, J.L., Littke, R. and Lünsdorf, N.K.
    2016. Hydrocarbon generation and migration under a large overthrust: The carbonate platform under the Semail Ophiolite, Jebel Akhdar, Oman. International Journal of Coal Geology, 168, 3–19, https://doi.org/10.1016/j.coal.2016.02.007
    [Google Scholar]
  58. Groshong, R.H.Jr
    . 1988. Low-temperature deformation mechanisms and their interpretation. Geological Society of America Bulletin, 100, 1329–1360, https://doi.org/10.1130/0016-7606(1988)100<1329:LTDMAT>2.3.CO;2
    [Google Scholar]
  59. Haines, T.J., Michie, E.A.H., Neilson, J.E. and Healy, D.
    2016. Permeability evolution across carbonate hosted normal fault zones. Marine and Petroleum Geology, 72, 62–82, https://doi.org/10.1016/j.marpetgeo.2016.01.008
    [Google Scholar]
  60. Hanken, N.M., Bromley, R.G. and Miller, J.
    1996. Plio-Pleistocene sedimentation in coastal grabens, north-east Rhodes, Greece. Geological Journal, 31, 393–418, https://doi.org/10.1002/(SICI)1099-1034(199612)31:4<393::AID-GJ712>3.0.CO;2-H
    [Google Scholar]
  61. Holland, M., Urai, J.L., Muchez, P. and Willemse, E.J.
    2009. Evolution of fractures in a highly dynamic thermal, hydraulic, and mechanical system–(I) Field observations in Mesozoic Carbonates, Jabal Shams, Oman Mountains. GeoArabia, 14, 57–110.
    [Google Scholar]
  62. Hugman, R.H.H., III and Friedman, M.
    1979. Effects of texture and composition on mechanical behavior of experimentally deformed carbonate rocks. AAPG Bulletin, 63, 1478–1489.
    [Google Scholar]
  63. Jones, S.
    1997. A technique for faster pulse-decay measurements in tight rocks. SPE Formation Evaluation, 12(1), 19–26.
    [Google Scholar]
  64. Kaminskaite, I., Fisher, Q.J. and Michie, E.A.H.
    2019. Microstructure and petrophysical properties of deformation bands in high porosity carbonates. Journal of Structural Geology, 119, 61–80, https://doi.org/10.1016/j.jsg.2018.12.001
    [Google Scholar]
  65. 2020. Faults in tight limestones and dolostones in San Vito lo Capo, Sicily, Italy: Internal architecture and petrophysical properties. Journal of Structural Geology, 132, 103970, https://doi.org/10.1016/j.jsg.2019.103970
    [Google Scholar]
  66. Kennedy, W.J. and Garrison, R.E.
    1975. Morphology and genesis of nodular chalks and hardgrounds in the Upper Cretaceous of southern England. Sedimentology, 22, 311–386, https://doi.org/10.1111/j.1365-3091.1975.tb01637.x
    [Google Scholar]
  67. Kim, Y.S., Peacock, D.C. and Sanderson, D.J.
    2003. Fault damage zones. Journal of Structural Geology, 26, 503–517, https://doi.org/10.1016/j.jsg.2003.08.002
    [Google Scholar]
  68. Klinkenberg, L.J.
    1941. The permeability of porous media to liquids and gases. In: Drilling and Production Practice. American Petroleum Institute (API), Washington, DC, 200–213.
    [Google Scholar]
  69. Knipe, R.J.
    1992. Faulting processes and fault seal. In: Larsen, R.M., Brekke, H., Larsen, B.T. and Talleraas, E. (eds) Structural and Tectonic Modelling and its Application to Petroleum Geology. Elsevier, Amsterdam, 325–342.
