1887
Volume 27, Issue 2
  • ISSN: 1354-0793
  • E-ISSN:

Abstract

An analysis of the petrophysical and diagenetic effects of the emplacement of Cretaceous basaltic lava flows (Serra Geral Formation) on aeolian sandstones (Botucatu Formation) has been undertaken on core samples from the Paraná Basin, Brazil. Between 0.1 and 1 m from the contact zone, acoustic wave velocities and porosities in sandstones show a significantly wider scatter than those located >1 m away from the lava contact. Higher P-wave values (average 3759.3 m s) occur between 0.1 and 1 m from the lava contact in contrast to those areas >1 m away (average 3376.8 m s), whilst the average porosity is 6.5% near the contact (0.1–1 m) and 10.7% away from the contact (>1 m). Petrographical evaluation reveals two diagenetic pathways responsible for modification of the petrophysical properties: early hydrothermal Mg-rich authigenesis (Type 1) and early chemical dissolution (Type 2). Type 3 diagenesis occurs away from the lava–sediment contact (>1 m), with the appearance of poikilitic calcite and smectite. The sandstone samples associated with Type 1 and Type 2 diagenesis display a decrease in porosity and increased acoustic velocities in relation to Type 3, while Type 3 samples show little or no variation in reservoir properties. The lava-induced diagenetic effects at the sandstone–lava contacts (0.1–1 m) may form a baffle or seal to fluids around the margins of the sandstone bodies. Therefore, whilst diagenesis associated with lava emplacement may hinder reservoir quality around the margins, the original reservoir properties are preserved within these large sandstone bodies.

Petrophysical and petrographical data are available at https://doi.org/10.6084/m9.figshare.c.5244473

Loading

Article metrics loading...

/content/journals/10.1144/petgeo2020-036
2021-03-08
2024-04-25
Loading full text...

Full text loading...

References

  1. Ahmed, W
    . 2002. Effects of heat-flow and hydrothermal fluids from volcanic intrusions on authigenic mineralization in sandstone formations. Bulletin of the Chemical Society of Ethiopia, 16, 37–52, https://doi.org/10.4314/bcse.v16i1.20946
    [Google Scholar]
  2. Alves, T.M., Omosanya, K. and Gowling, P.
    2015. Volume rendering of enigmatic high amplitude anomalies in southeast Brazil: a workflow to distinguish lithologic features from fluid accumulations. Interpretation, 3, A1–A14, https://doi.org/10.1190/INT-2014-0106.1
    [Google Scholar]
  3. Angkasa, S.S., Jerram, D.A. et al.
    2017. Mafic intrusions, hydrothermal venting, and the basalt–sediment transition: linking onshore and offshore examples from the North Atlantic igneous province. Interpretation, 5, SK83–SK101, https://doi.org/10.1190/INT-2016-0162.1
    [Google Scholar]
  4. Anjos, S.M.C., De Ros, L.F., Souza, R.S., Silva, C.M.A. and Sombra, C
    . 2000. Depositional and diagenetic controls on the reservoir quality of Lower Cretaceous Pendencia sandstones, Potiguar rift basin, Brazil. AAPG Bulletin, 84, 19–1742, https://doi.org/10.1306/8626C375-173B-11D7-8645000102C1865D
    [Google Scholar]
  5. Araújo, L.M., França, A.B. and Potter, P.E
    . 1999. Hydrogeology of the Mercosul aquifer system in the Paraná and Chaco-Paraná Basins, South America, and comparison with the Navajo–Nugget aquifer system, USA. Hydrogeology Journal, 7, 317–336, https://doi.org/10.1007/s100400050205
    [Google Scholar]
  6. Baksi, A.K
    . 2018. Paraná flood basalt volcanism primarily limited to ∼1  Myr beginning at 135  Ma: new 40Ar/39Ar ages for rocks from Rio Grande do Sul, and critical evaluation of published radiometric data. Journal of Volcanology and Geothermal Research, 355, 66–77, https://doi.org/10.1016/j.jvolgeores.2017.02.016
    [Google Scholar]
  7. Barker, C.E., Bone, Y., and Lewan, M.D
    . 1998. Fluid inclusion and vitrinite-reflectance geothermometry compared to heat-flow models of maximum paleotemperature next to dikes, western onshore Gippsland Basin, Australia. International Journal of Coal Geology, 37, 73–111, https://doi.org/10.1016/S0166-5162(98)00018-4
    [Google Scholar]
  8. Beaufort, D., Rigault, C., Billon, S., Billault, V., Inoue, A., Inoué, S. and Patrier, P
    . 2015. Chlorite and chloritization processes through mixed-layer mineral series in low-temperature geological systems – a review. Clay Minerals, 50, 497–523, https://doi.org/10.1180/claymin.2015.050.4.06
    [Google Scholar]
