1887
Volume 28, Issue 2
  • ISSN: 1354-0793
  • E-ISSN:

Abstract

The geometry of carbonate platforms reflects the interaction of several factors. However, the impact of carbonate-producing organisms has been poorly investigated so far. This study applies stratigraphic forward modelling (SFM) and sensitivity analysis to examine, referenced to the Miocene Llucmajor Platform, the effect of changes of dominant biotic production in the oligophotic and euphotic zones on platform geometry. Our results show that the complex interplay of carbonate production rates, bathymetry and variations in accommodation space control the platform geometry. The main driver of progradation is the oligophotic production of rhodalgal sediments during the lowstands. This study demonstrates that platform geometry and internal architecture varies significantly according to the interaction of the predominant carbonate-producing biotas. The input parameters for this study are based on well-understood Miocene carbonate biotas with characteristic euphotic, oligophotic and photo-independent carbonate production in which it is crucial that each carbonate-producing class is modelled explicitly within the simulation run and not averaged with a single carbonate production–depth profile. This is important in subsurface exploration studies based on stratigraphic forward models where the overall platform geometry may be approximated through calibration runs, and constrained by seismic surveys and wellbores. However, the internal architecture is likely to be oversimplified without an in-depth understanding of the target carbonate system and a transfer to forward modelling parameters.

Loading

Article metrics loading...

/content/journals/10.1144/petgeo2021-053
2022-04-04
2024-03-29
Loading full text...

Full text loading...

References

  1. Abreu, V.S. and Haddad, G.A. 1998. Glacioeustatic fluctuations: The mechanism linking stable isotope events and sequence stratigraphy from the Early Oligocene to Middle Miocene. SEPM Special Publications , 60, 245–259, https://doi.org/10.2110/pec.98.02.0245
    [Google Scholar]
  2. Adey, W.H. and Vassar, J.M . 1975. Colonization, succession and growth rates of tropical crustose coralline algae (Rhodophyta, Cryptonemiales). Phycologia, 14, 55–69, https://doi.org/10.2216/i0031-8884-14-2-55.1
    [Google Scholar]
  3. Agrawal, D., Dwivedi, S., Barrois, A., Koeck, C.H., El-Wazir, Z., Al-Madani, N. and Aillud, G. 2015. Impact of environmental parameters on forward stratigraphic modelling from uncertainty analysis; Lower Cretaceous, Abu Dhabi. Paper SPE-175683-MS presented at theSPE Reservoir Characterisation and Simulation Conference and Exhibition, 14–16 September 2015, Abu Dhabi, UAE, https://doi.org/10.2118/175683-MS
    [Google Scholar]
  4. Ahr, W.M . 1973. Carbonate ramp – alternative to shelf model. AAPG Bulletin, 57, 1826, https://pubs.geoscienceworld.org/aapgbull/article-abstract/57/9/1826/557019/Carbonate-Ramp-Alternative-to-Shelf-Model?redirectedFrom=fulltext
    [Google Scholar]
  5. Al-Salmi, M., John, C.M. and Hawie, N . 2019. Quantitative controls on the regional geometries and heterogeneities of the Rayda to Shu'aiba formations (Northern Oman) using forward stratigraphic modelling. Marine and Petroleum Geology, 99, 45–60, https://doi.org/10.1016/j.marpetgeo.2018.09.030
    [Google Scholar]
  6. Asprion, U., Westphal, H., Nieman, M. and Pomar, L . 2009. Extrapolation of depositional geometries of the Menorcan Miocene carbonate ramp with ground-penetrating radar. Facies, 55, 37–46, https://doi.org/10.1007/s10347-008-0160-6
    [Google Scholar]
  7. Benisek, M.-F., Betzler, C., Marcano, G. and Mutti, M . 2009. Coralline–algal assemblages of a Burdigalian platform slope: implications for carbonate platform reconstruction (northern Sardinia, western Mediterranean Sea). Facies, 55, 375–386, https://doi.org/10.1007/s10347-009-0183-7
    [Google Scholar]
  8. Berra, F. and Carminati, E . 2012. Differential compaction and early rock fracturing in high-relief carbonate platforms: numerical modelling of a Triassic case study (Esino Limestone, Central Southern Alps, Italy). Basin Research, 24, 598–614, https://doi.org/10.1111/j.1365-2117.2012.00542.x
    [Google Scholar]
  9. Berra, F., Lanfranchi, A., Smart, P.L., Whitaker, F.F. and Ronchi, P . 2016. Forward modelling of carbonate platforms: sedimentological and diagenetic constraints from an application to a flat-topped greenhouse platform (Triassic, Southern Alps, Italy). Marine and Petroleum Geology, 78, 636–655, https://doi.org/10.1016/j.marpetgeo.2016.10.011
    [Google Scholar]
  10. Betzler, C., Fürstenau, J. et al. 2013. Sea-level and ocean-current control on carbonate-platform growth, Maldives, Indian Ocean. Basin Research, 25, 172–196, https://doi.org/10.1111/j.1365-2117.2012.00554.x
    [Google Scholar]
  11. Betzler, C., Eberli, G.P. et al. 2018. Refinement of Miocene sea level and monsoon events from the sedimentary archive of the Maldives (Indian Ocean). Progress in Earth and Planetary Science, 5, https://doi.org/10.1186/s40645-018-0165-x
    [Google Scholar]
  12. Biddle, K.T., Schlager, W., Rudolph, K.W. and Bush, T.L . 1992. Seismic model of a progradational carbonate platform, Picco di Vallandro, the Dolomites, Northern Italy. AAPG Bulletin, 76, 14–30, https://doi.org/10.1306/bdff8754-1718-11d7-8645000102c1865d
    [Google Scholar]
  13. Borgomano, J., Lanteaume, C., Ridet, O., Rousseau, M. and Vilasi, N. 2014. 3D Stratigraphic forward modelling for the prediction of carbonate platform architectures: Evaluation of stratigraphic trap potential in Middle East Mesozoic carbonate sequences. AAPG Search and Discovery Article #41328, GEO-2014, 11th Middle East Geosciences Conference and Exhibition, 10–12 March 2014, Manama, Bahrain.
