1887
Volume 28, Issue 2
  • ISSN: 1354-0793
  • E-ISSN:

Abstract

Commercial helium systems have been found to date as a serendipitous by-product of petroleum exploration. There are nevertheless significant differences in the source and migration properties of helium compared with petroleum. An understanding of these differences enables prospects for helium gas accumulations to be identified in regions where petroleum exploration would not be tenable. Here we show how the basic petroleum exploration playbook (source, primary migration from the source rock, secondary longer distance migration, trapping) can be modified to identify helium plays. Plays are the areas occupied by a prospective reservoir and overlying seal associated with a mature helium source. This is the first step in identifying the detail of helium prospects (discrete pools of trapped helium). We show how these principles, adapted for helium, can be applied using the Rukwa Basin in the Tanzanian section of the East African Rift as a case study. A thermal hiatus caused by rifting of the continental basement has resulted in a surface expression of deep crustal gas release in the form of high-nitrogen gas seeps containing up to 10% He. We calculate the total likely regional source-rock helium generative capacity, identify the role of the Rungwe volcanic province in releasing the accumulated crustal helium and show the spatial control of helium concentration dilution by the associated volcanic CO. Nitrogen, both dissolved and as a free-gas phase, plays a key role in the primary and secondary migration of crustal helium and its accumulation into what might become a commercially viable gas pool. This too is examined. We identify and discuss evidence that structures and seals suitable for trapping hydrocarbon and CO gases will likely also be efficient for helium accumulation on the timescale of the Rukwa Basin activity. The Rukwa Basin prospective recoverable P resources of helium have been independently estimated to be about 138 BSCF (billion standard cubic ft: 2.78 × 10 m at STP). If this volume is confirmed it would represent about 25% of the current global helium reserve. Two exploration wells, Tai 1 and Tai 2, completed by August 2021 have proved the presence of seal and reservoir horizons with the reservoirs containing significant helium shows.

This article is part of the Energy Geoscience Series available at https://www.lyellcollection.org/cc/energy-geoscience-series

[open-access]

Loading

Article metrics loading...

/content/journals/10.1144/petgeo2021-029
2022-02-23
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/pg/28/2/petgeo2021-029.html?itemId=/content/journals/10.1144/petgeo2021-029&mimeType=html&fmt=ahah

References

  1. Abeinomugisha, D. and Kasande, R. 2012. Tectonic control on hydrocarbon accumulation in the intra-continental Albertine Graben of the East African Rift System. AAPG Memoirs , 100, 209–228, https://doi.org/10.1306/13351554M1003539
    [Google Scholar]
  2. Adams, J.A.S., Osmond, J.K. and Rodgers, J.J.W. 1959. The geochemistry of uranium and thorium. Physics and Chemistry of the Earth, 3, 298–348, https://doi.org/10.1016/0079-1946(59)90008-4
    [Google Scholar]
  3. American Physical Society, Materials Research Society and American Chemical Society 2016. Responding to the U.S. Research Community's Liquid Helium Crisis: An Action Plan to Preserve U.S. Innovation. A Science Policy Report issued by American Physical Society, Materials Research Society, American Chemical Society, https://www.aps.org/policy/reports/popa-reports/upload/HeliumReport.pdf
    [Google Scholar]
  4. Bagdasaryan, G.P., Gerasimovskiy, V.I., Polyakov, A.I. and Gukasyan, R.K. 1973. Age of volcanic rocks in the rift zones of East Africa. Geochemistry International, 10, 66e71.
    [Google Scholar]
  5. Bähr, R., Lippolt, H.J. and Wernicke, R.S. 1994. Temperature-induced 4He degassing of specularite and botryoidal hematite: A 4He retentivity study. Journal of Geophysical Research: Solid Earth, 99, 17  695–17  707, https://doi.org/10.1029/94JB01055
    [Google Scholar]
  6. Baiyegunhi, C., Oloniniyi, T.L. and Gwavava, O. 2014. The correlation of dry density and porosity of some rocks from the Karoo Supergroup: A case study of selected rock types between Grahamstown and Queenstown in the Eastern Cape Province, South Africa. IOSR Journal of Engineering, 4, 30–40, https://doi.org/10.9790/3021-041213040
    [Google Scholar]
  7. Ballentine, C. 2017. Helium in crisis. Chemistry World, 25 April, https://www.chemistryworld.com/opinion/helium-in-crisis/3007152.article
    [Google Scholar]
  8. Ballentine, C.J. and Burnard, P.G. 2002. Production, release and transport of noble gases in the continental crust. Reviews in Mineralogy and Geochemistry, 47, 481–538, https://doi.org/10.2138/rmg.2002.47.12
    [Google Scholar]
  9. Ballentine, C.J. and Sherwood Lollar, B. 2002. Regional groundwater focusing of nitrogen and noble gases into the Hugoton–Panhandle giant gas field, USA. Geochimica et Cosmochimica Acta, 66, 2483–2497, https://doi.org/10.1016/S0016-7037(02)00850-5