  9. Beckner, J.R. and Mozley, P.S.
    1998. Origin and spatial distribution of early vadose and phreatic calcite cements in the Zia Formation, Albuquerque Basin, New Mexico, USA. International Association of Sedimentologists Special Publications , 26, 27–52.
    [Google Scholar]
  10. Bertolini, G., Marques, J.C., Hartley, A.J., Da-Rosa, A.A., Scherer, C.M., Basei, M.A. and Frantz, J.C.
    2020. Controls on Early Cretaceous desert sediment provenance in south-west Gondwana, Botucatu Formation (Brazil and Uruguay). Sedimentology, 67, 2672–2690, https://doi.org/10.1111/sed.12715
    [Google Scholar]
  11. Birch, F
    . 1960. The velocity of compressional waves in rocks to 10 kilobars: 1. Journal of Geophysical Research, 65, 1083–1102, https://doi.org/10.1029/JZ065i004p01083
    [Google Scholar]
  12. Bjorkum, P.A
    . 1996. How important is pressure in causing dissolution of quartz in sandstones?Journal of Sedimentary Research, 66, 147–154.
    [Google Scholar]
  13. Bjørlykke, K
    . 1999. An overview of factors controlling rates of compaction, fluid generation and flow in sedimentary basins. In: Jamtveit, B. and Meakin, P. (eds) Growth, Dissolution and Pattern Formation in Geosystems. Springer, Dordrecht, The Netherlands, 381–404.
    [Google Scholar]
  14. Blott, S.J. and Pye, K
    . 2001. GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surface Processes and Landforms, 26, 1237–1248, https://doi.org/10.1002/esp.261
    [Google Scholar]
  15. Cardoso, O.R. and de Carvalho Balaban, R
    . 2015. Comparative study between Botucatu and Berea sandstone properties. Journal of South American Earth Sciences, 62, 58–69, https://doi.org/10.1016/j.jsames.2015.04.004
    [Google Scholar]
  16. Davies, G.R
    . 1997. Aeolian sedimentation and bypass, Triassic of Western Canada. Bulletin of Canadian Petroleum Geology, 45, 624–642.
    [Google Scholar]
  17. De Ros, L.F
    . 1998. Heterogeneous generation and evolution of diagenetic quartz arenites in the Silurian–Devonian Furnas Formation of the Paraná Basin, southern Brazil. Sedimentary Geology, 116, 99–128, https://doi.org/10.1016/S0037-0738(97)00081-X
    [Google Scholar]
  18. De Ros, L.F. and Scherer, C.M
    . 2012. Stratigraphic controls on the distribution of diagenetic processes, quality and heterogeneity of fluvial–aeolian reservoirs from the Recôncavo Basin, Brazil. International Association of Sedimentologists Special Publications , 45, 105–132, https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118485347.ch5
    [Google Scholar]
  19. De Ros, L.F., Sgarbi, G.N.C. and Morad, S
    . 1994. Multiple authigenesis of K-feldspar in sandstones: evidence from the Cretaceous Areado Formation, Sao Francisco Basin, central Brazil. Journal Sedimentary Research, 64, 778–787.