    [Google Scholar]
  14. Bosence, D., Pomar, L., Waltham, D.A. and Lankester, T.H.G . 1994. Computer modeling a Miocene carbonate platform, Mallorca, Spain. AAPG Bulletin, 78, 247–266, https://doi.org/10.1306/bdff9078-1718-11d7-8645000102c1865d
    [Google Scholar]
  15. Bosscher, H. and Schlager, W . 1993. Accumulation rates of carbonate platforms. The Journal of Geology, 101, 345–355, https://doi.org/10.1086/648228
    [Google Scholar]
  16. Bourrouilh-Le Jan, F.G. and Hottinger, L.C. 1988. Occurrence of rhodolites in the tropical Pacific – a consequence of Mid-Miocene paleo-oceanographic change. Sedimentary Geology, 60, 355–367, https://doi.org/10.1016/0037-0738(88)90130-3
    [Google Scholar]
  17. Brandano, M . 2003. Tropical/subtropical inner ramp facies in lower Miocene Calcari a Briozoi e Litotamni of the Monte Lungo area (Cassino Plain, Central Apennines, Italy). Bollettino Della Societa Geologica Italiana, 122, 85–98.
    [Google Scholar]
  18. Brandano, M., Tomassetti, L., Mateu-Vicens, G. and Gaglianone, G . 2019. The seagrass skeletal assemblage from modern to fossil and from tropical to temperate: insight from Maldivian and Mediterranean examples. Sedimentology, 66, 2268–2296, https://doi.org/10.1111/sed.12589
    [Google Scholar]
  19. Burchette, T.P. and Wright, V.P . 1992. Carbonate ramp depositional systems. Sedimentary Geology, 79, 3–57, https://doi.org/10.1016/0037-0738(92)90003-A
    [Google Scholar]
  20. Burgess, P.M., Lammers, H., van Oosterhout, C. and Granjeon, D . 2006. Multivariate sequence stratigraphy: tackling complexity and uncertainty with stratigraphic forward modeling, multiple scenarios, and conditional frequency maps. AAPG Bulletin, 90, 1883–1901, https://doi.org/10.1306/06260605081
    [Google Scholar]
  21. Burgess, P.M., Winefield, P., Minzoni, M. and Elders, C . 2013. Methods for identification of isolated carbonate buildups from seismic reflection data. AAPG Bulletin, 97, 1071–1098, https://doi.org/10.1306/12051212011
    [Google Scholar]
  22. Busson, J., Joseph, P. et al. 2019. High-resolution stratigraphic forward modeling of a Quaternary carbonate margin: controls and dynamic of the progradation. Sedimentary Geology, 379, 77–96, https://doi.org/10.1016/j.sedgeo.2018.11.004
    [Google Scholar]
  23. Canals, M. and Ballesteros, E . 1997. Production of carbonate particles by phytobenthic communities on the Mallorca–Menorca shelf, northwestern Mediterranean Sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 44, 611–629, https://doi.org/10.1016/S0967-0645(96)00095-1
    [Google Scholar]
  24. Capó, A. and Garcia, C . 2019. Basin filling evolution of the central basins of Mallorca since the Pliocene. Basin Research, 31, 948–966, https://doi.org/10.1111/bre.12352
    [Google Scholar]
  25. Carannante, G., Esteban, M., Milliman, J.D. and Simone, L . 1988. Carbonate lithofacies as paleolatitude indicators: problems and limitations. Sedimentary Geology, 60, 333–346, https://doi.org/10.1016/0037-0738(88)90128-5
    [Google Scholar]
  26. Chave, K.E . 1967. Recent carbonate sediments–an unconventional view. Journal of Geological Education, 15, 200–204, https://doi.org/10.5408/0022-1368-xv.5.200
    [Google Scholar]
  27. Davies, P.J. and Hopley, D . 1983. Growth fabrics and growth rates of Holocene reefs in the Great Barrier Reef (Australia). BMR Journal of Australian Geology & Geophysics, 8, 237–251.
