1887
Volume 27, Issue 2
  • ISSN: 1354-0793
  • E-ISSN:
Preview this article:

There is no abstract available.

Loading

Article metrics loading...

/content/journals/10.1144/petgeo2020-136
2021-03-09
2024-03-29
Loading full text...

Full text loading...

References

  1. Caine, J. S., Evans, J. P. and Forster, C. B
    . 1996. Fault zone architecture and permeability structure. Geology, 24, 1025–1028, https://doi.org/10.1130/0091-7613(1996)024<1025:FZAAPS>2.3.CO;2
    [Google Scholar]
  2. Chester, L. and Logan, J.M
    . 1987. Composite planar fabric of gouge from the Punchbowl Fault, California. Journal of Structural Geology, 9, 621–634, IN5–IN6, https://doi.org/10.1016/0191-8141(87)90147-7
    [Google Scholar]
  3. Childs, M., Manzocchi, T., Walsh, J.J., Bonson, C.G., Nicol, A. and Schöpfer, M.P.J
    . 2009. A geometric model of fault zone and fault rock thickness variations. Journal of Structural Geology, 31, 117–127, https://doi.org/10.1016/j.jsg.2008.08.009
    [Google Scholar]
  4. Dewhurst, D.N., Sarout, J., Delle Piane, C., Siggins, A.F. and Raven, M.D
    . 2015. Empirical strength prediction for preserved shales. Marine and Petroleum Geology, 67, 512–525, https://doi.org/10.1016/j.marpetgeo.2015.06.004
    [Google Scholar]
  5. Ewy, R.T
    . 2015. Shale/claystone response to air and liquid exposure, and implications for handling, sampling and testing. International Journal of Rock Mechanics and Mining Sciences, 80, 388–401, https://doi.org/10.1016/j.ijrmms.2015.10.009
    [Google Scholar]
  6. . 2018. Practical approaches for addressing shale testing challenges associated with permeability, capillarity and brine interactions. Geomechanics for Energy and the Environment,14, 3–15, https://doi.org/10.1016/j.gete.2018.01.001
    [Google Scholar]
  7. Fisher, Q. J. and Knipe, R. J.
    1998. Fault sealing processes in siliciclastic sediments. Geological Society, London, Special Publications , 147, 117–134, https://doi.org/10.1144/GSL.SP.1998.147.01.08
    [Google Scholar]
  8. Fisher, Q. J. and Knipe, R. J
    . 2001. The permeability of faults within siliciclastic petroleum reservoirs of the North Sea and Norwegian Continental Shelf. Marine and Petroleum Geology, 18, 1063–1081, https://doi.org/10.1016/S0264-8172(01)00042-3
    [Google Scholar]
  9. Fisher, Q.J., Haneef, J., GrattoniC.A., Allshorn, S. and Lorinczi, P
    . 2018. Permeability of fault rocks in siliciclastic reservoirs: Recent advances. Marine and Petroleum Geology, 91, 29–42, https://doi.org/10.1016/j.marpetgeo.2017.12.019
    [Google Scholar]
  10. Giger, S.B., Ewy, R.T., Favero, V., Stankovic, R. and Keller, L.M
    . 2018. Consolidated-undrained triaxial testing of Opalinus Clay: Results and method validation. Geomechanics for Energy and the Environment, 14, 16–28, https://doi.org/10.1016/j.gete.2018.01.003
    [Google Scholar]
  11. Grant, N.T
    . 2020. Using Monte Carlo models to predict hydrocarbon column heights and to illustrate how faults influence buoyant fluid entrapment. Petroleum Geoscience, 27 , https://doi.org/10.1144/petgeo2019-156
    [Google Scholar]
  12. Haines, T.J., Michie, E.A.H., Neilson, J. E. and Healy, D
    . 2016. Permeability evolution across carbonate hosted normal fault zones. Marine and Petroleum Geology, 72, 62–82, https://doi.org/10.1016/j.marpetgeo.2016.01.008
    [Google Scholar]
  13. Hildenbrand, A., Schlömer, S., Krooss, B.M. and Littke, R
    . 2004. Gas breakthrough experiments on pelitic rocks: comparative study with N2, CO2 and CH4 . Geofluids, 4, 1468–8115, https://doi.org/10.1111/j.1468-8123.2004.00073.x