    [Google Scholar]
  20. Dickinson, W.W. and Milliken, K.L
    . 1995. The diagenetic role of brittle deformation in compaction and pressure solution, Etjo sandstone, Namibia. The Journal of Geology, 103, 339–347, https://doi.org/10.1086/629751
    [Google Scholar]
  21. Ernesto, M., Raposo, M.I.B., Marques, L.S., Renne, P.R., Diogo, L.A. and De Min, A
    . 1999. Paleomagnetism, geochemistry and 40Ar/39Ar dating of the North-eastern Paraná Magmatic Province: tectonic implications. Journal of Geodynamics, 28, 321–340, https://doi.org/10.1016/S0264-3707(99)00013-7
    [Google Scholar]
  22. Fagents, S.A., Williams, D.A. and Greeley, R
    . 1999. Factors influencing planetary lava flow dynamics and heat transfer: implications for substrate melting. In: Lunar and Planetary Science XXX: Papers Presented at the Thirtieth Lunar and Planetary Science Conference, March 15–19, 1999. Lunar and Planetary Institute, Houston, TX, Abstract 1823.
    [Google Scholar]
  23. Folk, R.L
    . 1968. Petrology of Sedimentary Rocks. Hemphill, Austin, TX.
    [Google Scholar]
  24. Fonseca, A.C.L., Piffer, G.V., Nachtergaele, S., Van Ranst, G., De Grave, J. and Novo, T.A
    . 2020. Devonian to Permian post-orogenic denudation of the Brasília Belt of West Gondwana: insights from apatite fission track thermochronology. Journal of Geodynamics, 137, 101733, https://doi.org/10.1016/j.jog.2020.101733
    [Google Scholar]
  25. Garzanti, E
    . 2018. Petrographic classification of sand and sandstone. Earth-Science Reviews, 192, 545–563, https://doi.org/10.1016/j.earscirev.2018.12.014
    [Google Scholar]
  26. Gesicki, A.L.D.
    2007. Evolução diagenética das formações Pirambóia e Botucatu (Sistema Aqüífero Guarani) no Estado de São Paulo. PhD thesis, University of São Paulo, São Paulo, Brazil.
    [Google Scholar]
  27. González-Acebrón, L., Goldstein, R.H., Mas, R. and Arribas, J
    . 2011. Criteria for recognition of localization and timing of multiple events of hydrothermal alteration in sandstones illustrated by petrographic, fluid inclusion, and isotopic analysis of the Tera Group, Northern Spain. International Journal of Earth Sciences, 100, 1811–1826, https://doi.org/10.1007/s00531-010-0606-2
    [Google Scholar]
  28. Grove, C.
    2014. Direct and Indirect Effects of Flood Basalt Volcanism on Reservoir Quality Sandstone. PhD thesis, Durham University, Durham, UK.
    [Google Scholar]
  29. Grove, C., Jerram, D.A., Gluyas, J.G. and Brown, R.J
    . 2017. Sandstone diagenesis in sediment–lava sequences: exceptional examples of volcanically driven diagenetic compartmentalization in Dune Valley, Huab Outliers, NW Namibia. Journal of Sedimentary Research, 87, 1314–1335, https://doi.org/10.2110/jsr.2017.75
    [Google Scholar]
  30. Haile, B.G., Czarniecka, U., Xi, K., Smyrak-Sikora, A., Jahren, J., Braathen, A. and Hellevang, H
    . 2019. Hydrothermally induced diagenesis: evidence from shallow marine–deltaic sediments, Wilhelmøya, Svalbard. Geoscience Frontiers, 10, 629–649, https://doi.org/10.1016/j.gsf.2018.02.015
    [Google Scholar]
  31. Hangx, S.J. and Spiers, C.J
    . 2009. Reaction of plagioclase feldspars with CO2 under hydrothermal conditions. Chemical Geology, 265, 88–98, https://doi.org/10.1016/j.chemgeo.2008.12.005
    [Google Scholar]
  32. Hardman, J., Schofield, N., Jolley, D., Hartley, A., Holford, S. and Watson, D
    . 2019. Controls on the distribution of volcanism and intra-basaltic sediments in the Cambo–Rosebank region, West of Shetland. Petroleum Geoscience, 25, 71–89, https://doi.org/10.1144/petgeo2017-061
    [Google Scholar]
  33. Healy, D., Neilson, J.E., Haines, T.J., Michie, E.A., Timms, N.E. and Wilson, M.E
    . 2014. An investigation of porosity–velocity relationships in faulted carbonates using outcrop analogues. Geological Society, London, Special Publications , 406, 261–280, https://doi.org/10.1144/SP406.13
    [Google Scholar]
  34. Henares, S., Bloemsma, M.R., Donselaar, M.E., Mijnlieff, H.F., Redjosentono, A.E., Veldkamp, H.G. and Weltje, G.J
    . 2014. The role of detrital anhydrite in diagenesis of aeolian sandstones (Upper Rotliegend, The Netherlands): implications for reservoir-quality prediction. Sedimentary Geology, 314, 60–74, https://doi.org/10.1016/j.sedgeo.2014.10.001
    [Google Scholar]