    [Google Scholar]
  28. Doligez, B., Granjeon, D., Joseph, P., Eschard, R. and Beucher, H. 1999. How can stratigraphic modeling help constrain geostatistical reservoir simulations? SEPM Special Publications , 62, 239–244, https://doi.org/10.2110/pec.99.62.0239
    [Google Scholar]
  29. Droxler, A.W. and Schlager, W . 1985. Glacial versus interglacial sedimentation rates and turbidite frequency in the Bahamas. Geology, 13, 799–802, https://doi.org/10.1130/0091-7613(1985)13<799:GVISRA>2.0.CO;2
    [Google Scholar]
  30. Esteban, M . 1979. Significance of the Upper Miocene coral reefs of the Western Mediterranean. Palaeogeography, Palaeoclimatology, Palaeoecology, 29, 169–188, https://doi.org/10.1016/0031-0182(79)90080-4
    [Google Scholar]
  31. Frost, E.L. and Kerans, C . 2009. Platform-margin trajectory as a control on syndepositional fracture patterns, Canning Basin, Western Australia. Journal of Sedimentary Research, 79, 44–55, https://doi.org/10.2110/jsr.2009.014
    [Google Scholar]
  32. Frost, E.L. and Kerans, C . 2010. Controls on syndepositional fracture patterns, Devonian reef complexes, Canning Basin, Western Australia. Journal of Structural Geology, 32, 1231–1249, https://doi.org/10.1016/j.jsg.2009.04.019
    [Google Scholar]
  33. Gervais, V., Ducros, M. and Granjeon, D. 2016. Uncertainty quantification for stratigraphic modeling uncertainty quantification for stratigraphic modeling. Presented at theAAPG Hedberg Research Conference ‘The Future of Basin and Petroleum Systems Modeling’, April 3–8, 2016, Santa Barbara, CA, https://doi.org/10.13140/RG.2.1.4375.8488
    [Google Scholar]
  34. Gervais, V., Ducros, M. and Granjeon, D . 2018. Probability maps of reservoir presence and sensitivity analysis in stratigraphic forward modeling. AAPG Bulletin, 102, 545–547, https://doi.org/10.1306/0913171611517242
    [Google Scholar]
  35. Ginés, A., Ginés, J., Gómez-Pujol, L., Onac, B.P. and Fornós, J.J. (eds) 2012. Mallorca: A Mediterranean Benchmark for Quaternary Studies. Monografies de la Societat d'Història Natural de les Balears, 18.
    [Google Scholar]
  36. Ginsburg, R.N. and James, N.P . 1974. Holocene carbonate sediments of continental shelves. In: Burk, C.A. and Drake, C.L. (eds) The Geology of Continental Margins. Springer, Berlin, 137–155, https://doi.org/10.1007/978-3-662-01141-6_11
    [Google Scholar]
  37. Granjeon, D. 2014. 3D forward modelling of the impact of sediment transport and base level cycles on continental margins and incised valleys. In: Martinius, A.W. Ravnås, R. Howell, J.A. Steel, R.J. Wonham, J.P. (eds) From Depositional Systems to Sedimentary Successions on the Norwegian Continental Margin. John Wiley & Sons, Chichester, UK, 453–472, https://doi.org/10.1002/9781118920435.ch16
    [Google Scholar]
  38. Granjeon, D. and Joseph, P. 1999. Concepts and applications of a 3-D multiple lithology, diffusive model in stratigraphic modeling. SEPM Special Publications , 62, 197–210, https://doi.org/10.2110/pec.99.62.0197
  39. Grant, G.R., Naish, T.R. et al. 2019. The amplitude and origin of sea-level variability during the Pliocene epoch. Nature, 574, 237–241, https://doi.org/10.1038/s41586-019-1619-z
    [Google Scholar]
  40. Halfar, J., Godinez-Orta, L., Mutti, M., Valdez-Holguín, J.E. and Borges, J.M . 2004. Nutrient and temperature controls on modern carbonate production: an example from the Gulf of California, Mexico. Geology, 32, 213–216, https://doi.org/10.1130/G20298.1