    [Google Scholar]
  70. Kranz, R.L.
    1983. Microcracks in rocks: a review. Tectonophysics, 100, 449–480, https://doi.org/10.1016/0040-1951(83)90198-1
    [Google Scholar]
  71. La Bruna, V., Agosta, F. and Prosser, G.
    2017. New insights on the structural setting of the Monte Alpi area, Basilicata, Italy. Italian Journal of Geosciences, 136, 220–237, https://doi.org/10.3301/IJG.2017.03
    [Google Scholar]
  72. La Bruna, V., Agosta, F., Lamarche, J., Viseur, S. and Prosser, G.
    2018. Fault growth mechanisms and scaling properties in foreland basin system: The case study of Monte Alpi, Southern Apennines, Italy. Journal of Structural Geology, 116, 94–113, https://doi.org/10.1016/j.jsg.2018.08.009
    [Google Scholar]
  73. Micarelli, L., Benedicto, A. and Wibberley, C.A.J.
    2006. Structural evolution and permeability of normal fault zones in highly porous carbonate rocks. Journal of Structural Geology, 28, 1214–1227, https://doi.org/10.1016/j.jsg.2006.03.036
    [Google Scholar]
  74. Michie, E.A.H.
    2015. Influence of host lithofacies on fault rock variation in carbonate fault zones: A case study from the Island of Malta. Journal of Structural Geology, 76, 61–79, https://doi.org/10.1016/j.jsg.2015.04.005
    [Google Scholar]
  75. Michie, E.A.H. and Haines, T.J.
    2016. Variability and heterogeneity of the petrophysical properties of extensional carbonate fault rocks, Malta. Petroleum Geoscience, 22, 136–152, https://doi.org/10.1144/petgeo2015-027
    [Google Scholar]
  76. Michie, E.A.H., Haines, T.J., Healy, D., Neilson, J.E., Timms, N.E. and Wibberley, C.A.J.
    2014. Influence of carbonate facies on fault zone architecture. Journal of Structural Geology, 65, 82–99, https://doi.org/10.1016/j.jsg.2014.04.007
    [Google Scholar]
  77. Michie, E.A.H., Yielding, G. and Fisher, Q.J.
    2017. Predicting transmissibilities of carbonate-hosted fault zones. Geological Society, London, Special Publications, 459, 121–137, https://doi.org/10.1144/SP459.9
    [Google Scholar]
  78. Molli, G., Cortecci, G. et al.
    2010. Fault zone structure and fluid–rock interaction of a high angle normal fault in Carrara marble (NW Tuscany, Italy). Journal of Structural Geology, 32, 1334–1348, https://doi.org/10.1016/j.jsg.2009.04.021
    [Google Scholar]
  79. Molli, G., White, J.C., Kennedy, L. and Taini, V.
    2011. Low-temperature deformation of limestone, Isola Palmaria, northern Apennine, Italy – The role of primary textures, precursory veins and intracrystalline deformation in localization. Journal of Structural Geology, 33, 255–270, https://doi.org/10.1016/j.jsg.2010.11.015
    [Google Scholar]
  80. Peacock, D.C.P.
    2001. The temporal relationship between joints and faults. Journal of Structural Geology, 23, 329–341, https://doi.org/10.1016/S0191-8141(00)00099-7
    [Google Scholar]
  81. Pedley, H.M., House, M.R. and Waugh, B.
    1976. The geology of Malta and Gozo. Proceedings of the Geologists’ Association, 87, 325–341, https://doi.org/10.1016/S0016-7878(76)80005-3
    [Google Scholar]
  82. Rath, A., Exner, U., Tschegg, C., Grasemann, B., Laner, R. and Draganits, E.
    2011. Diagenetic control of deformation mechanisms in deformation bands in a carbonate grainstone. AAPG Bulletin, 95, 1369–1381, https://doi.org/10.1306/01031110118
    [Google Scholar]
  83. Richard, P., Bazalgette, L. and Al-Kindi, M.
    2014. North Oman fault geometries in outcrops, analogues and subsurface. Geological Society, London, Special Publications, 392, 447–460, https://doi.org/10.1144/SP392.21
    [Google Scholar]
  84. Rotevatn, A., Thorsheim, E., Bastesen, E., Fossmark, H.S., Torabi, A. and Sælen, G.
    2016. Sequential growth of deformation bands in carbonate grainstones in the hangingwall of an active growth fault: Implications for deformation mechanisms in different tectonic regimes. Journal of Structural Geology, 90, 27–47, https://doi.org/10.1016/j.jsg.2016.07.003
    [Google Scholar]
  85. Rustichelli, A., Torrieri, S., Tondi, E., Laurita, S., Strauss, C., Agosta, F. and Balsamo, F.
    2016. Fracture characteristics in Cretaceous platform and overlying ramp carbonates: An outcrop study from Maiella Mountain (central Italy). Marine and Petroleum Geology, 76, 68–87, https://doi.org/10.1016/j.marpetgeo.2016.05.020
    [Google Scholar]