  35. Holford, S.P., Schofield, N., Jackson, C.L., Magee, C., Green, P.F. and Duddy, I.R.
    2013. Impacts of igneous intrusions on source reservoir potential in prospective sedimentary basins along the western Australian continental margin. In: Keep, M. and Moss, S.J. (eds) The Sedimentary Basins of Western Australia IV: Proceedings of the Petroleum Exploration Society of Australia Symposium. 18–21 August 2013, Petroleum Exploration Society of Australia, Perth, WA, 1–11.
    [Google Scholar]
  36. Holz, M., Soares, A.P. and Soares, P.C
    . 2008. Preservation of aeolian dunes by pahoehoe lava: An example from the Botucatu Formation (Early Cretaceous) in Mato Grosso do Sul state (Brazil), western margin of the Paraná Basin in South America. Journal of South American Earth Sciences, 25, 398–404, https://doi.org/10.1016/j.jsames.2007.10.001
    [Google Scholar]
  37. Hover, V.C., Walter, L.M., Peacor, D.R. and Martini, A.M
    . 1999. Mg-smectite authigenesis in a marine evaporative environment, Salina Ometepec, Baja California. Clays and Clay Minerals, 47, 252–268, https://doi.org/10.1346/CCMN.1999.0470302
    [Google Scholar]
  38. Howell, J. and Mountney, N
    . 2001. Aeolian grain flow architecture: hard data for reservoir models and implications for red bed sequence stratigraphy. Petroleum Geoscience, 7, 51–56, https://doi.org/10.1144/petgeo.7.1.51
    [Google Scholar]
  39. Ingersoll, R.V., Bullard, T.F., Ford, R.L., Grimm, J.P., Pickle, J.D. and Sares, S.W
    . 1984. The effect of grain size on detrital modes: a test of the Gazzi–Dickinson point-counting method. Journal of Sedimentary Research, 54, 103–116.
    [Google Scholar]
  40. Janasi, V.A., Freitas, V.A. and Heaman, L.H
    . 2011. The onset of flood basalt volcanism, Northern Paraná Basin, Brazil: a precise U–Pb baddeleyite/zircon age for a Chapecó-type dacite. Earth Planetary Science Letters, 302, 147–153, https://doi.org/10.1016/j.epsl.2010.12.005
    [Google Scholar]
  41. Jerram, D.A. and Widdowson, M
    . 2005. The anatomy of Continental Flood Basalt Provinces: geological constraints on the processes and products of flood volcanism. Lithos, 79, 385–405, https://doi.org/10.1016/j.lithos.2004.09.009
    [Google Scholar]
  42. Jerram, D., Mountney, N., Holzförster, F. and Stollhofen, H
    . 1999. Internal stratigraphic relationships in the Etendeka Group in the Huab Basin, NW Namibia: understanding the onset of flood volcanism. Journal of Geodynamics, 28, 393–418, https://doi.org/10.1016/S0264-3707(99)00018-6
    [Google Scholar]
  43. Jerram, D.A., Mountney, N.P., Howell, J.A., Long, D. and Stollhofen, H
    . 2000. Death of a sand sea: an active aeolian erg systematically buried by the Etendeka flood basalts of NW Namibia. Journal of the Geological Society, London, 157, 513–516, https://doi.org/10.1144/jgs.157.3.513
    [Google Scholar]
  44. Jørgensen, O
    . 2006. The regional distribution of zeolites in the basalts of the Faroe Islands and the significance of zeolites as palaeotemperature indicators. Geological Survey of Denmark and Greenland Bulletin, 9, 123–156, https://doi.org/10.34194/geusb.v9.4865