    [Google Scholar]
  41. Hallock, P. and Glenn, E.C . 1986. Larger foraminifera: a tool for paleoenvironmental analysis of Cenozoic carbonate depositional facies. Palaios, 1, 55–64, https://doi.org/10.2307/3514459
    [Google Scholar]
  42. Handford, C.R. and Loucks, R.G. 1993. Carbonate depositional sequences and systems tracts – responses of carbonate platforms to relative sea-level changes. AAPG Memoirs , 57, 3–41, https://doi.org/10.1306/M57579C1
    [Google Scholar]
  43. Haq, B.U., Hardenbol, J. and Vail, P.R. 1988. Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change. SEPM Special Publications , 42, 71–108, https://doi.org/10.2110/pec.88.01.0071
    [Google Scholar]
  44. Hawie, N., Barrois, A. et al. 2015.Forward stratigraphic modelling, deterministic approach to improve carbonate heterogeneity prediction; Lower Cretaceous, Abu Dhabi. Paper SPE-177519-MS presented at theAbu Dhabi International Petroleum Exhibition and Conference, 9–12 November 2015, Abu Dhabi, UAE, https://doi.org/10.2118/177519-MS
    [Google Scholar]
  45. Hawie, N., Callies, M., and Marfisi, E. 2017. Integrated multi-disciplinary forward stratigraphic modelling workflow in petroleum systems assessment. Paper SPE-183835-MS presented at theSPE Middle East Oil and Gas Show and Conference, 6–9 March 2017, Manama, Kingdom of Bahrain, https://doi.org/10.2118/183835-MS
    [Google Scholar]
  46. Hawie, N., Marfisi, E., Saint-Ange, F. and MacDonald, A.W.A . 2019. Statistical analysis of forward stratigraphic models in complex salt provinces: the central Scotian Basin case study. AAPG Bulletin, 103, 433–467, https://doi.org/10.1306/07031817054
    [Google Scholar]
  47. Hongo, C. and Kayanne, H . 2011. Key species of hermatypic coral for reef formation in the northwest Pacific during Holocene sea-level change. Marine Geology, 279, 162–177, https://doi.org/10.1016/j.margeo.2010.10.023
    [Google Scholar]
  48. Huang, X., Griffiths, C.M. and Liu, J . 2015. Recent development in stratigraphic forward modelling and its application in petroleum exploration. Australian Journal of Earth Sciences, 62, 903–919, https://doi.org/10.1080/08120099.2015.1125389
    [Google Scholar]
  49. Hüssner, H., Roessler, J., Betzler, C., Petschick, R. and Peinl, M . 2001. Testing 3D computer simulation of carbonate platform growth with REPRO: The Miocene Llucmajor carbonate platform (Mallorca). Palaeogeography, Palaeoclimatology, Palaeoecology, 175, 239–247, https://doi.org/10.1016/S0031-0182(01)00374-1
    [Google Scholar]
  50. James, N.P. and Bone, Y . 1991. Origin of a cool-water, Oligo-Miocene deep shelf limestone, Eucla Platform, southern Australia. Sedimentology, 38, 323–341, https://doi.org/10.1111/j.1365-3091.1991.tb01263.x
    [Google Scholar]
  51. James, N.P. and Clarke, J.A.D . 1997. Cool-Water Carbonates. SEPM Special Publications, 42, https://doi.org/10.2110/pec.97.56
    [Google Scholar]
  52. Janson, X., Van Buchem, F.S.P. et al. 2010. Architecture and facies differentiation within a Middle Miocene carbonate platform, Ermenek, Mut Basin, southern Turkey. Geological Society Special Publications , 329, 265–290, https://doi.org/10.1144/SP329.11
    [Google Scholar]
  53. Jones, B. and Desrochers, A. 1992. Shallow carbonate platforms. In: Walker, R.G. and James, N.P. (eds) Facies Models – Response to Sea Level Change. Geological Association, Canada, 277–301.
