1887
Volume 27, Issue 4
  • ISSN: 1354-0793
  • E-ISSN:

Abstract

The thick and heterogeneous salt section in the Santos Basin, offshore Brazil, imposes great challenges in accessing the pre-salt hydrocarbon reservoirs, especially in relation to seismic imaging, signal quality and depth positioning. Some problems arise from the current velocity models for the salt section, which, for the majority, assume that the salt is a homogeneous halite layer. In the Santos Basin, the commonly assumed salt – halite – only makes up to 80% of the mineral in this section. The inclusion of other salts as stratification in the velocity models, based on seismic attributes, has achieved good results in the last decade, especially for depth resolution. In this work, we analyse the benefits of different velocity models, considering presence/absence of salt stratification and comparing the gross rock volume above the oil–water contact. The results show a significant effect on the depth resolution of the events, as well as on volume estimation, indicating that the greater the reliability captured by the complex velocity models, the greater the confidence in the resulting volumetric information.

Loading

Article metrics loading...

/content/journals/10.1144/petgeo2020-105
2021-06-01
2021-12-04
Loading full text...

Full text loading...

References

  1. Aki, K.
    and Richards, P. 1980. Quantitative Seismology: Theory and Methods. W.H. Freeman, https://doi.org/10.1002/gj.3350160110
    [Google Scholar]
  2. Albertz, M.
    and Ings, S.J. 2012. Some consequences of mechanical stratification in basin-scale numerical models of passive margin salt tectonics. Geological Society, London, Special Publications , 363, 303–330, https://doi.org/10.1144/SP363.14
    [Google Scholar]
  3. Amaral, P.J., Maul, A., Falcão, L., González, G. and González, M.
    2015. Estudo estatístico da velocidade dos sais na camada evaporítica. Abstract presented at the14th International Congress of the Brazilian Geophysical Society & EXPOGEF, 3–6 August 2015, Rio de Janeiro, Brazil, https://doi.org/10.1190/sbgf2015-131
    [Google Scholar]
  4. ArrheniusS
    . 1913. Zur physik salzlagerstätten. In: Meddelanden från K. Vetenskapsakademiens Nobelinstitut, Volume 2. Almqvist & Wiksell, Stockholm, 1–25.
    [Google Scholar]
  5. Ávila, R.
    2020. Updates on pre-salt opportunities and upcoming bidding rounds overview. Paper presented at theDeepwater South America Congress 2020, 16–17 January 2020, Rio de Janeiro, Brazil.
    [Google Scholar]
  6. Bąbel, M. and Schreiber, B.C.
    2014. Geochemistry of evaporites and evolution of seawater. In: Holland, H.D. and Turekian, K.K. (eds) Sediments, Diagenesis and Sedimentary Rocks, 2nd edn. Elsevier, 484–560, https://doi.org/10.1016/B978-0-08-095975-7.00718-X
    [Google Scholar]
  7. Bai, G. and Xu, Y
    . 2014. Giant fields retain dominance in reserve growth. Oil and Gas Journal, 112.2, 44–51.
    [Google Scholar]
  8. Barros, P., Fonseca, J. et al.
    2017. Salt heterogeneities characterization in pre-salt Santos Basin fields. Paper presented at theOffshore Technology Conference Brasil, 24–26 October 2017, Rio de Janeiro, Brazil, https://doi.org/10.4043/28147-MS
    [Google Scholar]
  9. Brun, J.P. and Mauduit, T.P.O
    . 2008. Rollovers in salt tectonics: the inadequacy of the listric fault model. Tectonophysics, 457, 1–11, https://doi.org/10.1016/j.tecto.2007.11.038
    [Google Scholar]
  10. Carlotto, M.A., Silva, R.C.B. et al.
    2010. Libra: A new-born giant in the Brazilian presalt province. AAPG Memoirs , 113, 165–176.
    [Google Scholar]
  11. Carminatti, M., Wolff, B. and Gamboa, L.
    2008. New exploratory frontiers in Brazil. Paper WPC-19-2802 presented at the19th World Petroleum Congress, 29 June–3 July 2008, Madrid, Spain.