    [Google Scholar]
  14. Kaminskaite, I., Fisher, Q.J. and Michie, E.A.H
    . 2019. Microstructure and petrophysical properties of deformation bands in high porosity carbonates. Journal of Structural Geology, 119, 61–80, https://doi.org/10.1016/j.jsg.2018.12.001
    [Google Scholar]
  15. Manzocchi, T., Walsh, J.J., Nell, P. and Yielding, G
    . 1999. Fault transmissibility multipliers for flow simulation models. Petroleum Geoscience, 5, 53–63, https://doi.org/10.1144/petgeo.5.1.53
    [Google Scholar]
  16. Manzocchi, T., Heath, A.E., Walsh, J.J. and Childs, C
    . 2002. The representation of two-phase fault-rock properties in flow simulation models. Petroleum Geoscience, 8, 119–132, https://doi.org/10.1144/petgeo.8.2.119
    [Google Scholar]
  17. Micarelli, L., Benedicto, A. and Wibberley, C.A.J
    . 2006. Structural evolution and permeability of normal fault zones in highly porous carbonate rocks. Journal of Structural Geology, 28, 1214–1227, https://doi.org/10.1016/j.jsg.2006.03.036
    [Google Scholar]
  18. Michie, E.A.H
    . 2015. Influence of host lithofacies on fault rock variation in carbonate fault zones: A case study from the Island of Malta. Journal of Structural Geology, 76, 61–79, https://doi.org/10.1016/j.jsg.2015.04.005
    [Google Scholar]
  19. Michie, E.A.H., Cooke, A.P. et al.
    2020. Key controls on the hydraulic properties of fault rocks in carbonates. Petroleum Geoscience, 27 , https://doi.org/10.1144/petgeo2020-034
    [Google Scholar]
  20. Mitchell, T.M. and Faulkner, D.R
    . 2011. The nature and origin of off-fault damage surrounding strike-slip fault zones with a wide range of displacements: A field study from the Atacama fault system, northern Chile. Journal of Structural Geology, 31, 802–816, https://doi.org/10.1016/j.jsg.2009.05.002
    [Google Scholar]
  21. Schröckenfuchs, T., Schuller, V., Zamolyi, A., Mekonnen, E. and Grasemann, B
    . 2020. Influence of host rock composition on permeability reduction in shallow fault zones – implications for fault seal analysis (Vienna Basin, Austria). Petroleum Geoscience, 27 , https://doi.org/10.1144/petgeo2020-014
    [Google Scholar]
  22. Shipton, Z.K. and Cowie, P.A
    . 2003. A conceptual model for the origin of fault damage zone structures in high-porosity sandstone. Journal of Structural Geology, 25, 333–344, https://doi.org/10.1016/S0191-8141(02)00037-8
    [Google Scholar]
  23. Tondi, E., Rustichelli, A. et al.
    2016. Hydraulic properties of fault zones in porous carbonates, examples from central and southern Italy. Italian Journal of Geosciences, 135, 68–79, https://doi.org/10.3301/IJG.2015.08
    [Google Scholar]
  24. Wilson, P., Smithy, S., Povey, D. and Harris, S
    . 2020. Ranking and selecting fault models using flow-indicator fault properties and simple streamline simulations. Petroleum Geoscience, 27 , https://doi.org/10.1144/petgeo2020-017
    [Google Scholar]
  25. Yielding, G., Freeman, B. and Needham, D.T
    . 1997. Quantitative fault seal prediction. AAPG Bulletin, 81, 817–917.
    [Google Scholar]
  26. Yielding, G., Bretan, P. and Freeman, B
    . 2010. Fault seal calibration: a brief review. Geological Society, London, Special Publications , 347, 243–255, https://doi.org/10.1144/SP347.14
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1144/petgeo2020-136
Loading
  • Article Type: Introduction

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error