    [Google Scholar]
  10. Ballentine, C.J., O'Nions, R.K., Oxburgh, E.R., Horvath, F. and Deak, J. 1991. Rare gas constraints on hydrocarbon accumulation, crustal degassing and groundwater flow in the Pannonian Basin. Earth and Planetary Science Letters, 105, 229–246, https://doi.org/10.1016/0012-821X(91)90133-3
    [Google Scholar]
  11. Barry, P.H., Hilton, D.R., Fischer, T.P., De Moor, J.M., Mangasini, F. and Ramirez, C. 2013. Helium and carbon isotope systematics of cold ‘mazuku’ CO2 vents and hydrothermal gases and fluids from Rungwe Volcanic Province, southern Tanzania. Chemical Geology, 339, 141–156, https://doi.org/10.1016/j.chemgeo.2012.07.003
    [Google Scholar]
  12. Barry, P.H., Hilton, D.R. et al. 2015. Helium isotopic evidence for modification of the cratonic lithosphere during the Permo-Triassic Siberian flood basalt event. Lithos, 216, 73–80, https://doi.org/10.1016/j.lithos.2014.12.001
    [Google Scholar]
  13. Barry, P.H., Lawson, M., Meurer, W.P., Warr, O., Mabry, J.C., Byrne, D.J. and Ballentine, C.J. 2016. Noble gases solubility models of hydrocarbon charge mechanism in the Sleipner Vest gas field. Geochimica et Cosmochimica Acta, 194, 291–309, https://doi.org/10.1016/j.gca.2016.08.021
    [Google Scholar]
  14. Barry, P.H., Lawson, M., Meurer, W.P., Danabalan, D., Byrne, D.J., Mabry, J.C. and Ballentine, C.J. 2017. Determining fluid migration and isolation times in multiphase crustal domains using noble gases. Geology, 45, 775–778, https://doi.org/10.1130/G38900.1
    [Google Scholar]
  15. Boniface, N. and Schenk, V. 2012. Neoproterozoic eclogites in the Paleoproterozoic Ubendian Belt of Tanzania: Evidence for a Pan-African suture between the Bangweulu Block and the Tanzania Craton. Precambrian Research, 208–211, 72–89, https://doi.org/10.1016/j.precamres.2012.03.014
    [Google Scholar]
  16. Boniface, N., Schenk, V. and Appel, P. 2012. Paleoproterozoic eclogites of MORB-type chemistry and three Proterozoic orogenic cycles in the Ubendian Belt (Tanzania): Evidence from monazite and zircon geochronology, and geochemistry. Precambrian Research, 192–195, 16–33, https://doi.org/10.1016/j.precamres.2011.10.007
    [Google Scholar]
  17. Bottomley, D.J., Ross, J.D. and Clarke, W.B. 1984. Helium and neon isotope geochemistry of some ground waters from the Canadian Precambrian Shield. Geochimica et Cosmochimica Acta, 48, 1973–1985, https://doi.org/10.1016/0016-7037(84)90379-X
    [Google Scholar]
  18. Botz, R.W. and Stoffers, P. 1993. Light hydrocarbon gases in Lake Tanganyika hydrothermal fluids (east-central Africa). Chemical geology, 104, 217–224, https://doi.org/10.1016/0009-2541(93)90152-9
    [Google Scholar]
  19. Boyce, J.W., Hodges, K.V., Olszewski, W.J. and Jercinovic, M.J. 2005. He diffusion in monazite: Implications for (U–Th)/He thermochronometry. Geochemistry, Geophysics, Geosystems, 6, Q12004, https://doi.org/10.1029/2005GC001058
    [Google Scholar]
  20. Broadhead, R.F. 2005. Helium in New Mexico – geologic distribution, resource demand, and exploration possibilities. New Mexico Geology, 27, 93–101.
    [Google Scholar]
  21. Broadhead, R.F. and Gillard, L. 2004. Helium in New Mexico: Geologic Distribution and Exploration Possibilities. New Mexico Bureau of Geology and Mineral Resources Open File Report 483.
    [Google Scholar]
  22. Burwash, R.A. and Cumming, G.L. 1976. Uranium and thorium in the Precambrian basement of western Canada. I. Abundance and distribution. Canadian Journal of Earth Sciences, 13, 284–293, https://doi.org/10.1139/e76-030
    [Google Scholar]
  23. Chaki, S., Takarli, M. and Agbodjan, W.P. 2008. Influence of thermal damage on physical properties of a granite rock: porosity, permeability and ultrasonic wave evolutions. Construction and Building Materials, 22, 1456–1461, https://doi.org/10.1016/j.conbuildmat.2007.04.002
    [Google Scholar]
  24. Cheng, A., Sherwood Lollar, B., Giunta, T.M., Mundle, S.O.C. and Ballentine, C.J. 2018. Helium distribution in the Williston and the Southwest Ontario basins. Goldschmidt Abstracts, 2018, 403, https://goldschmidtabstracts.info/abstracts/abstractView?id=2018003772 [accessed 29 December 2020].
    [Google Scholar]
  25. Cheng, A., Sherwood Lollar, B. et al. 2021. Determining the role of diffusion and basement flux in controlling 4He distribution in sedimentary basin fluids. Earth and Planetary Science Letters, 574, 117175, https://doi.org/10.1016/j.epsl.2021.117175
    [Google Scholar]
  26. Cherniak, D.J., Watson, E.B. and Thomas, J.B. 2009. Diffusion of helium in zircon and apatite. Chemical Geology, 268, 155–166, https://doi.org/10.1016/j.chemgeo.2009.08.011
    [Google Scholar]
  27. Clarke, R.H., Nuttall, W.J. and Glowacki, B.A. 2012. Introduction. In: Nuttall, W.J., Clarke, R.H. and Glowacki, B.A. (eds) The Future of Helium as a Natural Resource. Routledge, Abingdon, UK, 1–4.