    [Google Scholar]
  12. Chang, H.K., Kowsmann, R.O., Figueiredo, A.M.F. and Bender, A.A
    . 1992. Tectonics and stratigraphy of the East Brazil Rift System (EBRIS): an overview. Tectonophysics, 213, 97–138, https://doi.org/10.1016/0040-1951(92)90253-3
    [Google Scholar]
  13. Cornelius, S. and Castagna, J.P
    . 2018. Variation in salt-body interval velocities in the deep water Gulf of Mexico: Keathley Canyon and Walker Ridge areas. Interpretation, 6, T15–T27, https://library.seg.org/doi/abs/10.1190/int-2017-0069.1
    [Google Scholar]
  14. Costa, A.M.
    , Poiate, E., Amaral, C.S., Pereira, A., Martha, L.F., Gattass, M. and Roehl, D. 2011. Geomechanics applied to the well design through salt layers in Brazil: a history of success. In: Borja, R.I. (ed.) Multiscale and Multiphysics Processes in Geomechanics. Springer Series in Geomechanics and Geoengineering. Springer, Berlin, 165–168, https://rd.springer.com/chapter/10.1007%2F978-3-642-19630-0_42
    [Google Scholar]
  15. Davison, I., Anderson, L. and Nuttall, P.
    2012. Salt deposition, loading and gravity drainage in the Campos and Santos salt basins. Geological Society, London, Special Publications , 363, 159–174, https://doi.org/10.1144/SP363.8
    [Google Scholar]
  16. Demercian, L.S.
    1996. A Halocinese na Evolução do sul da Bacia de Santos do Aptiano ao Cretáceo Superior. Masters thesis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
    [Google Scholar]
  17. Demercian, S., Szatmari, P. and Cobbold, P
    . 1993. Style and pattern of salt diapirs due to thin-skinned gravitational gliding, Campos and Santos basins, offshore Brazil. Tectonophysics, 228, 393–433, https://doi.org/10.1016/0040-1951(93)90351-j
    [Google Scholar]
  18. Dooley, T.P., Jackson, M.P., Jackson, C.A.L., Hudec, M.R. and Rodriguez, C.R
    . 2015. Enigmatic structures within salt walls of the Santos Basin – Part 2: Mechanical explanation from physical modelling. Journal of Structural Geology, 75, 163–187, https://doi.org/10.1016/j.jsg.2015.01.009
    [Google Scholar]
  19. Doyen, P.
    2007. Seismic Reservoir Characterization: An Earth Modelling Perspective. European Association of Geoscientists & Engineers (EAGE), Houten, The Netherlands.
    [Google Scholar]
  20. Dubrule, O.
    2003. Geostatistics for Seismic Data Integration in Earth Models. Society of Exploration Geophysicists Distinguished Instructor Series, 6.
    [Google Scholar]
  21. Dusseault, M., Maury, V. and Sanfilippo, F.
    2004. Drilling through salt: constitutive behaviour and drilling strategies. Paper NARMA/ARMA 04-608 presented atGulf Rocks, the 6th North America Rock Mechanics Symposium, 5–9 June 2004, Houston, Texas, USA.
    [Google Scholar]
  22. Etris, E.L., Crabtree, N.J. and Dewar, J.
    2001. True depth conversion: more than a pretty picture. CSEG Recorder, 26(11), 11–22.
    [Google Scholar]
  23. Falcão, L.
    2017. O sal Estratificado E sua Importância na Modelagem de Velocidades Para Fins de Migração Sísmica. Master thesis, Universidade Federal Fluminense, Niterói, Brazil.
    [Google Scholar]
  24. Faria, D.L., Reis, A.T. and Souza, O.G., Jr
    . 2017. Three-dimensional stratigraphic sedimentological forward modeling of an Aptian carbonate reservoir deposited during the sag stage in the Santos Basin, Brazil. Marine and Petroleum Geology, 88, 676–695, https://doi.org/10.1016/j.marpetgeo.2017.09.013
    [Google Scholar]
  25. Ferreira, G.D., Bulhões, F.C., Amorim, G.A., Lima, L.F.D. and Foletto, R.C.
    2017. Construction of velocity model from co-kriging between wells and seismic. Abstract presented at the15th International Congress of the Brazilian Geophysical Society & EXPOGEF, 31 July–3 August 2017, Rio de Janeiro, Brazil, https://doi.org/10.1190/sbgf2017-360
    [Google Scholar]
