1887
Volume 27, Issue 4
  • ISSN: 1354-0793
  • E-ISSN:

Abstract

Aptian siliciclastic onshore deposits of the Mucuri Member are important reservoirs in the Espírito Santo Basin (eastern Brazil). A detailed quantitative petrographical and textural analysis of well core samples was performed in order to unravel their depositional processes and conditions, in relation to previously proposed depositional models. The results allowed differentiation between two groups of sandstone samples, characterized by different textural characteristics associated to different depositional processes and environments within the Mucuri depositional system. Fluvial sandstones are represented by medium- to coarse-grained, poorly sorted arkoses, rich in plutonic rock fragments and feldspar grains, mainly transported by traction. Coastal-lacustrine sandstones correspond to very fine- to fine-grained, moderately sorted micaceous arkoses, mainly transported in suspension. The application of a discriminant function based on grain-size parameters validated previously proposed depositional settings for the studied sample groups. The combination of grain-size and shape data revealed differences in hydraulic equivalence and shape between grains from different depositional settings. In terms of hydraulic equivalence, micas in the fluvial sediments present lower settling velocity values, in contrast to the relatively large mica grains in the coastal sediments, which are hydraulically equivalent with the associated quartz and feldspar grains. The results of this study provide key information regarding depositional conditions (transportation mechanisms, grain-settling velocity and mineral hydraulic fractionation) at the margins of the Aptian pre-salt system, which can constrain the hydrological conditions and the sediment type available for distal lacustrine areas.

Loading

Article metrics loading...

/content/journals/10.1144/petgeo2020-112
2021-06-17
2021-12-04
Loading full text...

Full text loading...

References

  1. Abelha, M. and Petersohn, E.
    2018. The state of the art of the Brazilian pre salt exploration. Search and Discovery Article #30586, AAPG 2018 Annual Convention and Exhibition, 20–23 May 2018, Salt Lake City, Utah, USA.
    [Google Scholar]
  2. Althaus, C.E., Scherer, C.M.S., Kuchle, J., Reis, A.D., Ferronatto, J.P.F., De Ros, L.F. and Bardola, T.P
    . 2020. Wave-dominated lacustrine margin of Aptian pre-salt: Mucuri Member, Espírito Santo Basin. Journal of South American Earth Sciences, 99, 102490, https://doi.org/10.1016/j.jsames.2019.102490
    [Google Scholar]
  3. Amarante, F.B.D., Kuchle, J., Iacopini, D., Scherer, C.M.S., Alvarenga, R.D.S., Ene, P.L. and Schilling, A.B
    . 2020. Seismic tectono-stratigraphic analysis of the Aptian pre-salt marginal system of Espírito Santo Basin, Brazil. Journal of South American Earth Sciences, 98, 102474, https://doi.org/10.1016/j.jsames.2019.102474
    [Google Scholar]
  4. Andrews, S.D. and Hartley, A.J
    . 2015. The response of lake margin sedimentary systems to climatically driven lake level fluctuations: Middle Devonian, Orcadian Basin, Scotland. Sedimentology, 62, 1693–1716, https://doi.org/10.1111/sed.12200
    [Google Scholar]
  5. Armelenti, G., Goldberg, K., Kuchle, J. and De Ros, L.F
    . 2016. Deposition, diagenesis and reservoir potential of non-carbonate sedimentary rocks from the rift section of Campos Basin, Brazil. Petroleum Geoscience, 22, 223–239, https://doi.org/10.1144/petgeo2015-035
    [Google Scholar]
  6. Biassusi, A.S., Maciel, A.A. and Carvalho, R.S
    . 1990. Bacia do Espírito Santo: o ‘estado da arte’ da exploração. Boletim de Geociências da Petrobras, 4, 13–19.