    [Google Scholar]
  28. Connor, S. 2013. A ballooning problem: the great helium shortage. The Independent, 4 January, https://www.independent.co.uk/news/science/a-ballooning-problem-the-great-helium-shortage-8439108.html
    [Google Scholar]
  29. Danabalan, D. 2017. Helium: Exploration Methodology for a Strategic Resource. PhD thesis, Durham University, Durham, UK.
    [Google Scholar]
  30. Dawson, J.B. 2008. The Gregory Rift Valley and Neogene–Recent Volcanoes of Northern Tanzania. Geological Society, London, Memoirs, 33, https://doi.org/10.1144/M33.0
    [Google Scholar]
  31. Day, J.M., Barry, P.H., Hilton, D.R., Burgess, R., Pearson, D.G. and Taylor, L.A. 2015. The helium flux from the continents and ubiquity of low-3He/4He recycled crust and lithosphere. Geochimica et Cosmochimica Acta, 153, 116–133, https://doi.org/10.1016/j.gca.2015.01.008
    [Google Scholar]
  32. De Bruin, R.H. 1995. Helium resources of Wyoming. In: Resources of Southwest Wyoming: 46th Field Conference Guidebook. Wyoming Geological Association, Casper, WY, 191–201.
    [Google Scholar]
  33. Delvaux, D., Levi, K., Kajara, R. and Sarota, J. 1992. Cenozoic paleostress and kinematic evolution of the Rukwa–North Malawi rift valley (East African Rift System). Bulletin des Centres de Recherche Exploration–Production Elf-Aquitaine, 16, 383–406.
    [Google Scholar]
  34. Delvaux, D., Kervyn, F., Vittori, E., Kajara, R.S.A. and Kilembe, E. 1998. Late Quaternary tectonic activity and lake level change in the Rukwa Rift Basin. Journal of African Earth Sciences, 26, 397–421, https://doi.org/10.1016/S0899-5362(98)00023-2
    [Google Scholar]
  35. Dobbin, C.E. 1968. Geology of natural gases rich in helium, nitrogen, carbon dioxide, and hydrogen sulfide. AAPG Memoirs , 9, 1957–1969, https://doi.org/10.1306/M9363C134
    [Google Scholar]
  36. Dunai, T.J. and Roselieb, K. 1996. Sorption and diffusion of helium in garnet: implications for volatile tracing and dating. Earth and Planetary Science Letters, 139, 411–421, https://doi.org/10.1016/0012-821X(96)00029-5
    [Google Scholar]
  37. Ebinger, C.J., Deino, A.L., Tesha, A.L., Becker, T. and Ring, U. 1993. Tectonic controls on rift basin geometry: Evolution of the northern Malawi (Nyasa) Rift. Journal of Geophysical Research: Solid Earth, 98, 17  821–17  836, https://doi.org/10.1029/93JB01392
    [Google Scholar]
  38. Ebinger, C., Djomani, Y.P., Mbede, E., Foster, A. and Dawson, J.B. 1997. Rifting Archaean lithosphere: the Eyasi–Manyara–Natron rifts, East Africa. Journal of the Geological Society, London, 154, 947–960, https://doi.org/10.1144/gsjgs.154.6.0947
    [Google Scholar]
  39. Ebinger, C.J., van Wijk, J. and Keir, D. 2013. The time scales of continental rifting: Implications for global processes. Geological Society of America Special Papers , 500, 371–396, https://doi.org/10.1130/2013.2500(11)
    [Google Scholar]
  40. Farley, K.A. 2000. Helium diffusion from apatite: General behavior as illustrated by Durango fluorapatite. Journal of Geophysical Research: Solid Earth, 105, 2903–2914, https://doi.org/10.1029/1999JB900348
    [Google Scholar]
  41. Farley, K.A. 2002. (U–Th)/He dating: Techniques, calibrations, and applications. Reviews in Mineralogy and Geochemistry, 47, 819–844, https://doi.org/10.2138/rmg.2002.47.18
    [Google Scholar]
  42. Foster, A., Ebinger, C., Mbede, E. and Rex, D. 1997. Tectonic development of the northern Tanzanian sector of the East African Rift System. Journal of the Geological Society, London, 154, 689–700, https://doi.org/10.1144/gsjgs.154.4.0689
    [Google Scholar]
  43. Fritz, H., Tenczer, V., Hauzenberger, C.A., Wallbrecher, E., Hoinkes, G., Muhongo, S. and Mogessie, A. 2005. Central Tanzanian tectonic map: a step forward to decipher Proterozoic structural events in the East African Orogen. Tectonics, 24, TC6013, https://doi.org/10.1029/2005TC001796
    [Google Scholar]
  44. Gage, B.D. and Driskill, D.L. 2005. Analyses of Natural Gases, 2002–2004. United States Department of the Interior Bureau of Land Management Technical Note 418, https://www.blm.gov/sites/blm.gov/files/documents/files/Library_BLMTechnicalNote418.pdf
    [Google Scholar]
  45. Gautheron, C. and Moreira, M. 2002. Helium signature of the subcontinental lithospheric mantle. Earth and Planetary Science Letters, 199, 39–47, https://doi.org/10.1016/S0012-821X(02)00563-0
    [Google Scholar]
  46. Gerling, C.R. 1983. McElmo Dome Leadville carbon dioxide field. In: Colorado in Oil and Gas Fields of the Four Corners Area, Volume III. Four Corners Geological Society, Durango, CO, 735–739.