  26. Fossen, H.
    2012. Structural Geology. Cambridge University Press.
    [Google Scholar]
  27. Freitas, J.R.
    2006. Ciclos Deposicionais Evaporíticos da Bacia de Santos: uma Análise Cicloestratigráfica A Partir de Dados de 2 Poços E Traços de Sísmica. Masters thesis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
    [Google Scholar]
  28. Gamboa, L.A.P., Machado, M.A.P., Silveira, D.P., Freitas, J.T.R. and Silva, S.R.P.
    2008. Evaporitos estratificados no Atlântico Sul: Interpretação Sísmica e Controle Tectono-Estratigráfico na Bacia de Santos. In: Mohriak, W., Szatmari, P. and Anjos, S.M.C. (eds) Sal: Geologia E Tectônica. Beca Edições, São Paulo, Brasil, 340–359.
    [Google Scholar]
  29. Garcia, S.F.M., Danderfer Filho, A., Lamotte, D.F. and Rudiewicz, J.L
    . 2012. Análise de volumes de sal em restauração estrutural: um exemplo na Bacia de Santos. Revista Brasileira de Geociências, 42, 433–450.
    [Google Scholar]
  30. Guardado, L.R., Gamboa, L.A.P. and Lucchesi, C.F
    . 1989. Petroleum geology of the Campos Basin Brazil, a model for a producing Atlantic type Basin. AAPG Memoirs , 48, 3–36.
    [Google Scholar]
  31. Guerra, M.C. and Underhill, J.R.
    2012. Role of halokinesis in controlling structural styles and sediment dispersal in the Santos Basin, offshore Brazil. Geological Society, London, Special Publications , 363, 175–206, https://doi.org/10.1144/SP363.9
    [Google Scholar]
  32. Guo, N. and Fagin, S
    . 2002. Becoming effective velocity model builders and depth imagers, Part 2 – the basics of velocity-model building, examples and discussions. The Leading Edge, 21, 1210–1216, https://doi.org/10.1190/1.1536136
    [Google Scholar]
  33. Homrighausen, S., Hoernle, K., Hauff, F., Wartho, J.A., Van Den Bogaard, P. and Garbe-Schonberg, D
    . 2019. New age and geochemical data from the Walvis Ridge: the temporal and spatial diversity of South Atlantic intraplate volcanism and its possible origin. Geochimica et Cosmochimica Acta, 245, 16–34, https://doi.org/10.1016/j.gca.2018.09.002
    [Google Scholar]
  34. Jackson, C.A.-L., Jackson, M.P.A., Hudec, M.R. and Rodriguez, C.R
    . 2015. Enigmatic structures within salt walls of Santos Basin – Part 1: Geometry and kinematics from 3D seismic reflection and well data. Journal of Structural Geology, 75, 135–162, https://doi.org/10.1016/j.jsg.2015.01.010
    [Google Scholar]
  35. Jackson, M.P., Cramez, C. and Fonck, J.M
    . 2000. Role of subaerial volcanic rocks and mantle plumes in creation of South Atlantic margins: implications for salt tectonics and source rocks. Marine and Petroleum Geology, 17, 477–498, https://doi.org/10.1016/s0264-8172(00)00006-4
    [Google Scholar]
  36. Ji, S., Huang, T., Fu, K. and Li, Z
    . 2011. Dirty salt velocity inversion: The road to a clearer sub salt image. Geophysics, 76, 169–174, https://doi.org/10.1190/GEO2010-0392.1
    [Google Scholar]
  37. Karner, G.D. and Gamboa, L
    . 2007. Timing and origin of the South Atlantic pre-salt sag basins and their capping evaporites. Geological Society, London, Special Publications , 285, 15–35, https://doi.org/10.1144/SP285.2
    [Google Scholar]
  38. Kukla, P.A., Strozyk, F. and Mohriak, W.U
    . 2018. South Atlantic salt basins witnesses of complex passive margin evolution. Gondwana Research, 53, 41–57, https://doi.org/10.1016/j.gr.2017.03.012
    [Google Scholar]
  39. Lachmann, R
    . 1910. Über autoplaste (Nichttektonische) Formelemente im. Zeitschrift der Deutschen Geologischen Gesellschaft, 62, 113–116.
