1887
Volume 27, Issue 4
  • ISSN: 1354-0793
  • E-ISSN:

Abstract

Secure retention of CO in geological reservoirs is essential for effective storage. Solubility trapping, the dissolution of CO into formation water, is a major sink on geological timescales in natural CO reservoirs. Observations during CO injection, combined with models of CO reservoirs, indicate the immediate onset of solubility trapping. There is uncertainty regarding the evolution of dissolution rates between the observable engineered timescale of years and decades, and the >10 kyr state represented by natural CO reservoirs. A small number of studies have constrained dissolution rates within natural analogues. The studies show that solubility trapping is the principal storage mechanism after structural trapping, removing 10–50% of CO across whole reservoirs. Natural analogues, engineered reservoirs and model studies produce a wide range of estimates on the fraction of CO dissolved and the dissolution rate. Analogue and engineered reservoirs do not show the high fractions of dissolved CO seen in several models. Evidence from natural analogues supports a model of most dissolution occurring during emplacement and migration, before the establishment of a stable gas–water contact. A rapid decline in CO dissolution rate over time suggests that analogue reservoirs are in dissolution equilibrium for most of the CO residence time.

Dissolution rate for all plots and exponential function curves for scenarios A and B are available at https://doi.org/10.6084/m9.figshare.c.5476199

This article is part of the Geoscience for CO storage collection available at: https://www.lyellcollection.org/cc/geoscience-for-co2-storage

Loading

Article metrics loading...

/content/journals/10.1144/petgeo2020-120
2021-07-26
2021-12-04
Loading full text...

Full text loading...