    [Google Scholar]
  47. Getachew, E., van der Meijde, M., Nyblade, A.A. and van der Meer, F.D. 2011. A crustal thickness map of Africaderived from a global gravity field model using Euler deconvolution. Geophysical Journal International, 187, 1–9, https://doi.org/10.1111/j.1365-246X.2011.05140.x
    [Google Scholar]
  48. Gilfillan, S. M. 2006. Deep Magmatic Degassing and the Colorado Plateau Uplift. PhD thesis, University of Manchester, Manchester, UK.
    [Google Scholar]
  49. Gilfillan, S.M., Ballentine, C.J. et al. 2008. The noble gas geochemistry of natural CO2 gas reservoirs from the Colorado Plateau and Rocky Mountain provinces, USA. Geochimica et Cosmochimica Acta, 72, 1174–1198, https://doi.org/10.1016/j.gca.2007.10.009
    [Google Scholar]
  50. Gluyas, J. 2019a. The emergence of the helium industry: the history of helium exploration, part 1 of 2. AAPG Explorer, 2019, January, 16–17, https://explorer.aapg.org/story/articleid/50466/the-emergence-of-the-helium-industry
    [Google Scholar]
  51. Gluyas, J. 2019b. Helium shortages and emerging helium provinces: the history of helium exploration, part 2. AAPG Explorer, 2019, February, 18–22, https://explorer.aapg.org/story/articleid/51290/helium-shortages-and-emerging-helium-provinces
    [Google Scholar]
  52. Gold, T. and Held, M. 1987. Helium–nitrogen–methane systematics in natural gases of Texas and Kansas. Journal of Petroleum Geology, 10, 415–424, https://doi.org/10.1111/j.1747-5457.1987.tb00582.x
    [Google Scholar]
  53. Hamak, J.E. 1989. Helium resources of Wyoming. In: Gas Resources of Wyoming: 40th Field Conference Guidebook. Wyoming Geological Association, Casper, WY, 117–121.
    [Google Scholar]
  54. Harris, J.E. 1993. Woodside: T. 18-20 S., R. 13-14 E., SLPM Emery County, Utah in Oil and Gas Fields of Utah. Utah Geological Association, Salt Lake City, UT.
    [Google Scholar]
  55. Heikal, M.T.S., El-Dosuky, B.T., Ghoneim, M.F. and Sherif, M.I. 2013. Natural radioactivity in basement rocks and stream sediments, Sharm El Sheikh Area, South Sinai, Egypt: radiometric levels and their significant contributions. Arabian Journal of Geosciences, 6, 3229–3239, https://doi.org/10.1007/s12517-012-0622-6
    [Google Scholar]
  56. Helium One Global 2020. Placing and Subscription of 211 267 597 new Ordinary Shares of no par value at 2.84 pence. Helium One Global Limited, Road Town, Tortola, British Virgin Islands, http://www.helium-one.com/wp-content/uploads/2020/11/259989-Project-Apollo-CLN-reduced-memory-Final-13.11.20.pdf [accessed 1 January 2021].
  57. Helium One Global 2021. Helium One News & Updates. Helium One Global Limited, Road Town, Tortola, British Virgin Islands, http://www.helium-one.com/media/
  58. Hiyagon, H. and Kennedy, B.M. 1992. Noble gases in CH4-rich gas fields, Alberta, Canada. Geochimica et Cosmochimica Acta, 56, 1569–1589, https://doi.org/10.1016/0016-7037(92)90226-9
    [Google Scholar]
  59. Holland, G., Sherwood Lollar, B., Li, L., Lacrampe-Couloume, G., Slater, G.F. and Ballentine, C.J. 2013. Deep fracture fluids isolated in the crust since the Precambrian era. Nature, 497, 357, https://doi.org/10.1038/nature12127
    [Google Scholar]
  60. Hussain, N. 1997. Flux of 4He from Carnmenellis granite: modelling of an HDR geothermal reservoir. Applied Geochemistry, 12, 1–8, https://doi.org/10.1016/S0883-2927(96)00038-8
    [Google Scholar]
  61. Hutcheon, I. 1999. Controls on the distribution of non-hydrocarbon gases in the Alberta Basin. Bulletin of Canadian Petroleum Geology, 47, 573–593.
    [Google Scholar]
  62. James, T.C. 1967a. Thermal springs in Tanzania. Institution of Mining and Metallurgy, Transactions/Section B (Applied Earth Science), 76, B1–B18.
    [Google Scholar]
  63. James, T.C. 1967b. Thermal springs in Tanzania – discussions and conclusions. Institution of Mining and Metallurgy, Transactions/Section B (Applied Earth Science), 76, B168–B174.