    [Google Scholar]
  40. Léron, A., Magneron, C. and Sandjivy, L.
    2003. Spatial quality control of seismic stacking velocities using geostatistics. Expanded abstract presented at the65th EAGE Conference & Exhibition, 2–5 June 2003, Stavanger, Norway.
    [Google Scholar]
  41. Li, S., Abe, S., Reuning, L., Becker, S., Urai, J.L. and Kukla, P.A
    . 2012. Numerical modelling of the displacement and deformation of embedded rock bodies during salt tectonics: A case study from the South Oman Salt Basin. Geological Society, London, Special Publications , 363, 503–520, https://doi.org/10.1144/SP363.24
    [Google Scholar]
  42. Mann, J. and Rigg, J
    . 2012. New geological insights into the Santos Basin. GEOExPro, 9, 36–40.
    [Google Scholar]
  43. Maul, A.
    2020. Caracterização Sísmica da Seção Evaporítica Salina E Suas Aplicações nos Projetos de Exploração, Desenvolvimento E Produção de Hidrocarbonetos. PhD thesis, Universidade Federal Fluminense, Niterói, Brazil.
    [Google Scholar]
  44. Maul, A., Jardim, F., Falcão, L. and González, G.
    2015. Observing amplitude uncertainties for a pre-salt reservoir using illumination study (hit-maps). Expanded abstract presented at the77th EAGE Conference and Exhibition, 1–4 June 2015, Madrid, Spain, https://doi.org/10.3997/2214-4609.201412921
    [Google Scholar]
  45. Maul, A., Cetale, M. and Guizan, C.
    2018a. Evaporitic section characterization and its impact over the pre-salt reservoirs, example in the Santos Basin. Presented at theRio Oil & Gas Expo and Conference, 24–27 September 2018, Rio de Janeiro, Brazil.
    [Google Scholar]
  46. Maul, A., Cetale, M. and Guizan, C
    . 2018b. Few considerations, warnings and benefits for the E&P industry when incorporating stratifications inside salt sections. Brazilian Journal of Geophysics, 36, 461–477, https://doi.org/10.22564/rbgf.v36i4.1981
    [Google Scholar]
  47. Maul, A., Cetale, M. et al.
    2019. Geological characterization of evaporitic sections and its impacts on seismic images: Santos Basin, offshore Brazil. Brazilian Journal of Geophysics, 37, 55–68, https://doi.org/10.22564/rbgf.v37i1.1989https://doi.org/10.22564/rbgf.v37i1.1989
    [Google Scholar]
  48. McCaffrey, M.A., Lazar, B. and Holland, H.D
    . 1987. The evaporation path of seawater and coprecipitation of Br− and K+ with halite. Journal of Sedimentary Petrology, 57, 928–937.
    [Google Scholar]
  49. Meneguim, T.B., Mendes, S.C., Maul, A., Falcão, L., González, M. and González, G.
    2015. Combining seismic facies analysis and well information to guide new interval velocity models for a pre-salt study, Santos Basin, Brazil. Presented at the14th International Congress of the Brazilian Geophysical Society & EXPOGEF, 3–6 August 2015, Rio de Janeiro, Brazil, https://doi.org/10.1190/sbgf2015-271
    [Google Scholar]
  50. Mohriak, W., Hobbs, R. and Dewey, J
    . 1990. Basin-forming processes and the deep structure of the Campos Basin, offshore Brazil. Marine and Petroleum Geology, 7, 94–122, https://doi.org/10.1016/0264-8172(90)90035-f
    [Google Scholar]
  51. Mohriak, W., Ricci, J.A. et al.
    1995. Salt tectonics and structural styles in the deep-water province of the Cabo Frio Region, Rio de Janeiro, Brazil. AAPG Memoirs , 65, 273–304.
    [Google Scholar]
  52. Mohriak, W., Nemčok, M. and Enciso, G
    . 2008. South Atlantic divergent margin evolution: rift-border uplift and salt tectonics in the basins of SE Brazil. Geological Society, London, Special Publications , 294, 365–398, https://doi.org/10.1144/SP294.19
    [Google Scholar]
  53. Mohriak, W.U., Szatmari, P. and Anjos, S.
    2012. Salt: geology and tectonics of selected Brazilian basins in their global context. Geological Society, London, Special Publications , 363, 131–158, https://doi.org/10.1144/SP363.7
    [Google Scholar]
  54. Moreira, J.L.P., Madeira, C.V., Gil, J.A. and Machado, M.A.P
    . 2007. Bacia de Santos. Boletim de Geociencias da Petrobras, 15, 531–549.