    [Google Scholar]
  54. Kendall, C.G.S.C. and Schlager, W . 1981. Carbonates and relative changes in sea level. Marine Geology, 44, 181–212, https://doi.org/10.1016/0025-3227(81)90118-3
    [Google Scholar]
  55. Kolodka, C., Vennin, E., Bourillot, R., Granjeon, D. and Desaubliaux, G . 2016. Stratigraphic modelling of platform architecture and carbonate production: a Messinian case study (Sorbas Basin, SE Spain). Basin Research, 28, 658–684, https://doi.org/10.1111/bre.12125
    [Google Scholar]
  56. Lees, A . 1975. Possible influence of salinity and temperature on modern shelf carbonate sedimentation. Marine Geology, 19, 159–198, https://doi.org/10.1016/0025-3227(75)90067-5
    [Google Scholar]
  57. Lees, A. and Buller, A.T . 1972. Modern temperate-water and warm-water shelf carbonate sediments contrasted. Marine Geology, 13, M67–M73, https://doi.org/10.1016/0025-3227(72)90011-4
    [Google Scholar]
  58. Li, X., Falivene, O. et al. 2020. Interactions between sediment production and transport in the geometry of carbonate platforms: insights from forward modeling of the Great Bank of Guizhou (Early to Middle Triassic), south China. Marine and Petroleum Geology, 118, 104416, https://doi.org/10.1016/j.marpetgeo.2020.104416
    [Google Scholar]
  59. Lüdmann, T., Wiggershaus, S., Betzler, C. and Hübscher, C . 2012. Southwest Mallorca Island: a cool-water carbonate margin dominated by drift deposition associated with giant mass wasting. Marine Geology, 307–310, 73–87, https://doi.org/10.1016/j.margeo.2011.09.008
    [Google Scholar]
  60. Matsuda, S . 1989. Succession and growth rates of encrusting crustose coralline algae (Rhodophyta, Cryptonemiales) in the upper fore-reef environment off Ishigaki Island, Ryukyu Islands. Coral Reefs, 7, 185–195, https://doi.org/10.1007/BF00301597
    [Google Scholar]
  61. Miall, A.D . 1992. Exxon global cycle chart: an event for every occasion?Geology, 20, 787–790, https://doi.org/10.1130/0091-7613(1992)020<0787:EGCCAE>2.3.CO;2
    [Google Scholar]
  62. Michel, J., Borgomano, J. and Reijmer, J.J.G . 2018. Heterozoan carbonates: when, where and why? A synthesis on parameters controlling carbonate production and occurrences. Earth-Science Reviews, 182, 50–67, https://doi.org/10.1016/j.earscirev.2018.05.003
    [Google Scholar]
  63. Miller, K.G., Kominz, M.A. et al. 2005. The Phanerozoic record of global sea-level change. Science, 310, 1293–1298, https://doi.org/10.1126/science.1116412
    [Google Scholar]
  64. Milliman, J.D., Müller, G. and Förstner, U. 1974. Recent Sedimentary Carbonates. Springer, Berlin, https://doi.org/10.1007/978-3-642-65528-9
    [Google Scholar]
  65. Montaggioni, L.F . 2005. History of Indo-Pacific coral reef systems since the last glaciation: development patterns and controlling factors. Earth-Science Reviews, 71, 1–75, https://doi.org/10.1016/j.earscirev.2005.01.002
    [Google Scholar]
  66. Moore, C.H. and Wade, W.J. 2013. Natural fracturing in carbonate reservoirs. In: Moore, C.H. and Wade, W.J. (eds) Carbonate Reservoirs: Porosity and Diagenesis in a Sequence Stratigraphic Framework. Developments in Sedimentology. 67. Elsevier, Amsterdam, 285–300, https://doi.org/10.1016/B978-0-444-53831-4.00011-2
    [Google Scholar]
  67. Morsilli, M. and Pomar, L . 2012. Internal waves vs. surface storm waves: a review on the origin of hummocky cross-stratification. Terra Nova, 24, 273–282, https://doi.org/10.1111/j.1365-3121.2012.01070.x
    [Google Scholar]
  68. Mutti, M. 2019. Latitudinal variability of carbonate systems today and during icehouse and greenhouse worlds. SEPM Special Publications , 108, 46–58, https://doi.org/10.2110/sepmsp.108.11
    [Google Scholar]
  69. Mutti, M. and Hallock, P . 2003. Carbonate systems along nutrient and temperature gradients: Some sedimentological and geochemical constraints. International Journal of Earth Sciences, 92, 465–475, https://doi.org/10.1007/s00531-003-0350-y
    [Google Scholar]
  70. Nader, F.H., Souque, C. et al. 2018. Advanced 3-D forward stratigraphic modeling of the east-mediterranean frontier deepwater basins: an approach for enhancing reservoir fairways predictions. Search and Discovery Article #11133, AAPG 2018 Annual Convention & Exhibition, 20–23 May 2018, Salt Lake City, UT, USA, https://www.searchanddiscovery.com/pdfz/documents/2018/11133nader/ndx_nader.pdf.html
    [Google Scholar]