    [Google Scholar]
  7. Blair, T.C
    . 2000. Sedimentology and progressive tectonic unconformities of the sheetflood-dominated Hell's Gate alluvial fan, Death Valley, California. Sedimentary Geology, 132, 233–262, https://doi.org/10.1016/S0037-0738(00)00010-5
    [Google Scholar]
  8. Bloch, S.
    1994. Effect of detrital mineral composition on reservoir quality. SEPM Short Course Notes , 30, 161–182, https://doi.org/10.2110/scn.94.30.0161
    [Google Scholar]
  9. Blott, S.J. and Pye, K
    . 2001. Gradistat: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surface Processes and Landforms, 26, 1237–1248, https://doi.org/10.1002/esp.261
    [Google Scholar]
  10. Boggs, S.Jr
    2009. Petrology of Sedimentary Rocks. 2nd edn. Cambridge University Press, https://doi.org/10.1017/CBO9780511626487
    [Google Scholar]
  11. Calvo, J.P., Zarza, A.M.A. and Del Cura, M.A.G
    . 1989. Models of Miocene marginal lacustrine sedimentation in response to varied depositional regimes and source areas in the Madrid Basin (Central Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 70, 199–214, https://doi.org/10.1016/0031-0182(89)90090-4
    [Google Scholar]
  12. Carvalho, A.S.G., Dani, N., De Ros, L.F. and Zambonato, E.E
    . 2014. The impact of early diagenesis on the reservoir quality of pre-salt (aptian) sandstones in the Espírito Santo Basin, Eastern Brazil. Journal of Petroleum Geology, 37, 127–141, https://doi.org/10.1111/jpg.12574
    [Google Scholar]
  13. Chang, H.K., Kowsmann, R.O., Figueredo, A.M.F. and Bender, A.A
    . 1992. Tectonics and stratigraphy of the East Brazil Rift system: an overview. Tectonophysics, 213, 97–138, https://doi.org/10.1016/0040-1951(92)90253-3
    [Google Scholar]
  14. Cox, E.P
    . 1927. A method for assigning numerical and percentage values to the degree of roundness of sand grains. Journal of Paleontology, 1, 179–183.
    [Google Scholar]
  15. De Ros, L.F. and Goldberg, K.
    2007. Reservoir petrofacies: a tool for quality characterization and prediction. Article #50059 presented at theAAPG Annual Conference and Exhibition, 1–4 April 2007, Long Beach, California, USA.
    [Google Scholar]
  16. Dickinson, W.R.
    1985. Interpreting provenance relations from detrital modes of sandstones. In: Zuffa, G.G. (ed.) Provenance of Arenites. NATO ASI Series C: Mathematical and Physical Sciences, 148. Springer, Dordrecht, The Netherlands, 333–361, https://doi.org/10.1007/978-94-017-2809-6_15
    [Google Scholar]
  17. Dickson, J.A.D
    . 1965. A modified staining technique for carbonates in thin section. Nature, 205, 587, https://doi.org/10.1038/205587a0
    [Google Scholar]
  18. Duane, B
    . 1964. Significance of skewness in Recent sediments. Journal of Sedimentary Petrology, 34, 864–874, https://doi.org/10.1306/74D711B8-2B21-11D7-8648000102C1865D
    [Google Scholar]
  19. Estrella, G., Rocha Mello, M. et al.
    1984. The Espírito Santo Basin (Brazil): Source rock characterization and petroleum habitat. AAPG Memoirs , 35, 253–271.
    [Google Scholar]
  20. Faria, D.L.P., Reis, A.T. and Souza, O.G., Jr
    2017. Three-dimensional stratigraphic-sedimentological forward modeling of an Aptian carbonate reservoir deposited during the sag stage in the Santos basin, Brazil. Marine and Petroleum Geology, 88, 676–695, https://doi.org/10.1016/j.marpetgeo.2017.09.013
    [Google Scholar]
  21. Ferguson, R.I. and Church, M
    . 2004. A simple universal equation for grain settling velocity. Journal of Sedimentary Research, 74, 933–937, https://doi.org/10.1306/051204740933
    [Google Scholar]
  22. França, R.L., Del Rey, A.C., Tagliari, C.V., Brandão, J.R. and De Rossi Fontanelli, P
    . 2007. Bacia do Espírito Santo. Boletim de Geociências da Petrobras, 15, 501–509.