    [Google Scholar]
  55. Paes, M., Pereira, C. et al.
    2019. Brazilian pre-salt gross-rock volume uncertainties: integration between velocity model and seismic resolution. Expanded abstract presented at the81st EAGE Conference and Exhibition, 3–6 June 2019, London, UK, https://doi.org/10.3997/2214-4609.201901460
    [Google Scholar]
  56. Ponte, F.C. and Asmus, A.H
    . 1978. Geological framework of the Brazilian continental margin. Geologische Rundschau, 67, 201–235, https://doi.org/10.1007/BF01803262
    [Google Scholar]
  57. Pontes, R.L.B.
    2019. Seismic Characterization of Internal Salt Cycles: A Case Study in Santos Basin, Brazil. Masters thesis, Universidade Federal Fluminense, Niterói, Brazil.
    [Google Scholar]
  58. Quirk, D.G., Schødt, N., Lassen, B., Ings, S.J., Hsu, D., Hirsch, K.K. and Von Nicolai, C
    . 2012. Salt tectonics on passive margins: examples from Santos, Campos and Kwanza basins. Geological Society, London, Special Publications , 363, 207–244, https://doi.org/10.1144/SP363.10
    [Google Scholar]
  59. Rangel, H.D., Guimarães, P.T.M. and Spadini, A.R.
    2003. Barracuda and Roncador giant oil fields, deep-water Campos Basin, Brazil. AAPG Memoirs , 78, 123–138, https://doi.org/10.1306/M78834C4
    [Google Scholar]
  60. Robein, E.
    2003. Velocities, Time-Imaging and Depth-Imaging in Reflection Seismic: Principles and Methods. European Association of Geoscientists & Engineers (EAGE), Houten, The Netherlands.
    [Google Scholar]
  61. Rodriguez, C.R., Jackson, C.A.-L., Rotevatn, A., Bell, R.E. and Francis, M
    . 2018. Dual tectonic–climatic controls on salt giant deposition in the Santos Basin, offshore Brazil. Geosphere, 14, 1–28, https://doi.org/10.1130/GES01434.1
    [Google Scholar]
  62. Roque, F., Vasconcellos, G., Pontes, R., Maul, A. and González, M.
    2017. Assessment of depth positioning uncertainties for PSDM seismic data. Presented at the15th International Congress of the Brazilian Geophysical Society & EXPOGEF, 31 July–3 August 2017, Rio de Janeiro, Brazil, https://doi.org/10.1190/sbgf2017-357
    [Google Scholar]
  63. Rosa, A.L.R.
    2018. The Seismic Signal and its Meaning. SEG Geophysical References Series, 23, https://doi.org/10.1190/1.9781560803348
    [Google Scholar]
  64. Saller, A., Rushton, S., Buambua, L., Inman, K., McNeil, R. and Dickson, J.T.
    , 2016. Presalt stratigraphy and depositional systems in the Kwanza Basin, offshore Angola. AAPG Bulletin, 100, 1135e1164, https://doi.org/10.1306/02111615216
    [Google Scholar]
  65. Sandjivy, L., Léron, A. and Torres, O.
    2003. Improving time migration velocity fields using geostatistics. Presented at the8th International Congress of the Brazilian Geophysical Society, 14–18 September 2003, Rio de Janeiro, Brazil.