    [Google Scholar]
  45. Linol, B., de Wit, M.J., Milani, E.J., Guillocheau, F. and Scherer, C
    . 2014. New regional correlations between the Congo, Paraná and Cape–Karoo basins of southwest Gondwana. In: de Wit, M.J. ,  Guillocheau, F. and de Wit, M.C.J. (eds) Geology and Resource Potential of the Congo Basin. Springer, Berlin, 245–268, https://doi.org/10.1007/978-3-642-29482-2_13
    [Google Scholar]
  46. Liu, Y., Jin, S.D., Cao, Q. and Zhou, W
    . 2019. Tertiary hydrothermal activity and its effect on reservoir properties in the Xihu Depression, East China Sea. Petroleum Science, 16, 14–31, https://doi.org/10.1007/s12182-018-0292-4
    [Google Scholar]
  47. Luchetti, A.C.F., Nardy, A.J.R., Machado, F.B., Madeira, J.E.D.O. and Arnosio, J.M
    . 2014. New insights on the occurrence of peperites and sedimentary deposits within the silicic volcanic sequences of the Paraná Magmatic Province, Brazil. Solid Earth, 5, 121–130, https://doi.org/10.5194/se-5-121-2014
    [Google Scholar]
  48. Maraschin, A.J., Mizusaki, A.M.P. and De Ros, L.F
    . 2004. Near-surface K-feldspar precipitation in Cretaceous sandstones from the Potiguar Basin, Northeastern Brazil. The Journal of Geology, 112, 317–334, https://doi.org/10.1086/382762
    [Google Scholar]
  49. McKinley, J.M.
    , Worden, R.H. and Ruffell, A.H . 1999. Smectite in sandstones: a review of the controls on occurrence and behaviour during diagenesis. Clay Mineral Cements in Sandstones, 109–128, https://doi.org/10.1002/9781444304336.ch5
    [Google Scholar]
  50. McKinley, J.M., Worden, R.H. and Ruffell, A.H
    . 2001. Contact diagenesis: the effect of an intrusion on reservoir quality in the Triassic Sherwood Sandstone Group, Northern Ireland. Journal of Sedimentary Research, 71, 484–495, https://doi.org/10.1306/2DC40957-0E47-11D7-8643000102C1865D
    [Google Scholar]
  51. Milani, E.J. and De Wit, M.J
    . 2008. Correlations between the classic Paraná and Cape–Karoo sequences of South America and southern Africa and their basin infills flanking the Gondwanides: du Toit revisited. Geological Society, London, Special Publications , 294, 319–342, https://doi.org/10.1144/SP294.17
    [Google Scholar]
  52. Milani, E.J. and Ramos, V.A
    . 1998. Orogenias paleozóicas no domínio sul-ocidental do Gondwana e os ciclos de subsidência da Bacia do Paraná. Revista Brasileira de Geociências, 28, 473–484, https://doi.org/10.25249/0375-7536.1998473484
    [Google Scholar]
  53. Milani, E.J., Melo, J.H.G., Souza, P.A., Fernandes, L.A. and França, A.B
    . 2007. Bacia do Paraná. Boletim de Geociências Petrobrás, 15, 265–287.
    [Google Scholar]
  54. Morad, S., Ketzer, J.M. and De Ros, L.F
    . 2000. Spatial and temporal distribution of diagenetic alterations in siliciclastic rocks: implications for mass transfer in sedimentary basins. Sedimentology, 47, 95–120, https://doi.org/10.1046/j.1365-3091.2000.00007.x
    [Google Scholar]