    [Google Scholar]
  23. Friedman, G.M
    . 1961. Distinction between dune, beach, and river sands from their textural characteristics. Journal of Sedimentary Petrology, 31, 514–529, https://doi.org/10.1306/74D70BCD-2B21-11D7-8648000102C1865D
    [Google Scholar]
  24. Folk, R.L.
    1968. Petrology of Sedimentary Rocks. Hemphill's, Austin, TX.
    [Google Scholar]
  25. Folk, R.L. and Ward, W.C
    . 1957. Brazos river bar: a study in the significance of grain size parameters. Journal of Sedimentary Petrology, 27, 3–26, https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D
    [Google Scholar]
  26. Gomes, J.P., Bunevich, R.B., Tedeschi, L.R., Tucker, M.E. and Whitaker, F.F
    . 2020. Facies classification and patterns of lacustrine carbonate deposition of the Barra Velha Formation, Santos Basin, Brazilian Pre-salt. Marine and Petroleum Geology, 113, 104176, https://doi.org/10.1016/j.marpetgeo.2019.104176
    [Google Scholar]
  27. Heilbron, M., Pedrosa-Soares, A.C., Campos Neto, M.C., Silva, L.C., Trouw, R.A.J. and Janasi, V.A.
    2004. Província Mantiqueira. In: Mantesso-Neto, V., Bartorelli, A., Carneiro, C.D.R. and Brito-Neves, B.B. (eds) Geologia do Continente Sul-Americano: Evolução da Obra de Fernando Flávio Marques de Almeida. Editora Beca, São Paulo, 203–234.
    [Google Scholar]
  28. Herlinger, R., Jr., Zambonato, E.E. and De Ros, L.F
    . 2017. Influence of diagenesis on the quality of lower cretaceous Pre-Salt lacustrine carbonate reservoirs from northern Campos Basin, offshore Brazil. Journal of Sedimentary Research, 87, 1285–1313, https://doi.org/10.2110/jsr.2017.70
    [Google Scholar]
  29. Ingersoll, R.V., Bullard, T., Ford, R., Grimm, J., PickleJ. and Sares, S
    . 1984. The effect of grain size on detrital modes: a test of the Gazzi–Dickinson point-counting method. Journal of Sedimentary Petrology, 54, 103–116, https://doi.org/10.1306/212F83B9-2B24-11D7-8648000102C1865D
    [Google Scholar]
  30. Johnson, M.R
    . 1994. Thin section grain size analysis revisited. Sedimentology, 41, 985–999, https://doi.org/10.1111/j.1365-3091.1994.tb01436.x
    [Google Scholar]
  31. Komar, P.D., Baba, J. and Cui, B
    . 1984. Grain-size analyses of mica within sediments and the hydraulic equivalence of mica and quartz (Capistrano Formation, California). Journal of Sedimentary Petrology, 54, 1379–1391, https://doi.org/10.1306/212F85E4-2B24-11D7-8648000102C1865D
    [Google Scholar]
  32. Leys, J., McTainsh, G., Koen, T., Mooney, B. and Strong, C
    . 2005. Testing a statistical curve-fitting procedure for quantifying sediment populations within multi-modal particle-size distributions. Earth Surface Processes and Landforms, 30, 579–590, https://doi.org/10.1002/esp.1159
    [Google Scholar]
  33. Lima, B.E.M. and De Ros, L.F
    . 2019. Deposition, diagenetic and hydrothermal processes in the Aptian Pre-Salt lacustrine carbonate reservoirs of the northern Campos Basin, offshore Brazil. Sedimentary Geology, 383, 55–81, https://doi.org/10.1016/j.sedgeo.2019.01.006
    [Google Scholar]
  34. Lupin, J.H. and Hampson, G.J
    . 2020. Sediment-routing controls on sandstone bulk petrographic composition and texture across an ancient shelf: example from Cretaceous Western Interior Basin, Utah and Colorado, U.S.A. Journal of Sedimentary Research, 90, 1389–1409, https://doi.org/10.2110/jsr.2020.044
    [Google Scholar]
  35. Marchand, A.M.E., Apps, G., Li, W. and Rotzien, J.R
    . 2015. Depositional processes and impact on reservoir quality in deepwater Paleogene reservoirs, US Gulf of Mexico. AAPG Bulletin, 99, 1635–1648, https://doi.org/10.1306/04091514189
    [Google Scholar]
  36. Morad, S., Ketzer, J.M. and De Ros, L.F
    . 2000. Spatial and temporal dis-tribution of diagenetic alterations in siliciclastic rocks: implications for mass transfer in sedimentary basins. Sedimentology, 47, 95–120, https://doi.org/10.1046/j.1365-3091.2000.00007.x
    [Google Scholar]