    [Google Scholar]
  66. Schreiber, B.C., Bąbel, M. and Lugli, S.
    2007. Introduction and overview. Geological Society, London, Special Publications , 285, 1–13, https://doi.org/10.1144/SP285.1
    [Google Scholar]
  67. Schuster, G.T.
    2017. Seismic Inversion. SEG Investigations in Geophysics Series, 23.
    [Google Scholar]
  68. Strozyk, F.
    2017. The internal structure of the Zechstein salt and related drilling risks in the Northern Netherlands. In: Soto, J.I., Flinch, J.F. and Tari, G. (eds) Permo-Triassic Salt Provinces of Europe, North Africa and the Atlantic Margins. Elsevier, Amsterdam, 115–128, https://doi.org/10.1016/b978-0-12-809417-4.00006-9
    [Google Scholar]
  69. Tedeschi, L.R., Jenkyns, H.C., Robinson, S.A., Sanjinés, A.E., Viviers, M.C., Quintaes, C.M. and Vázquez, J.C
    . 2017. New age constraints on Aptian evaporites and carbonates from the South Atlantic: implications for oceanic anoxic event 1a. Geology, 45, 543–546, https://doi.org/10.1130/g38886.1
    [Google Scholar]
  70. Teixeira, L. and Lupinacci, W
    . 2019. Elastic properties of rock salt in the Santos Basin: Relations and spatial predictions. Journal of Petroleum Science and Engineering, 180, 215–230, https://doi.org/10.1016/j.petrol.2019.05.024
    [Google Scholar]
  71. Teixeira, L., Gobatto, F., Maul, A., Cruz, N.M., Gonçalves, C. and Laquini, J.P.
    2017. Rock physics and seismic inversion to identify stratification within salt section supporting velocity, facies modeling and geomechanical analysis. Presented at the15th International Congress of the Brazilian Geophysical Society & EXPOGEF, 31 July–3 August 2017, Rio de Janeiro, Brazil, https://doi.org/10.1190/sbgf2017-002
    [Google Scholar]
  72. Teixeira, L., Nunes, J., Maul, A., Fonseca, J., Barros, P. and Borges, F.
    2018. Seismic-based salt characterisation for geomechanical modelling of a presalt reservoir. Presented at the80th EAGE Conference and Exhibition 2018, 11–14 June 2018, Copenhagen, Denmark, https://doi.org/10.3997/2214-4609.201801331
    [Google Scholar]
  73. Teixeira, L., Lupinacci, W. and Maul, A
    . 2020. Quantitative and stratigraphic seismic interpretation of the evaporite sequence in the Santos Basin. Marine and Petroleum Geology, 122, 1–17, https://doi.org/10.1016/j.marpetgeo.2020.104690
    [Google Scholar]
  74. Toríbio, T., Queiróz, L.E. et al.
    2017. Characterizing evaporitic section and geomechanical properties using seismic inversion, a case study for Santos Basin. Presented at the15th International Congress of the Brazilian Geophysical Society & EXPOGEF, 31 July–3 August 2017, Rio de Janeiro, Brazil, https://doi.org/10.1190/sbgf2017-226
    [Google Scholar]
  75. Underhill, J.R. and Hunter, K.L
    . 2008. Effect of Zechstein Supergroup (Z1 cycle) Werrahalit pods on prospectivity in the Southern North Sea. AAPG Bulletin, 92, 827–851, https://doi.org/10.1306/02270807064
    [Google Scholar]
  76. Warren, J.
    2016. Evaporites: A Geological Compendium. 2nd edn. Springer, https://doi.org/10.1007/s12665-017-6965-2
    [Google Scholar]
  77. Widess, M.B
    . 1973. How thin is a thin bed?Geophysics, 38, 1176–1180, https://doi.org/10.1190/1.1440403
    [Google Scholar]
  78. Yamamoto, T.
    2019. Uma Metodologia Para A Caracterização da Formação Ariri Utilizando Dados de Poços E Inversão Sísmica. Masters thesis, Universidade Federal Fluminense, Niterói, Brazil.
    [Google Scholar]
  79. Yamamoto, T., Maul, A., Born, E., Gobatto, F., Relvas, M.T. and González, M.
    2016. Incorporação de estratificações salíferas na modelagem de velocidade de uma jazida da Bacia de Santos. Presented at theVII Simpósio Brasileiro de Geofísica, 25–27 October 2016, Ouro Preto, Brazil.
    [Google Scholar]
  80. Yilmaz, Ö.
    2001. Seismic data analysis: processing, inversion, and interpretation of seismic data. Paper OTC-22827 presented at theOffshore Technology Conference Brasil, 4–6 October 2011, Rio de Janeiro, Brazil, https://doi.org/10.4043/22827-MS
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1144/petgeo2020-105
Loading
/content/journals/10.1144/petgeo2020-105
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error