  71. Nelson, C.S . 1988. An introductory perspective on non-tropical shelf carbonates. Sedimentary Geology, 60, 3–12, https://doi.org/10.1016/0037-0738(88)90108-X
    [Google Scholar]
  72. Nolting, A., Zahm, C.K., Kerans, C. and Nikolinakou, M.A . 2018. Effect of carbonate platform morphology on syndepositional deformation: insights from numerical modeling. Journal of Structural Geology, 115, 91–102, https://doi.org/10.1016/j.jsg.2018.07.003
    [Google Scholar]
  73. Otoo, D. and Hodgetts, D . 2021. Porosity and permeability prediction through forward stratigraphic simulations using GPMTM and PetrelTM: application in shallow marine depositional settings. Geoscientific Model Development, 14, 2075–2095, https://doi.org/10.5194/gmd-14-2075-2021
    [Google Scholar]
  74. Pall, J., Chandra, R., Azam, D., Salles, T., Webster, J.M., Scalzo, R. and Cripps, S. 2020. Bayesreef: A Bayesian inference framework for modelling reef growth in response to environmental change and biological dynamics. Environmental Modelling and Software, 125, 104610, https://doi.org/10.1016/j.envsoft.2019.104610
    [Google Scholar]
  75. Pomar, L . 1991. Reef geometries, erosion surfaces and high-frequency sea-level changes, upper Miocene Reef Complex, Mallorca, Spain. Sedimentology, 38, 243–269, https://doi.org/10.1111/j.1365-3091.1991.tb01259.x
    [Google Scholar]
  76. Pomar, L. 1993. High-resolution sequence stratigraphy in prograding Miocene carbonates: application to seismic interpretation. AAPG Memoirs , 57, 389–407, https://doi.org/10.1306/M57579C15
    [Google Scholar]
  77. Pomar, L. 2020. Carbonate systems. In: Scarselli, N., Adam, J., Chiarella, D., Roberts, D.G. and Bally, A.W. (eds) Regional Geology and Tectonics. Volume 1: Principles of Geologic Analysis. Elsevier, Amsterdam, 235–311, https://doi.org/10.1016/B978-0-444-64134-2.00013-4
    [Google Scholar]
  78. Pomar, L . 2001a. Ecological control of sedimentary accommodation: evolution from a carbonate ramp to rimmed shelf, Upper Miocene, Balearic Islands. Palaeogeography, Palaeoclimatology, Palaeoecology, 175, 249–272, https://doi.org/10.1016/S0031-0182(01)00375-3
    [Google Scholar]
  79. Pomar, L . 2001b. Types of carbonate platforms: a genetic approach. Basin Research, 13, 313–334, https://doi.org/10.1046/j.0950-091x.2001.00152.x
    [Google Scholar]
  80. Pomar, L. and Hallock, P . 2007. Changes in coral-reef structure through the Miocene in the Mediterranean province: adaptive versus environmental influence. Geology, 35, 899–902, https://doi.org/10.1130/G24034A.1
    [Google Scholar]
  81. Pomar, L. and Haq, B.U . 2016. Decoding depositional sequences in carbonate systems: concepts vs experience. Global and Planetary Change, 146, 190–225, https://doi.org/10.1016/j.gloplacha.2016.10.001
    [Google Scholar]
  82. Pomar, L. and Kendall, C.G.S.C. 2008. Ecological accommodation: a key to the interpretation of carbonate platform architecture variability. Search and Discovery Article #50150, AAPG Annual Convention, 20–23 April 2008, San Antonio, TX, USA.
    [Google Scholar]
  83. Pomar, L. and Kendall, C.G.S.C. 2011. Architecture of carbonate platforms: A response to hydrodynamics and evolving ecology. SEPM Special Publications , 108, 187–216, https://doi.org/10.2110/pec.08.89.0187
  84. Pomar, L. and Ward, W.C . 1994. Response of a late Miocene Mediterranean reef platform to high-frequency eustasy. Geology, 22, 131, https://doi.org/10.1130/0091-7613(1994)022<0131:ROALMM>2.3.CO;2
    [Google Scholar]
  85. Pomar, L. and Ward, W.C. 1995. Sea-level changes, carbonate production and platform architecture: the Llucmajor platform, Mallorca, Spain. In: Haq, B.U. (ed.) Sequence Stratigraphy and Depositional Response to Eustatic, Tectonic and Climate Forcing. Kluwer, Dordrecht, The Netherlands, 87–112, https://doi.org/10.1007/978-94-015-8583-5_4
    [Google Scholar]
  86. Pomar, L. and Ward, W.C . 1999. Reservoir-scale heterogeneity in depositional packages and diagenetic patterns on a reef-rimmed platform, upper Miocene, Mallorca, Spain. AAPG Bulletin, 83, 1759–1773, https://doi.org/10.1306/e4fd425b-1732-11d7-8645000102c1865d
    [Google Scholar]
  87. Pomar, L., Esteban, M., Calvet, F. and Baron, A. 1983. La unidad arrecifal del Mioceno superior de Mallorca. In: Pomar, L., Obrador, A., Fornos, J.J. and Rodriguez-Perea, A. (eds) El Terciario de las Baleares. Guía de las Excursiones. Congreso Nacional de Sedimentología, Menorca, 139–175.