  37. Muniz, M.C. and Bosence, D.W.J.
    2015. Pre-salt microbialites from the Campos Basin (offshore Brazil): image log facies, facies model and cyclicity in lacustrine carbonates. Geological Society, London, Special Publications , 418, 221–242, https://doi.org/10.1144/SP418.10
    [Google Scholar]
  38. Nutz, A., Schuster, M. et al.
    2020. Plio-Pleistocene sedimentation in West Turkana (Turkana Depression, Kenya, East African Rift System): paleolake fluctuations, paleolandscapes and controlling factors. Earth-Science Reviews, 211, 103415, https://doi.org/10.1016/j.earscirev.2020.103415
    [Google Scholar]
  39. Passega, R
    . 1957. Texture as characteristic of clastic deposition. AAPG Bulletin, 41, 1952–1984, https://doi.org/10.1306/0BDA594E-16BD-11D7-8645000102C1865D
    [Google Scholar]
  40. . 1964. Grain size representation by CM patterns as a geological tool. Journal of Sedimentary Petrology, 34, 830–847, https://doi.org/10.1306/74D711A4-2B21-11D7-8648000102C1865D
    [Google Scholar]
  41. . 1977. Significance of CM diagrams of sediments deposited by suspensions. Sedimentology, 24, 723–733, https://doi.org/10.1111/j.1365-3091.1977.tb00267.x
    [Google Scholar]
  42. Passega, R. and Byramjee, R
    . 1969. Grain-size image of clastic deposits. Sedimentology, 13, 233–252, https://doi.org/10.1111/j.1365-3091.1969.tb00171.x
    [Google Scholar]
  43. Pedrosa-Soares, A.C., Noce, C.M., Wiedemann, C.M. and Pinto, C.P
    . 2001. The Araçuaí-West-Congo Orogen in Brazil: an overview of a confined orogen formed during Gondwanaland assembly. Precambrian Research, 110, 307–323, https://doi.org/10.1016/S0301-9268(01)00174-7
    [Google Scholar]
  44. Pietzsch, R., Oliveira, D.M., Tedeschi, L.R., Queiroz Neto, J.V., Figueiredo, M.F., Vazquez, J.C. and de Souza, R.S
    . 2018. Palaeohydrology of the Lower Cretaceous pre-salt lacustrine system, from rift to post-rift phase, Santos Basin, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 507, 60–80, https://doi.org/10.1016/j.palaeo.2018.06.043
    [Google Scholar]
  45. Pyles, D.R., Straub, K.M. and Stammer, J.G
    . 2013. Spatial variations in the composition of turbidites due to hydrodynamic fractionation. Geophysical Research Letters, 40, 3919–3923, https://doi.org/10.1002/grl.50767
    [Google Scholar]
  46. Rossi, C. and Alaminos, A
    . 2014. Evaluating the mechanical compaction of quartzarenites: the importance of sorting (Llanos foreland basin, Colombia). Marine and Petroleum Geology, 56, 222–238, https://doi.org/10.1016/j.marpetgeo.2014.04.012
    [Google Scholar]
  47. Rostami, F., Feiznia, S., Aleali, M., Hashmati, M. and Yousefi Yegane, B
    . 2020. Application of grain-size statistics, lithofacies and architectural element in determining depositional environment of Kashkan Formation in Merk watershed, Kermanshah. International Journal of Environmental Science and Technology, 17, 1351–1372, https://doi.org/10.1007/s13762-019-02470-9
    [Google Scholar]
  48. Sahu, B.K
    . 1964. Depositional mechanism from the size analysis of clastic sediments. Journal of Sedimentary Petrology, 34, 73–83, https://doi.org/10.1306/74D70FCE-2B21-11D7-8648000102C1865D
    [Google Scholar]