    [Google Scholar]
  64. Jenden, P.D. and Kaplan, I.R. 1989. Origin of natural-gas in Sacramento Basin, California. AAPG Bulletin, 73, 431–453.
    [Google Scholar]
  65. Jenden, P.D., Kaplan, I.R., Poreda, R.J. and Craig, H. 1988a. Origin of nitrogen rich gases in the Californian Great Valley: Evidence from helium, carbon and nitrogen isotope ratios. Geochimica et Cosmochimica Acta, 52, 851–861, https://doi.org/10.1016/0016-7037(88)90356-0
    [Google Scholar]
  66. Jenden, P.D., Newell, K.D., Kaplan, I.R. and Watney, W.L. 1988b. Composition and stable isotope geochemistry of natural gases from Kansas, Midcontinent, USA. Chemical Geology, 71, 117–147, https://doi.org/10.1016/0009-2541(88)90110-6
    [Google Scholar]
  67. Kalin, S. and Finn, T. 2017. Qatar closes helium plants amid rift with Arab powers. Reuters, 13 June, https://www.reuters.com/article/us-gulf-qatar-helium-idUSKBN19426X
    [Google Scholar]
  68. Karolytė, R., Johnson, G. et al. 2019. Tracing the migration of mantle CO2 in gas fields and mineral water springs in south-east Australia using noble gas and stable isotopes. Geochimica et Cosmochimica Acta, 259, 109–128, https://doi.org/10.1016/j.gca.2019.06.002
    [Google Scholar]
  69. Kraml, M., Kaudse, T. and Aeschbach, W. and Tanzanian Exploration Team 2016. The search for volcanic heat sources in Tanzania: a helium isotope perspective. Proceedings of the 6th African Rift Geothermal Conference, 2–4 November 2016, Addis Ababa, Ethiopia. 1–13pp.
  70. Lenoir, J.L., Liégeois, J.P., Theunissen, K. and Klerkx, J. 1994. The Palaeoproterozoic Ubendian shear belt in Tanzania: geochronology and structure. Journal of African Earth Sciences, 19, 169–184, https://doi.org/10.1016/0899-5362(94)90059-0
    [Google Scholar]
  71. Lippmann-Pipke, J., Sherwood Lollar, B., Niedermann, S., Stroncik, N.A., Naumann, R., van Heerden, E. and Onstott, T.C. 2011. Neon identifies two billion year old fluid component in Kaapvaal Craton. Chemical Geology, 283, 287–296, https://doi.org/10.1016/j.chemgeo.2011.01.028
    [Google Scholar]
  72. Lippolt, H.J., Leitz, M., Wernicke, R.S. and Hagedorn, B. 1994. (Uranium+thorium)/helium dating of apatite: experience with samples from different geochemical environments. Chemical Geology, 112, 179–191, https://doi.org/10.1016/0009-2541(94)90113-9
    [Google Scholar]
  73. Lowenstern, J.B., Evans, W.C., Bergfeld, D. and Hunt, A.G. 2014. Prodigious degassing of a billion years of accumulated radiogenic helium at Yellowstone. Nature, 506, 355–358, https://doi.org/10.1038/nature12992
    [Google Scholar]
  74. Lowenstern, J.B., Bergfeld, D., Evans, W.C. and Hunt, A.G. 2015. Origins of geothermal gases at Yellowstone. Journal of Volcanology and Geothermal Research, 302, 87–101, https://doi.org/10.1016/j.jvolgeores.2015.06.010
    [Google Scholar]
  75. Macheyeki, A.S., Delvaux, D., De Batist, M. and Mruma, A. 2008. Fault kinematics and tectonic stress in the seismically active Manyara–Dodoma Rift segment in Central Tanzania – Implications for the East African Rift. Journal of African Earth Sciences, 51, 163–188, https://doi.org/10.1016/j.jafrearsci.2008.01.007
    [Google Scholar]
  76. Martel, D.J., O'Nions, R.K., Hilton, D.R. and Oxburgh, E.R. 1990. The role of element distribution in production and release of radiogenic helium: The Carnmenellis Granite, southwest England. Chemical Geology, 88, 207–221, https://doi.org/10.1016/0009-2541(90)90090-T
    [Google Scholar]
  77. Martin, T.G., Smith, S.N. and Bondos, J. 2008. Materials and corrosion history with Labarge Madison Production: A 20 year story of success. Paper NACE-08634 presented atCORROSION 2008, 16–20 March 2008, New Orleans, Louisiana, USA.
    [Google Scholar]
  78. McKenzie, D. 1978. Some remarks on the development of sedimentary basins. Earth and Planetary Science Letters, 40, 25–32, https://doi.org/10.1016/0012-821X(78)90071-7
    [Google Scholar]
  79. Merrill, M.D., Hunt, A.G. and Lohr, C.D. 2014. Noble gas geochemistry investigation of high CO2 natural gas at the LaBarge Platform, Wyoming, USA. Energy Procedia, 63, 4186–4190, https://doi.org/10.1016/j.egypro.2014.11.451
    [Google Scholar]
  80. Meunier, J.D., Sellier, E. and Pagal, M. 1990. Radiation-damage rims in quartz from uranium-bearing sandstones. Journal of Sedimentary Research, 60, 53–58.