    [Google Scholar]
  88. Pomar, L., Ward, W.C. and Green, D.G. 1996. Upper Miocene reef complex of the Llucmajor area, Mallorca, Spain. SEPM Concepts in Sedimentology and Paleontology , 5, 191–225, https://doi.org/10.2110/csp.96.01.0191
  89. Pomar, L., Obrador, A. and Westphal, H . 2002. Sub-wavebase cross-bedded grainstones on a distally steepened carbonate ramp, Upper Miocene, Menorca, Spain. Sedimentology, 49, 139–169, https://doi.org/10.1046/j.1365-3091.2002.00436.x
    [Google Scholar]
  90. Pomar, L., Bassant, P., Brandano, M., Ruchonnet, C. and Janson, X . 2012a. Impact of carbonate producing biota on platform architecture: insights from Miocene examples of the Mediterranean region. Earth-Science Reviews, 113, 186–211, https://doi.org/10.1016/j.earscirev.2012.03.007
    [Google Scholar]
  91. Pomar, L., Morsilli, M., Hallock, P. and Bádenas, B . 2012b. Internal waves, an under-explored source of turbulence events in the sedimentary record. Earth-Science Reviews, 111, 56–81, https://doi.org/10.1016/j.earscirev.2011.12.005
    [Google Scholar]
  92. Pomar, L., Baceta, J.I., Hallock, P., Mateu-Vicens, G. and Basso, D . 2017. Reef building and carbonate production modes in the west-central Tethys during the Cenozoic. Marine and Petroleum Geology, 83, 261–304, https://doi.org/10.1016/j.marpetgeo.2017.03.015
    [Google Scholar]
  93. Purdy, E.G . 1963. Recent calcium carbonate facies of the Great Bahama Bank. 2. Sedimentary facies. The Journal of Geology, 71, 472–497, https://doi.org/10.1086/626920
    [Google Scholar]
  94. Qing Sun, S. and Esteban, M. 1994. Paleoclimatic controls on sedimentation, diagenesis, and reservoir quality: lessons from Miocene carbonates. AAPG Bulletin, 78, 519–543, https://doi.org/10.1306/bdff924e-1718-11d7-8645000102c1865d
    [Google Scholar]
  95. Read, J.F . 1985. Carbonate platform facies models. AAPG Bulletin, 69, 1–21, https://doi.org/10.1306/ad461b79-16f7-11d7-8645000102c1865d
    [Google Scholar]
  96. Roberts, D.G. and Bally, A.W . 2012. Regional Geology and Tectonics: Principles of Geologic Analysis, Volume 1A. Elsevier, Amsterdam, https://doi.org/10.1016/C2009-0-17259-8
    [Google Scholar]
  97. Ruchonnet, C. and Kindler, P . 2012. Facies models and geometries of the Ragusa platform (SE Sicily, Italy) near the Serravallian–Tortonian boundary. In: Mutti, M. Piller, W. and  Betzler, C. (eds) Carbonate Systems during the Oligocene–Miocene Climatic Transition. Wiley-Blackwell, Oxford, UK, 71–88, https://doi.org/10.1002/9781118398364.ch5
    [Google Scholar]
  98. Sàbat, F., Gelabert, B., Rodríguez-Perea, A. and Giménez, J . 2011. Geological structure and evolution of Majorca: implications for the origin of the Western Mediterranean. Tectonophysics, 510, 217–238, https://doi.org/10.1016/j.tecto.2011.07.005
    [Google Scholar]
  99. Salles, T., Ding, X. and Brocard, G . 2018a. pyBadlands: a framework to simulate sediment transport, landscape dynamics and basin stratigraphic evolution through space and time. PLoS ONE, 13, 1–24, https://doi.org/10.1371/journal.pone.0195557
    [Google Scholar]
  100. Salles, T., Pall, J., Webster, J.M. and Dechnik, B . 2018b. Exploring coral reef responses to millennial-scale climatic forcings: insights from the 1-D numerical tool pyReef-Core v1.0. Geoscientific Model Development, 11, 2093–2110, https://doi.org/10.5194/gmd-11-2093-2018
    [Google Scholar]
  101. Sarkar, S . 2017. Ecology of coralline red algae and their fossil evidences from India. Thalassas, 33, 15–28, https://doi.org/10.1007/s41208-016-0017-7
    [Google Scholar]
  102. Schäfer, P., Fortunato, H., Bader, B., Liebetrau, V., Bauch, T. and Reijmer, J.J.G . 2011. Growth rates and carbonate production by coralline red algae in upwelling and non-upwelling settings along the Pacific coast of Panama. PALAIOS, 26, 420–432, https://doi.org/10.2110/palo.2010.p10-138r
    [Google Scholar]
  103. Scheibner, C., Rasser, M.W. and Mutti, M . 2007. The Campo section (Pyrenees, Spain) revisited: implications for changing benthic carbonate assemblages across the Paleocene–Eocene boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 248, 145–168, https://doi.org/10.1016/j.palaeo.2006.12.007
    [Google Scholar]
  104. Schlager, W. 1992. Sedimentology and Sequence Stratigraphy of Reefs and Carbonate Platforms. AAPG Continuing Education Course Notes Series, 34, https://doi.org/10.1306/CE34551
    [Google Scholar]