  49. Scherer, C.M.S., Lavina, L.E.C., Dias Filho, D.C., Oliveira, F.M., Bongiolo, D.E. and Silva, E
    . 2007. Stratigraphy and facies architecture of the fluvial–aeolian–lacustrine Sergi Formation (upper Jurassic), Reconcavo Basin, Brazil. Sedimentary Geology, 194, 169–193, https://doi.org/10.1016/j.sedgeo.2006.06.002
    [Google Scholar]
  50. Schuster, M. and Nutz, A
    . 2017. Lacustrine wave-dominated clastic shorelines: modern to ancient littoral landforms and deposits from the Lake Turkana Basin (East African Rift System, Kenya). Journal of Paleolimnology, 59, 221–243, https://doi.org/10.1007/s10933-017-9960-4
    [Google Scholar]
  51. Scrucca, L., Fop, M., Murphy, T.B. and Raftery, A.E.
    2016. Mclust 5: clustering, classification and density estimation using Gaussian finite mixture models. The R Journal, 8, 289–317, https://doi.org/10.32614/rj-2016-021
    [Google Scholar]
  52. Tucker, M.E.
    2001. Sedimentary Petrology. 3rd edn. Blackwell, Oxford, UK.
    [Google Scholar]
  53. Vieira, R.A.B.
    1998. Análise Estratigráfica E Evolução Paleogeográfica da Seção Neoaptiana na Porção Sul da Plataforma de São Mateus, Bacia do Espírito Santo, Brasil. MSc thesis, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
    [Google Scholar]
  54. Vieira, R.A.B., Mendes, M.P., Vieira, P.E., Costa, L.A.R., Tagliari, C.V., Barcelar, L.A.P. and Feijó, F.J
    . 1994. Bacia do Espírito Santo e Mucuri. Boletim de Geociências da Petrobras, 8, 191–202.
    [Google Scholar]
  55. Worden, R.H. and Burley, S.D.
    2003. Sandstone diagenesis: the evolution of sand to stone. In: Worden, R.H. and Burley, S.D. (eds) Sandstone Diagenesis: Recent and Ancient. International Association of Sedimentologist Reprint Series, 4, 3–44, https://doi.org/10.1002/9781444304459.ch
    [Google Scholar]
  56. Wright, V.P.
    2012. Lacustrine carbonates in rift settings: the interaction of volcanic and microbial processes on carbonate deposition. Geological Society, London, Special Publications , 370, 39–47, https://doi.org/10.1144/SP370.2
    [Google Scholar]
  57. Wright, V.P. and Barnett, A.J.
    2015. An abiotic model for the development of textures in some South Atlantic early Cretaceous lacustrine carbonates. Geological Society, London, Special Publications , 418, 209–219, https://doi.org/10.1144/SP418.3
    [Google Scholar]
  58. Wright, V.P. and Barnett, A.J
    . 2020. The textural evolution and ghost matrices of the Cretaceous Barra Velha Formation carbonates from the Santos Basin, offshore Brazil. Facies, 66, 7, https://doi.org/10.1007/s10347-019-0591-2
    [Google Scholar]
  59. Zhang, Z. and Dong, Z
    . 2015. Grain size characteristics in the Hexi Corridor Desert. Aeolian Research, 18, 55–67, https://doi.org/10.1016/j.aeolia.2015.05.006
    [Google Scholar]
  60. Zuffa, G.G.
    1985. Optical analysis of arenites: influence of methodology on compositional results. In: Zuffa, G.G. (ed.) Provenance of Arenites. NATO ASI Series C: Mathematical and Physical Sciences , 148, 165–189.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1144/petgeo2020-112
Loading
/content/journals/10.1144/petgeo2020-112
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error