    [Google Scholar]
  81. Morgan, C.D. and Chidsey, T.C., Jr 1991. Gordon Creek, Farnham Dome, and Woodside fields, carbon and Emery Counties, Utah. In: Chidsey, T.C., Jr (ed.) Geology of East-Central Utah. Utah Geological Association, Salt Lake City, UT, 301–310.
    [Google Scholar]
  82. Mruma, A.H. 1995. Stratigraphy and palaeodepositional environment of the Palaeoproterozoic volcano-sedimentary Konse Group in Tanzania. Journal of African Earth Sciences, 21, 281–290, https://doi.org/10.1016/0899-5362(95)00065-2
    [Google Scholar]
  83. Muhongo, S. and Lenoir, J.L. 1994. Pan-African granulite-facies metamorphism in the Mozambique Belt of Tanzania: U–Pb zircon geochronology. Journal of the Geological Society, London, 151, 343–347, https://doi.org/10.1144/gsjgs.151.2.0343
    [Google Scholar]
  84. Mulaya, E.S., Gluyas, J.G., McCaffrey, K.J.W., Phillips, T.B. and Ballentine, D.J. 2022. Structural geometry and evolution of the Rukwa Rift Basin, Tanzania: Implications for helium potential. Basin Research, https://doi.org/10.1111/bre.12646
    [Google Scholar]
  85. Murphy, H. 2019. The global helium shortage is real but don't blame party balloons. The New York Times, 16 May, https://www.nytimes.com/2019/05/16/science/helium-shortage-party-city.html [accessed 14 August 2019].
    [Google Scholar]
  86. Neretnieks, I. 2013. Some aspects of release and transport of gases in deep granitic rocks: possible implications for nuclear waste repositories. Hydrology Journal, 21, 1701–1716, https://doi.org/10.1007/s10040-013-0986-z
    [Google Scholar]
  87. Nyblade, A.A. and Brazier, R.A. 2002. Precambrian lithospheric controls on the development of the East African rift system. Geology, 30, 755–758, https://doi.org/10.1130/0091-7613(2002)030<0755:PLCOTD>2.0.CO;2
    [Google Scholar]
  88. O'Nions, R.K. and Ballentine, C.J. 1993. Rare gas studies of basin scale fluid movement. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 344, 141–156, https://doi.org/10.1098/rsta.1993.0082
    [Google Scholar]
  89. Pepin, R.O. and Porcelli, D. 2002. Origin of noble gases in the terrestrial planets. Reviews in Mineralogy and Geochemistry, 47, 191–246, https://doi.org/10.2138/rmg.2002.47.7
    [Google Scholar]
  90. Pflumio, C., Boulègue, J. and Tiercelin, J.J. 1994. Hydrothermal activity in the northern Tanganyika rift, East Africa. Chemical Geology, 116, 85–109, https://doi.org/10.1016/0009-2541(94)90159-7
    [Google Scholar]
  91. Pierce, A.P., Gott, G.B. and Mytton, J.W. 1964. Uranium and Helium in the Panhandle Gas Field, Texas, and Adjacent Areas. United States Geological Survey Professional Papers, 454-G.
    [Google Scholar]
  92. Pinna, P., Calvez, J.Y., Abessolo, A., Angel, J.M., Mekoulou-Mekoulou, T., Mananga, G. and Vernhet, Y. 1994. Neoproterozoic events in the Tcholliré area: Pan-African crustal growth and geodynamics in central-northern Cameroon (Adamawa and North Provinces). Journal of African Earth Sciences, 18, 347–353, https://doi.org/10.1016/0899-5362(94)90074-4
    [Google Scholar]
  93. Poreda, R., Jenden, P.D., Kaplan, I.R. and Craig, H. 1986. Mantle helium in Sacramento Basin natural gas wells. Geochimica et Cosmochimica Acta, 50, 9–33, https://doi.org/10.1016/0016-7037(86)90231-0
    [Google Scholar]
  94. Quennell, A.M. 1956. The Bukoban System of East Africa. In: Report of the International Geological Congress, 20th Session, Mexico, International Union of Geological Sciences, Beijing, China, 281–307.
    [Google Scholar]
  95. Reddy, S.M., Collins, A.S., Buchan, C. and Mruma, A.H. 2004. Heterogeneous excess argon and Neoproterozoic heating in the Usagaran Orogen, Tanzania, revealed by single grain 40Ar/39Ar thermochronology. Journal of African Earth Sciences, 39, 165–176, https://doi.org/10.1016/j.jafrearsci.2004.07.052
    [Google Scholar]
  96. Reich, M., Ewing, R.C., Ehlers, T.A. and Becker, U. 2007. Low-temperature anisotropic diffusion of helium in zircon: implications for zircon (U–Th)/He thermochronometry. Geochimica et Cosmochimica Acta, 71, 3119–3130, https://doi.org/10.1016/j.gca.2007.03.033
    [Google Scholar]
  97. Reimer, G.M. 1976. Helium Detection as a Guide for Uranium Exploration.United States Geological Survey Open File Report, 76–240.