References

  1. Ajayi, T., Gomes, J.S. and Bera, A
    . 2019. A review of CO2 storage in geological formations emphasizing modeling, monitoring and capacity estimation approaches. Petroleum Science, 16, 1028–1063, https://doi.org/10.1007/s12182-019-0340-8
    [Google Scholar]
  2. Alcalde, J., Flude, S. et al.
    2018. Estimating geological CO2 storage security to deliver on climate mitigation. Nature Communications, 9, 2201, https://doi.org/10.1038/s41467-018-04423-1
    [Google Scholar]
  3. Allis, R., Chidgey, T., Gwynn, W., Morgan, C., White, S., Adams, M. and Moore, J.
    2001. Natural CO2 reservoirs on the Colorado Plateau and southern Rocky Mountains: candidates for CO2 sequestration. Paper presented at theFirst National Conference on Carbon Sequestration, 14–17 May 2001, Washington DC, USA.
    [Google Scholar]
  4. Alnes, H., Eiken, O. and Stenvold, T
    . 2008. Monitoring gas production and CO2 injection at the Sleipner field using time-lapse gravimetry. Geophysics, 73, WA155–WA161, https://doi.org/10.1190/1.2991119
    [Google Scholar]
  5. Alnes, H., Eiken, O., Nooner, S., Sasagawac, G., Stenvold, T. and Zumberge, M.
    2011. Results from Sleipner gravity monitoring: updated density and temperature distribution of the CO2 plume. Energy Procedia, 4, 5504–5511, https://doi.org/10.1016/j.egypro.2011.02.536
    [Google Scholar]
  6. Arts, R., Eiken, O., Chadwick, A., Zweigel, P., van der Meer, L. and Zinszner, B
    . 2004. Monitoring of CO2 injected at Sleipner using time-lapse seismic data. Energy, 29, 1383–1392, https://doi.org/10.1016/j.energy.2004.03.072
    [Google Scholar]
  7. Bonneville, A., Gilmore, T. et al.
    2013. Evaluating the suitability for CO2 storage at the FutureGen 2.0 site, Morgan County, Illinois, USA. Energy Procedia, 37, 6125–6132, https://doi.org/10.1016/j.egypro.2013.06.541
    [Google Scholar]
  8. Cavanagh, A.
    2013. Benchmark calibration and prediction of the Sleipner CO2 plume from 2006 to 2012. Energy Procedia, 37, 3529–3545, https://doi.org/10.1016/j.egypro.2013.06.246
    [Google Scholar]
  9. Cavanagh, A.J. and Haszeldine, R.S
    . 2014. The Sleipner storage site: capillary flow modeling of a layered CO2 plume requires fractured shale barriers within the Utsira Formation. International Journal of Greenhouse Gas Control, 21, 101–112, https://doi.org/10.1016/j.ijggc.2013.11.017
    [Google Scholar]
  10. Chadwick, R.A.
    2013. Offshore CO2 storage: Sleipner natural gas field beneath the North Sea. In: Gluyas, J. and Mathias, S. (eds) Geological Storage of Carbon Dioxide (CO2). Woodhead Publishing, Cambridge, UK, 227–250, https://doi.org/10.1533/9780857097279.3.227
    [Google Scholar]
  11. Eiken, O., Ringrose, P., Hermanrud, C., Nazarian, B., Torp, T. and Høier, L.
    2011. Lessons learned from 14  years of CCS operations: sleipner, In Salah and Snøhvit. Energy Procedia, 4, 5541–5548, https://doi.org/10.1016/j.egypro.2011.02.541
    [Google Scholar]
  12. Gilfillan, S.M.V., Ballentine, C.J. et al.
    2008. The noble gas geochemistry of natural CO2 gas reservoirs from the Colorado Plateau and Rocky Mountain provinces, USA. Geochimica et Cosmochimica Acta, 72, 1174–1198, https://doi.org/10.1016/j.gca.2007.10.009
    [Google Scholar]
  13. Gilfillan, S.M.V., Sherwood Lollar, B. et al.
    2009. Solubility trapping in formation water as dominant CO2 sink in natural gas fields. Nature, 458, 614–618, https://doi.org/10.1038/nature07852
    [Google Scholar]
  14. Gilmore, K.A., Neufeld, J.A. and Bickle, M.J
    . 2020. CO2 dissolution trapping rates in heterogenous porous media. Geophysical Research Letters, 47, e2020GL087001, https://doi.org/10.1029/2020GL087001
    [Google Scholar]
  15. Haszeldine, R.S., Quinn, O. et al.
    2005. Natural geochemical analogues for carbon dioxide storage in deep geological porous reservoirs, a United Kingdom perspective. Oil & Gas Science and Technology, 60, 33–49, https://doi.org/10.2516/ogst:2005004