  55. Morad, S., Marfil, R., and De La Peña, J.A.
    2003. Diagenetic K‐feldspar Pseudomorphs in the Triassic Buntsandstein Sandstones of the Iberian Range, Spain. In: Burley, S.D. and Worden, R.H. (eds) Sandstone Diagenesis: Recent and Ancient. Wiley, 489–504, https://onlinelibrary.wiley.com/doi/abs/10.1002/9781444304459.ch29
    [Google Scholar]
  56. Morad, S., Al-Ramadan, K., Ketzer, J.M. and De Ros, L.F
    . 2010. The impact of diagenesis on the heterogeneity of sandstone reservoirs: a review of the role of depositional facies and sequence stratigraphy. AAPG Bulletin, 94, 1267–1309, https://doi.org/10.1306/04211009178
    [Google Scholar]
  57. Murata, K.J., Formoso, M.L. and Roisenberg, A
    . 1987. Distribution of zeolites in lavas of southeastern Parana Basin, state of Rio Grande do Sul, Brazil. The Journal of Geology, 95, 455–467, https://doi.org/10.1086/629143
    [Google Scholar]
  58. Ochoa, M., Arribas, J., Mas, R. and Goldstein, R.H
    . 2007. Destruction of a fluvial reservoir by hydrothermal activity (Cameros Basin, Spain). Sedimentary Geology, 202, 158–173, https://doi.org/10.1016/j.sedgeo.2007.05.017
    [Google Scholar]
  59. Omosanya, K.O., Johansen, S.E., Eruteya, O.E. and Waldmann, N
    . 2017. Forced folding and complex overburden deformation associated with magmatic intrusion in the Vøring Basin, offshore Norway. Tectonophysics, 706, 14–34, https://doi.org/10.1016/j.tecto.2017.03.026
    [Google Scholar]
  60. Osborne, M.J. and Swarbrick, R.E
    . 1999. Diagenesis in North Sea HPHT clastic reservoirs: consequences for porosity and overpressure prediction. Marine and Petroleum Geology, 16, 337–353, https://doi.org/10.1016/S0264-8172(98)00043-9
    [Google Scholar]
  61. Peate, D.W
    . 1997. The Paraná-Etendeka province. American Geophysical Union Geophysical Monographs , 100, 217–246.
    [Google Scholar]
  62. Peate, D.W., Hawkesworth, C.J. and Mantovani, M.S
    . 1992. Chemical stratigraphy of the Paraná lavas (South America): classification of magma types and their spatial distribution. Bulletin of Volcanology, 55, 119–139, https://doi.org/10.1007/BF00301125
    [Google Scholar]
  63. Petry, K., Jerram, D.A., Delia del Pilar, M. and Zerfass, H.
    2007. Volcanic–sedimentary features in the Serra Geral Fm., Paraná Basin, southern Brazil: examples of dynamic lava–sediment interactions in an arid setting. Journal of Volcanology and Geothermal Research, 159, 313–325, https://doi.org/10.1016/j.jvolgeores.2006.06.017
    [Google Scholar]
  64. Pinto, V.M., Hartmann, L.A., Santos, J.O.S., McNaughton, N.J. and Wildner, W
    . 2011. Zircon U–Pb geochronology from the Paraná bimodal volcanic province support a brief eruptive cycle at c. 135  Ma. Chemical Geology, 281, 93–102, https://doi.org/10.1016/j.chemgeo.2010.11.031
    [Google Scholar]
  65. Pozo, M. and Casas, J
    . 1999Origin of kerolite and associated Mg clays in palustrine–lacustrine environments. The Esquivias deposit (Neogene Madrid Basin, Spain). Clay Mineral, 34, 395–418, https://doi.org/10.1180/000985599546316
    [Google Scholar]
  66. Pye, K. and Krinsley, D.H
    . 1986. Microfabric, mineralogy and early diagenetic history of the Whitby Mudstone Formation (Toarcian), Cleveland Basin, UK. Geological Magazine, 123, 191–203, https://doi.org/10.1017/S0016756800034695
    [Google Scholar]
  67. Rabbel, O., Galland, O., Mair, K., Lecomte, I., Senger, K., Spacapan, J.B. and Manceda, R
    . 2018. From field analogues to realistic seismic modelling: a case study of an oil-producing andesitic sill complex in the Neuquén Basin, Argentina. Journal of the Geological Society, London, 175, 580–593, https://doi.org/10.1144/jgs2017-116
    [Google Scholar]
  68. Rabelo, C.E.N., Cardoso, A.R., Nogueira, A.C.R., Soares, J.L. and Góes, A.M
    . 2019. Genesis of poikilotopic zeolite in aeolianites: an example from the Parnaíba Basin, NE Brazil. Sedimentary Geology, 385, 61–78, https://doi.org/10.1016/j.sedgeo.2019.03.013
    [Google Scholar]
  69. Rossel, N.C
    . 1982. Clay mineral diagenesis in Rotliegend aeolian sandstones of the southern North Sea. Clay Minerals, 17, 69–77https://doi.org/10.1180/claymin.1982.017.1.07
    [Google Scholar]