    [Google Scholar]
  98. Reiners, P.W. 2005. Zircon (U–Th)/He thermochronometry. Reviews in Mineralogy and Geochemistry, 58, 151–179, https://doi.org/10.2138/rmg.2005.58.6
    [Google Scholar]
  99. Reiners, P.W. and Farley, K.A. 1999. Helium diffusion and (U–Th)/He thermochronometry of titanite. Geochimica et Cosmochimica Acta, 63, 3845–3859, https://doi.org/10.1016/S0016-7037(99)00170-2
    [Google Scholar]
  100. René, M. 2017. Nature, sources, resources and production of thorium. In: Akitsu, T. (ed.) Descriptive Inorganic Chemistry Researches of Metal Compounds. IntechOpen, London, https://doi.org/10.5772/intechopen.68304
    [Google Scholar]
  101. Research and Markets 2020. The Future of the Helium Industry, 2020–2030; Projected to Reach $15.73 Billion by 2023. Global Newswire, 14 February, https://www.globenewswire.com/news-release/2020/02/14/1985137/0/en/The-Future-of-the-Helium-Industry-2020-2030-Projected-to-Reach-15-73-Billion-by-2023.html [accessed 29 December 2020].
    [Google Scholar]
  102. Roberts, E.M., O'Connor, P.M., Gottfried, M.D., Stevens, N., Kapalima, S. and Ngasala, S. 2004. Revised stratigraphy and age of the Red Sandstone Group in the Rukwa Rift Basin, Tanzania. Cretaceous Research, 25, 749–759, https://doi.org/10.1016/j.cretres.2004.06.007
    [Google Scholar]
  103. Roberts, E.M., O'Connor, P.M. et al. 2012a. Sedimentology and depositional environments of the Red Sandstone Group, Rukwa Rift Basin, southwestern Tanzania: New insight into Cretaceous and Paleogene terrestrial ecosystems and tectonics in sub-equatorial Africa. Journal of African Geosciences, 57, 179–212, https://doi.org/10.1016/j.jafrearsci.2009.09.002
    [Google Scholar]
  104. Roberts, E.M., Stevens, N.J. et al. 2012b. Initiation of the western branch of the East African Rift coeval with the eastern branch. Nature Geoscience, 5, 289–294, https://doi.org/10.1038/ngeo1432
    [Google Scholar]
  105. Roberts, D., Chowdhury, P.R., Lowe, S.J. and Christensen, A.N. 2016. Airborne gravity gradiometer surveying of petroleum systems under Lake Tanganyika, Tanzania. Exploration Geophysics, 47, 228–236, https://doi.org/10.1071/EG15075
    [Google Scholar]
  106. Rogers, N.W. 2006. Basaltic magmatism and the geodynamics of the East African Rift System. Geological Society, London, Special Publications , 259, 77–93, https://doi.org/10.1144/GSL.SP.2006.259.01.08
    [Google Scholar]
  107. Rudnick, R. and Fountain, D.M. 1995. Nature and composition of the continental crust: A lower crustal perspective. Reviews of Geophysics, 33, 267–309, https://doi.org/10.1029/95RG01302
    [Google Scholar]
  108. Schoell, M., Tietze, K. and Schoberth, S.M. 1988. Origin of methane in Lake Kivu (east-central Africa). Chemical Geology, 71, 257–265, https://doi.org/10.1016/0009-2541(88)90119-2
    [Google Scholar]
  109. Sengör, A.M. and Burke, K. 1978. Relative timing of rifting and volcanism on Earth and its tectonic implications. Geophysical Research Letters, 5, 419–421, https://doi.org/10.1029/GL005i006p00419
    [Google Scholar]
  110. Shuster, D.L., Flowers, R.M. and Farley, K.A. 2006. The influence of natural radiation damage on helium diffusion kinetics in apatite. Earth and Planetary Science Letters, 249, 148–161, https://doi.org/10.1016/j.epsl.2006.07.028
    [Google Scholar]
  111. Sorenson, R. 2005. A dynamic model for the Permian Panhandle and Hugoton fields, western Anadarko basin. AAPG Bulletin, 89, 921–938, https://doi.org/10.1306/03010504045
    [Google Scholar]
  112. Stewart, W. W. and Street, B. A. 1992. Labarge Anticline. In: Wyoming Oil and Gas Fields Symposium, Greater Green River Basin and Overthrust Belt. Wyoming Geological Association, Casper, WY, 200–205.
    [Google Scholar]
  113. StilwellD. P. 1989. CO2 resources of the Moxa Arch and the Madison Reservoir. In: Gas Resources of Wyoming: 40th Field Conference Guidebook. Wyoming Geological Association, Casper, WY, 105–115.
    [Google Scholar]
  114. Stokes, M. 2013. Our research is on ice due to shortage of helium. The Independent, 4 January, https://www.independent.co.uk/news/science/our-research-is-on-ice-due-to-shortage-of-helium-8439110.html
    [Google Scholar]
  115. Stuart, F., Turner, G. and Taylor, R. 1994. He–Ar isotope systematics of fluid inclusions: resolving mantle and crustal contributions to hydrothermal fluids. In: Matsuda, J. (ed.) Noble Gas Geochemistry and Cosmochemistry. Terra Scientific Publishing, Tokyo, 261–277.