    [Google Scholar]
  16. Holland, G. and Gilfillan, S.
    2013. Application of noble gases to the viability of CO2 storage. In: Burnard, P. (ed.) The Noble Gases as Geochemical Tracers. Advances in Isotope Geochemistry. Springer, Berlin, 177–223, https://doi.org/10.1007/978-3-642-28836-4_8
    [Google Scholar]
  17. Jacob, R. and Saylor, B.Z
    . 2016. CO2 solubility in multi-component brines containing NaCl, KCl, CaCl2 and MgCl2 at 297  K and 1–14  MPa. Chemical Geology, 424, 86–95, https://doi.org/10.1016/j.chemgeo.2016.01.013
    [Google Scholar]
  18. Kempka, T., De Lucia, M. and Kühn, M.
    2014. Geomechanical integrity verification and mineral trapping quantification for the Ketzin CO2 storage pilot site by coupled numerical simulations. Energy Procedia, 63, 3330–3338, https://doi.org/10.1016/j.egypro.2014.11.361
    [Google Scholar]
  19. Martinez, M.J. and HesseM.A
    . 2016. Two-phase convective CO2 dissolution in saline aquifers. Water Resources Research, 52, 585–599, https://doi.org/10.1002/2015WR017085
    [Google Scholar]
  20. Majer, V., Sedlbauer, J. and Bergin, G
    . 2008. Henry's law constant and related coefficients for aqueous hydrocarbons, CO2 and H2S over a wide range of temperature and pressure. Fluid Phase Equilibria, 272, 65–74, https://doi.org/10.1016/j.fluid.2008.07.013
    [Google Scholar]
  21. Miocic, J.M., Gilfillan, S.M.V., Roberts, J.J., Edlmann, K., McDermott, C.I. and HaszeldineR.S
    . 2018. Controls on CO2 storage security in natural reservoirs and implications for CO2 storage site selection. International Journal of Greenhouse Gas Control, 51, 118–125, https://doi.org/10.1016/j.ijggc.2016.05.019
    [Google Scholar]
  22. Nereson, A., Stroud, J., Karlstrom, K., Heizler, M. and McIntosh, W
    . 2013. Dynamic topography of the western Great Plains: Geomorphic and 40Ar/39Ar evidence for mantle-driven uplift associated with the Jemez lineament of NE New Mexico and SE Colorado. Geosphere, 9, 521–545, https://doi.org/10.1130/GES00837.1
    [Google Scholar]
  23. Newmark, R.L., Friedmann, S.J. and Carrol, S.A
    . 2010. Water challenges for geologic carbon capture and sequestration. Environmental Management, 46, 651–661, https://doi.org/10.1007/s00267-010-9434-1
    [Google Scholar]
  24. Nooner, S.L., Eiken, O., Hermanrud, C., Sasagawa, G.S., Stenvold, T. and Zumberge, M.A
    . 2007. Constraints on the in situ density of CO2 within the Utsira formation from time-lapse seafloor gravity measurements. International Journal of Greenhouse Gas Control, 1, 198–214, https://doi.org/10.1016/S1750-5836(07)00018-7
    [Google Scholar]
  25. Orsini, P., Cantucci, B. and Quattrocchi, F.
    2014. Large-scale numerical modelling of CO2 injection and containment phases for an Italian near-coast reservoir using PFLOTRAN. Energy Procedia, 51, 334–343, https://doi.org/10.1016/j.egypro.2014.07.040
    [Google Scholar]
  26. Ozah, R.C., Lakshminarasimhan, S., Pope, G.A., Sepehrnoori, K. and Bryant, S.L.
    2005. Numerical simulation of the storage of pure CO2 and CO2–H2S gas mixtures in deep saline aquifers. Paper SPE 97255 presented at theSPE Annual Technical Conference and Exhibition, 9–12 October 2005, Dallas, Texas, USA, https://doi.org/10.2118/97255-MS
    [Google Scholar]
  27. Pickup, G.E., Jin, M., Olden, P., Mackay, E.J. and Sohrabi, M.
    2011. A sensitivity study on CO2 storage in saline aquifers. Paper SPE 143054 presented at theSPE EUROPEC/EAGE Annual Conference and Exhibition, 23–26 May 2011, Vienna, Austria, https://doi.org/10.2118/143054-MS
    [Google Scholar]
  28. Pruess, K. and Nordbotten, J
    . 2011. Numerical simulation studies of the long-term evolution of a CO2 plume in a saline aquifer with a sloping caprock. Transport in Porous Media, 90, 135–151, https://doi.org/10.1007/s11242-011-9729-6
    [Google Scholar]
  29. Pruess, K. and Spycher, N