  70. Rossetti, L., Lima, E.F., Waichel, B.L., Hole, M.J., Simões, M.S. and Scherer, C.M
    . 2018. Lithostratigraphy and volcanology of the Serra Geral Group, Paraná-Etendeka Igneous Province in southern Brazil: towards a formal stratigraphical framework. Journal of Volcanology and Geothermal Research, 355, 98–114, https://doi.org/10.1016/j.jvolgeores.2017.05.008
    [Google Scholar]
  71. Rossetti, L.M., Healy, D., Hole, M.J., Millett, J.M., de Lima, E.F., Jerram, D.A. and Rossetti, M.M
    . 2019. Evaluating petrophysical properties of volcano-sedimentary sequences: a case study in the Paraná-Etendeka Large Igneous Province. Marine and Petroleum Geology, 102, 638–656, https://doi.org/10.1016/j.marpetgeo.2019.01.028
    [Google Scholar]
  72. Saar, M.O. and Manga, M
    . 1999. Permeability–porosity relationship in vesicular basalts. Geophysical Research Letters, 26, 111–114, https://doi.org/10.1029/1998GL900256
    [Google Scholar]
  73. Sakimoto, S.E.H. and Zuber, M.T
    . 1998. Flow and convective cooling in lava tubes. Journal of Geophysical Research: Solid Earth, 103, 27  465–27  487, https://doi.org/10.1029/97JB03108
    [Google Scholar]
  74. Salomon, E., Koehn, D., Passchier, C., Chung, P., Häger, T., Salvona, A. and Davis, J
    . 2016. Deformation and fluid flow in the Huab Basin and Etendeka Plateau, NW Namibia. Journal of Structural Geology, 88, 46–62, https://doi.org/10.1016/j.jsg.2016.05.001
    [Google Scholar]
  75. Scherer, C.M.S
    . 2000. Eolian dunes of the Botucatu Formation (Cretaceous) in southernmost Brazil: morphology and origin. Sedimentary Geology, 137, 63–84, https://doi.org/10.1016/S0037-0738(00)00135-4
    [Google Scholar]
  76. . 2002. Preservation of aeolian genetic units by lava flows in the Lower Cretaceous of the Paraná Basin, southern Brazil. Sedimentology, 49, 97–116, https://doi.org/10.1046/j.1365-3091.2002.00434.x
    [Google Scholar]
  77. Scherer, C.M. and Goldberg, K
    . 2007. Palaeowind patterns during the latest Jurassic–earliest Cretaceous in Gondwana: evidence from aeolian cross-strata of the Botucatu Formation, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 250, 89–100, https://doi.org/10.1016/j.palaeo.2007.02.018
    [Google Scholar]
  78. Schofield, N. and Jolley, D.W
    . 2013. Development of intra-basaltic lava-field drainage systems within the Faroe–Shetland Basin. Petroleum Geoscience, 19, 273–288, https://doi.org/10.1144/petgeo2012-061
    [Google Scholar]
  79. Schofield, N., Holford, S. et al.
    2015. Regional magma plumbing and emplacement mechanisms of the Faroe–Shetland Sill Complex: implications for magma transport and petroleum systems within sedimentary basins. Basin Research, 29, 41–63, https://doi.org/10.1111/bre.12164
    [Google Scholar]
  80. Sheldon, H.A., Wheeler, J., Worden, R.H. and Cheadle, M.J
    . 2003. An analysis of the roles of stress, temperature, and pH in chemical compaction of sandstones. Journal of Sedimentary Research, 73, 64–71, https://doi.org/10.1306/070802730064
    [Google Scholar]
  81. Stanistreet, I.G. and Stollhofen, H
    . 1999. Onshore equivalents of the main Kudu gas reservoir in Namibia. Geological Society, London, Special Publications , 153, 345–365, https://doi.org/10.1144/GSL.SP.1999.153.01.21
    [Google Scholar]
  82. Stricker, S., Jones, S.J. and Grant, N.T
    . 2016. Importance of vertical effective stress for reservoir quality in the Skagerrak Formation, Central Graben, North Sea. Marine and Petroleum Geology, 78, 895–909, https://doi.org/10.1016/j.marpetgeo.2016.03.001
    [Google Scholar]
  83. Thiede, D.S. and Vasconcelos, P.M
    . 2010. Paraná flood basalts: rapid extrusion hypothesis confirmed by new 40Ar/39Ar results. Geology, 38, 747–750, https://doi.org/10.1130/G30919.1
    [Google Scholar]
  84. Van der Plas, L. and Tobi, A.C
    . 1965. A chart for judging the reliability of point counting results. American Journal of Science, 263, 87–90, https://doi.org/10.2475/ajs.263.1.87
    [Google Scholar]
  85. Vavra, C.L
    . 1989. Mineral reactions and controls on zeolite-facies alteration in sandstone of the central Transantarctic Mountains, Antarctica. Journal of Sedimentary Research, 59, 688–703.