  86. Schmoker, J.W. and Halley, R.B.
    1982. Carbonate porosity v. depth: a predictable relation for south Florida. AAPG Bulletin, 66, 2561–2570.
    [Google Scholar]
  87. Schröckenfuchs, T., Bauer, H., Grasemann, B. and Decker, K.
    2015. Rock pulverization and localization of a strike-slip fault zone in dolomite rocks (Salzach–Ennstal–Mariazell–Puchberg fault, Austria). Journal of Structural Geology, 78, 67–85, https://doi.org/10.1016/j.jsg.2015.06.009
    [Google Scholar]
  88. Searle, M.P.
    1985. Sequence of thrusting and origin of culminations in the northern and central Oman Mountains. Journal of Structural Geology, 7, 129–143, https://doi.org/10.1016/0191-8141(85)90127-0
    [Google Scholar]
  89. Shipton, Z.K. and Cowie, P.A.
    2003. A conceptual model for the origin of fault damage zone structures in high-porosity sandstone. Journal of Structural Geology, 25, 333–344, https://doi.org/10.1016/S0191-8141(02)00037-8
    [Google Scholar]
  90. Shipton, Z.K., Soden, A.M., Kirkpatrick, J.D., Bright, A.M. and Lunn, R.J.
    2006. How thick is a fault? Fault displacement–thickness scaling revisited. American Geophysical Union Geophysical Monograph Series, 170, 193–198.
    [Google Scholar]
  91. Solum, J.G. and Huisman, B.A.H.
    2016. Toward the creation of models to predict static and dynamic fault-seal potential in carbonates. Petroleum Geoscience, 23, 70–91, https://doi.org/10.1144/petgeo2016-044
    [Google Scholar]
  92. Sperrevik, S., Gillespie, P.A., Fisher, Q.J., Halvorsen, T. and Knipe, R.J.
    2002. Empirical estimation of fault rock properties. In: Koestler, A.G. and Hunsdale, R. (eds) Norwegian Petroleum Society Special Publications, Elsevier, Amsterdam, 109–125, https://doi.org/10.1016/S0928-8937(02)80010-8
    [Google Scholar]
  93. Stead, J.
    2018. The Impact of Burial History on the Permeability of Carbonate-Hosted Faults. MSc thesis, University of Leeds, Leeds, UK.
    [Google Scholar]
  94. ten Veen, J.H. and Kleinspehn, K.L.
    2002. Geodynamics along an increasingly curved convergent plate margin: Late Miocene–Pleistocene Rhodes, Greece. Tectonics, 21, 8–1, https://doi.org/10.1029/2001TC001287
    [Google Scholar]
  95. Tondi, E.
    2007. Nucleation, development and petrophysical properties of faults in carbonate grainstones: evidence from the San Vito Lo Capo peninsula (Sicily, Italy). Journal of Structural Geology, 29, 614–628, https://doi.org/10.1016/j.jsg.2006.11.006
    [Google Scholar]
  96. Tondi, E., Antonellini, M., Aydin, A., Marchegiani, L. and Cello, G.
    2006a. The role of deformation bands, stylolites and sheared stylolites in fault development in carbonate grainstones of Majella Mountain, Italy. Journal of Structural Geology, 28, 376–391, https://doi.org/10.1016/j.jsg.2005.12.001
    [Google Scholar]
  97. Tondi, E., Zampieri, D. et al.
    2006b. Active faults and inferred seismic sources in the San Vito lo Capo peninsula, northwestern Sicily, Italy. Geological Society, London, Special Publications, 262, 365–377, https://doi.org/10.1144/GSL.SP.2006.262.01.22
    [Google Scholar]
  98. Tondi, E., Rustichelli, A. et al.
    2016. Hydraulic properties of fault zones in porous carbonates, examples from central and southern Italy. Italian Journal of Geosciences, 135, 68–79, https://doi.org/10.3301/IJG.2015.08
    [Google Scholar]
  99. Torabi, A. and Berg, S.S.
    2011. Scaling of fault attributes: A review. Marine and Petroleum Geology, 28, 1444–1460, https://doi.org/10.1016/j.marpetgeo.2011.04.003
    [Google Scholar]