    . 2007. ECO2N – a fluid property module for the TOUGH2 code for studies of CO2 storage in saline aquifers. Energy Conversion and Management, 48, 1761–1767, https://doi.org/10.1016/j.enconman.2007.01.016
    [Google Scholar]
  30. Riaz, A. and Cinar, Y
    . 2014. Carbon dioxide sequestration in saline formations: Part I – Review of the modeling of solubility trapping. Journal of Petroleum Science and Engineering, 124, 367–380, https://doi.org/10.1016/j.petrol.2014.07.024
    [Google Scholar]
  31. Rohatgi, A.
    2020. WebPlotDigitizer Version 4.3, https://automeris.io/WebPlotDigitizer
  32. Sathaye, K.J., Hesse, M.A., Cassidy, M. and Stockli, D.F
    . 2014. Constraints on the magnitude and rate of CO2 dissolution at Bravo Dome natural gas field. Proceedings of the National Academy of Sciences of the United States of America, 43, 15  332–15  337, https://doi.org/10.1073/pnas.1406076111
    [Google Scholar]
  33. Sathaye, K.J., Smye, A.J., Jordan, J.S. and Hesse, M.A
    . 2016. Noble gases preserve history of retentive continental crust in the Bravo Dome natural CO2 field, New Mexico. Earth and Planetary Science Letters, 443, 32–40, https://doi.org/10.1016/j.epsl.2016.03.014
    [Google Scholar]
  34. Sato, K., Mito, S., Horie, T., Ohkuma, H., Saito, H., Watanabe, J. and Yoshimura, T
    . 2011. Monitoring and simulation studies for assessing macro- and meso-scale migration of CO2 sequestered in an onshore aquifer: Experiences from the Nagaoka pilot site, Japan. International Journal of Greenhouse Gas Control, 5, 125–137, https://doi.org/10.1016/j.ijggc.2010.03.003
    [Google Scholar]
  35. Soltanian, M.R., Amooie, M.A. et al.
    2017. Dissolution Trapping of carbon dioxide in heterogeneous aquifers, Environmental Science & Technology, 51, 7732–7741, https://doi.org/10.1021/acs.est.7b01540
    [Google Scholar]
  36. Spycher, N. and Pruess, K
    . 2005. CO2–H2O mixtures in the geological sequestration of CO2. II. Partitioning in chloride brines at 12–100°C and up to 600  bar. Geochimica et Cosmochimica Acta, 69, 3309–3320, https://doi.org/10.1016/j.gca.2005.01.015
    [Google Scholar]
  37. Steel, L., Liu, K., Mackay, E. and Maroto-Valer, M.M
    . 2016. CO2 solubility measurements in brine under reservoir conditions: a comparison of experimental and geochemical modeling methods. Greenhouse Gas Science and Technology, 6, 197–217, https://doi.org/10.1002/ghg.1590
    [Google Scholar]
  38. Szulczewski, M.L., Hesse, M.A. and Juanes, R
    . 2013. Carbon dioxide dissolution in structural and stratigraphic traps. Journal of Fluid Mechanics, 736, 287–315, https://doi.org/10.1017/jfm.2013.511
    [Google Scholar]
  39. Williams, G.A. and Chadwick, R.A
    . 2021. Influence of reservoir-scale heterogeneities on the growth, evolution and migration of a CO2 plume at the Sleipner Field, Norwegian North Sea. International Journal of Greenhouse Gas Control, 106, 103260, https://doi.org/10.1016/j.ijggc.2021.103260
    [Google Scholar]
  40. Wycherley, H., Fleet, A. and Shaw, H
    . 1999. Some observations on the origins of large volumes of carbon dioxide accumulations in sedimentary basins. Marine and Petroleum Geology, 16, 489–494, https://doi.org/10.1016/S0264-8172(99)00047-1
    [Google Scholar]
  41. Zhou, Z., Ballentine, C.J., Schoell, M. and Stevens, S.H
    . 2012. Identifying and quantifying natural CO2 sequestration processes over geological timescales: The Jackson Dome CO2 Deposit, USA. Geochimica et Cosmochimica Act, 86, 257–275, https://doi.org/10.1016/j.gca.2012.02.028
    [Google Scholar]
  42. Zwahlen, C.A., Kampman, N., Dennis, P., Zhou, Z. and Holland, G
    . 2017. Estimating carbon dioxide residence time scales through noble gas and stable isotope diffusion profiles. Geology, 45, 995–998, https://doi.org/10.1130/G39291.1
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1144/petgeo2020-120
Loading
/content/journals/10.1144/petgeo2020-120
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error