    [Google Scholar]
  86. Vermeesch, P., Resentini, A. and Garzanti, E
    . 2016. An R package for statistical provenance analysis. Sedimentary Geology, 336, 14–25https://doi.org/10.1016/j.sedgeo.2016.01.009
    [Google Scholar]
  87. Waichel, B.L., Scherer, C.M. and Frank, H.T
    . 2008. Basaltic lava flows covering active aeolian dunes in the Paraná Basin in southern Brazil: features and emplacement aspects. Journal of Volcanology and Geothermal Research, 171, 59–72, https://doi.org/10.1016/j.jvolgeores.2007.11.004
    [Google Scholar]
  88. Waichel, B.L., de Lima, E.F., Viana, A.R., Scherer, C.M., Bueno, G.V. and Dutra, G
    . 2012. Stratigraphy and volcanic facies architecture of the Torres Syncline, Southern Brazil, and its role in understanding the Paraná–Etendeka Continental Flood Basalt Province. Journal of Volcanology and Geothermal Research, 215, 74–82, https://doi.org/10.1016/j.jvolgeores.2011.12.004
    [Google Scholar]
  89. Walker, T.R
    . 1979. Red color in dune sand. United States Geological Survey Professional Papers , 1052, 61–81.
    [Google Scholar]
  90. Watson, D., Holford, S., Schofield, N. and Mark, N
    . 2019. Failure to predict igneous rocks encountered during exploration of sedimentary basins: a case study of the Bass Basin, Southeastern Australia. Marine and Petroleum Geology, 99, 526–547, https://doi.org/10.1016/j.marpetgeo.2018.10.034
    [Google Scholar]
  91. Wilson, M.D.
    1992. Inherited grain-rimming clays in sandstones from eolian and shelf environments: their origin and control on reservoir properties. SEPM Special Publications , 47, 209–225, https://doi.org/10.2110/pec.92.47.0209
    [Google Scholar]
  92. Wilson, P.I., McCaffrey, K.J. and Holdsworth, R.E
    . 2019. Magma-driven accommodation structures formed during sill emplacement at shallow crustal depths: the Maiden Creek sill, Henry Mountains, Utah. Geosphere, 15, 1368–1392, https://doi.org/10.1130/GES02067.1
    [Google Scholar]
  93. Worden, R.H. and Burley, S.D
    . 2003. Sandstone diagenesis: the evolution of sand to stone. In: Burley, S.D. and Worden, R.H. (eds) Sandstone Diagenesis: Recent and Ancient, 3–44, https://doi.org/10.1002/9781444304459.ch
    [Google Scholar]
  94. Worden, R.
    and Morad, S. (eds). 2009. Clay Mineral Cements in Sandstones. International Association of Sedimentologists Special Publications, 34.
    [Google Scholar]
  95. Wright, V.P., Sloan, R.J., Garces, B.V. and Garvie, L.A.J
    . 1992. Groundwater ferricretes from the Silurian of Ireland and Permian of the Spanish Pyrenees. Sedimentary Geology, 77, 37–49, https://doi.org/10.1016/0037-0738(92)90102-W
    [Google Scholar]
  96. Zalán, P.V., Wolff, S. et al.
    1990. The Parana Basin, Brazil. AAPG Memoirs , 51, 681–708.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1144/petgeo2020-036
Loading
/content/journals/10.1144/petgeo2020-036
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error