    [Google Scholar]
  116. Tedesco, D., Tassi, F., Vaselli, O., Poreda, R.J., Darrah, T., Cuoco, E. and Yalire, M.M. 2010. Gas isotopic signatures (He, C, and Ar) in the Lake Kivu region (western branch of the East African rift system): Geodynamic and volcanological implications. Journal of Geophysical Research: Solid Earth, 115, B01205, https://doi.org/10.1029/2008JB006227
    [Google Scholar]
  117. Tiercelin, J.J., Pflumio, C. et al. 1993. Hydrothermal vents in Lake Tanganyika, East African, Rift system. Geology, 21, 499–502, https://doi.org/10.1130/0091-7613(1993)021<0499:HVILTE>2.3.CO;2
    [Google Scholar]
  118. Torgersen, T. 1989. Terrestrial helium degassing fluxes and the atmospheric helium budget: Implications with respect to the degassing processes of continental crust. Chemical Geology: Isotope Geoscience Section, 79, 1–14, https://doi.org/10.1016/0168-9622(89)90002-X
    [Google Scholar]
  119. Torgersen, T. 2010. Continental degassing flux of 4He and its variability. Geochemistry, Geophysics, Geosystems, 11, Q06002, https://doi.org/10.1029/2009GC002930
    [Google Scholar]
  120. Uwe, R. 2014. The East African Rift system. Austrian Journal of Earth Sciences, 107, 132–146.
    [Google Scholar]
  121. Vogt, M., Kröner, A., Poller, U., Sommer, H., Muhongo, S. and Wingate, M.T.D. 2006. Archaean and Palaeoproterozoic gneisses reworked during a Neoproterozoic (Pan-African) high-grade event in the Mozambique belt of East Africa: Structural relationships and zircon ages from the Kidatu area, central Tanzania. Journal of African Earth Sciences, 45, 139–155, https://doi.org/10.1016/j.jafrearsci.2006.01.012
    [Google Scholar]
  122. Walker, B.G. 1969. Springs of deep seated origin in Tanzania. In: Kacura, G. (ed.) Proceedings of the 23rd International Geological Congress, International Union of Geological Sciences, Beijing, China, Volume 19, 171–180.
    [Google Scholar]
  123. Warr, O., Sherwood Lollar, B. et al. 2018. Tracing ancient hydrogeological fracture network age and compartmentalisation using noble gases. Geochimica et Cosmochimica Acta, 222, 340–362, https://doi.org/10.1016/j.gca.2017.10.022
    [Google Scholar]
  124. Weeraratne, D.S., Forsyth, D.W., Fischer, K.M. and Nyblade, A.A. 2003. Evidence for an upper mantle plume beneath the Tanzanian craton from Rayleigh wave tomography. Journal of Geophysical Research: Solid Earth, 108, 2427, https://doi.org/10.1029/2002JB002273
    [Google Scholar]
  125. Weinlich, F.H., Bräuer, K., Kämpf, H., Strauch, G., Tesař, J. and Weise, S.M. 1999. An active subcontinental mantle volatile system in the western Eger rift, Central Europe: Gas flux, isotopic (He, C, and N) and compositional fingerprints. Geochimica et Cosmochimica Acta, 63, 3653–3671, https://doi.org/10.1016/S0016-7037(99)00187-8
    [Google Scholar]
  126. Wescott, W.A., Krebs, W.N., Engelhardt, D.W. and Cunningham, S.M. 1991. New biostratigraphic age dates from the Lake Rukwa rift basin in western Tanzania. AAPG Bulletin, 75, 1255–1263.
    [Google Scholar]
  127. Wheeler, W.H. and Karson, J.A. 1994. Extension and subsidence adjacent to a ‘weak’ continental transform: An example from the Rukwa rift, East Africa. Geology, 22, 625–628, https://doi.org/10.1130/0091-7613(1994)022<0625:EASATA>2.3.CO;2
    [Google Scholar]
  128. Wingerter, H. R. 1968. Greenwood gas field, Kansas, Colorado, and Oklahoma: Natural gas in Kansas. AAPG Memoirs , 9, 1557–1566, https://doi.org/10.1306/M9363C104
    [Google Scholar]
  129. Wolf, R.A., Farley, K.A. and Silver, L.T. 1996. Helium diffusion and low-temperature thermochronometry of apatite. Geochimica et Cosmochimica Acta, 60, 4231–4240, https://doi.org/10.1016/S0016-7037(96)00192-5
    [Google Scholar]
  130. Wollenweber, J., a Alles, S., Kronimus, A., Busch, A., Stanjek, H. and Krooss, B.M. 2009. Caprock and overburden processes in geological CO2 storage: An experimental study on sealing efficiency and mineral alterations. Energy Procedia, 1, 3469–3476, https://doi.org/10.1016/j.egypro.2009.02.138
    [Google Scholar]
  131. Zadnik, M.G. and Jeffery, P.M. 1985. Radiogenic neon in an Archaean anorthosite. Chemical Geology: Isotope Geoscience Section, 52, 119–125, https://doi.org/10.1016/0168-9622(85)90012-0
    [Google Scholar]
  132. Zhu, Y., Shi, B. and Fang, C. 2000. The isotopic compositions of molecular nitrogen: implications on their origins in natural gas accumulations. Chemical Geology, 164, 321–330, https://doi.org/10.1016/S0009-2541(99)00151-5
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1144/petgeo2021-029
Loading
/content/journals/10.1144/petgeo2021-029
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error