  100. Torabi, A., Johannessen, M.U. and Ellingsen, T.S.S.
    2019. Fault core thickness: Insights from siliciclastic and carbonate rocks. Geofluids, 2019, https://doi.org/10.1155/2019/2918673
    [Google Scholar]
  101. Tropeano, M. and Sabato, L.
    2000. Response of Plio-Pleistocene mixed bioclastic–lithoclastic temperate-water carbonate systems to forced regressions: the Calcarenite di Gravina Formation, Puglia, SE Italy. Geological Society, London, Special Publications, 172, 217–243, https://doi.org/10.1144/GSL.SP.2000.172.01.11
    [Google Scholar]
  102. Turner, F.J., Griggs, D.T. and Heard, H.
    1954. Experimental deformation of calcite crystals. Geological Society of America Bulletin, 65, 883–934, https://doi.org/10.1130/0016-7606(1954)65[883:EDOCC]2.0.CO;2
    [Google Scholar]
  103. Vandeginste, V., John, C.M., van de Flierdt, T. and Cosgrove, J.W.
    2013. Linking process, dimension, texture, and geochemistry in dolomite geobodies: A case study from Wadi Mistal (northern Oman) linking process, dimension, texture, and geochemistry in dolomite geobodies. AAPG Bulletin, 97, 1181–1207, https://doi.org/10.1306/11011212076
    [Google Scholar]
  104. Van Dijk, J.P., Bello, M., Toscano, C., Bersani, A. and Nardon, S.
    2000. Tectonic model and three-dimensional fracture network analysis of Monte Alpi (southern Apennines). Tectonophysics, 324, 203–237, https://doi.org/10.1016/S0040-1951(00)00138-4
    [Google Scholar]
  105. Vandycke, S.
    2002. Palaeostress records in Cretaceous formations in NW Europe: extensional and strike-slip events in relationships with Cretaceous–Tertiary inversion tectonics. Tectonophysics, 357, 119–136, https://doi.org/10.1016/S0040-1951(02)00365-7
    [Google Scholar]
  106. Warren, J.
    2000. Dolomite: occurrence, evolution and economically important associations. Earth-Science Reviews, 52, 1–81, https://doi.org/10.1016/S0012-8252(00)00022-2
    [Google Scholar]
  107. Welch, M.J., Souque, C., Davies, R.K. and Knipe, R.J.
    2014. Using mechanical models to investigate the controls on fracture geometry and distribution in chalk. Geological Society, London, Special Publications, 406, 281–309, https://doi.org/10.1144/SP406.5
    [Google Scholar]
  108. Weller, H.
    1991. Facies and development of the Devonian (Givetian/Frasnian) Elbingerode reef complex in the Harz area (Germany). Facies, 25, 1, https://doi.org/10.1007/BF02536754
    [Google Scholar]
  109. Wibberley, C.A., Yielding, G. and Di Toro, G.
    2008. Recent advances in the understanding of fault zone internal structure: a review. Geological Society, London, Special Publications, 299, 5–33, https://doi.org/10.1144/SP299.2
    [Google Scholar]
  110. Yielding, G.
    2015. Trapping of buoyant fluids in fault-bound structures. Geological Society, London, Special Publications, 421, 29–39, https://doi.org/10.1144/SP421.3
    [Google Scholar]
  111. Yielding, G., Freeman, B. and Needham, D.
    1997. Quantitative fault seal prediction. AAPG Bulletin, 6, 897–917.
    [Google Scholar]
  112. Yielding, G., Bretan, P. and Freeman, B.
    2010. Fault seal calibration: a brief review. Geological Society, London, Special Publications, 347, 243–255, https://doi.org/10.1144/SP347.14
    [Google Scholar]
  113. Zambrano, M., Tondi, E., Mancini, L., Arzilli, F., Lanzafame, G., Materazzi, M. and Torrieri, S.
    2017. 3D Pore-network quantitative analysis in deformed carbonate grainstones. Marine and Petroleum Geology, 82, 251–264, https://doi.org/10.1016/j.marpetgeo.2017.02.001
    [Google Scholar]
  114. Zambrano, M., Tondi, E. et al.
    2018. Fluid flow simulation and permeability computation in deformed porous carbonate grainstones. Advances in Water Resources, 115, 95–111, https://doi.org/10.1016/j.advwatres.2018.02.016
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1144/petgeo2020-034
Loading
/content/journals/10.1144/petgeo2020-034
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error