  105. Schlager, W . 1993. Accommodation and supply – a dual control on stratigraphic sequences. Sedimentary Geology, 86, 111–136, https://doi.org/10.1016/0037-0738(93)90136-S
    [Google Scholar]
  106. Schlager, W . 2000. Sedimentation rates and growth potential of tropical, cool water and mud-mound carbonate systems. Geological Society, London, Special Publications , 178, 217–227, https://doi.org/10.1144/GSL.SP.2000.178.01.14
    [Google Scholar]
  107. Schlager, W . 2003. Benthic carbonate factories of the Phanerozoic. International Journal of Earth Sciences, 92, 445–464, https://doi.org/10.1007/s00531-003-0327-x
    [Google Scholar]
  108. Schlager, W. 2005. Carbonate Sedimentology and Sequence Stratigraphy. SEPM Concepts in Sedimentology and Paleontology, 8, https://doi.org/10.2110/csp.05.08
    [Google Scholar]
  109. Schlager, W. and Camber, O . 1986. Submarine slope angles, drowning unconformities, and self-erosion of limestone escarpments. Geology, 14, 762–765, https://doi.org/10.1130/0091-7613(1986)14<762:SSADUA>2.0.CO;2
    [Google Scholar]
  110. Schlager, W., Reijmer, J.J.G. and Droxler, A . 1994. Highstand shedding of carbonate platforms. Journal of Sedimentary Research, 64, 270–281, https://doi.org/10.1306/d4267faa-2b26-11d7-8648000102c1865d
    [Google Scholar]
  111. Seard, C., Borgomano, J., Granjeon, D. and Camoin, G. 2013. Impact of environmental parameters on coral reef development and drowning: forward modelling of the last deglacial reefs from Tahiti (French Polynesia; IODP Expedition #310). Sedimentology, 60, 1357–1388, https://doi.org/10.1111/sed.12030
    [Google Scholar]
  112. Stanley, S.M. and Hardie, L.A . 1998. Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeography, Palaeoclimatology, Palaeoecology, 144, 3–19, https://doi.org/10.1016/S0031-0182(98)00109-6
    [Google Scholar]
  113. Sultana, D., Burgess, P. and Bosence, D . 2022. How do carbonate factories influence carbonate platform morphology? Exploring production–transport interactions with numerical forward modelling. Sedimentology, 69, 372–393, https://doi.org/10.1111/sed.12943
    [Google Scholar]
  114. Tomás, S., Zitzmann, M. et al. 2010. From ramp to platform: building a 3D model of depositional geometries and facies architectures in transitional carbonates in the Miocene, Northern Sardinia. Facies, 56, 195–210, https://doi.org/10.1007/s10347-009-0203-7
    [Google Scholar]
  115. Warrlich, G., Bosence, D., Waltham, D., Wood, C., Boylan, A. and Badenas, B . 2008. 3D stratigraphic forward modelling for analysis and prediction of carbonate platform stratigraphies in exploration and production. Marine and Petroleum Geology, 25, 35–58, https://doi.org/10.1016/j.marpetgeo.2007.04.005
    [Google Scholar]
  116. Warrlich, G.M.D., Waltham, D.A. and Bosence, D . 2002. Quantifying the sequence stratigraphy and drowning mechanisms of atolls using a new 3-D forward stratigraphic modelling program (CARBONATE 3D). Basin Research, 14, 379–400, https://doi.org/10.1046/j.1365-2117.2002.00181.x
    [Google Scholar]
  117. Watts, A.B. and Torne, M . 1992. Subsidence history, crustal structure, and thermal evolution of the Valencia Trough: a young extensional basin in the western Mediterranean. Journal of Geophysical Research: Solid Earth, 97, 20  021–20  041, https://doi.org/10.1029/92jb00583
    [Google Scholar]
  118. Whitaker, F., Smart, P., Hague, Y., Waltham, D. and Bosence, D . 1997. Coupled two-dimensional diagenetic and sedimentological modeling of carbonate platform evolution. Geology, 25, 175–178, https://doi.org/10.1130/0091-7613(1997)025<0175:CTDDAS>2.3.CO;2
    [Google Scholar]
  119. Williams, H.D., Burgess, P.M., Wright, V.P., Della Porta, G. and Granjeon, D . 2011. Investigating carbonate platform types: multiple controls and a continuum of geometries. Journal of Sedimentary Research, 81, 18–37, https://doi.org/10.2110/jsr.2011.6
    [Google Scholar]
  120. Wilson, M. and Vecsei, A . 2005. The apparent paradox of abundant foramol facies in low latitudes: their environmental significance and effect on platform development. Earth-Science Reviews, 69, 133–168, https://doi.org/10.1016/j.earscirev.2004.08.003
    [Google Scholar]
  121. Wunsch, M. 2017. The Sedimentology and Architecture of Carbonate Platform Slopes. PhD thesis, Hamburg University, Hamburg, Germany, https://d-nb.info/1151639044/34
    [Google Scholar]
  122. Zhang, J., Burgess, P.M., Granjeon, D. and Steel, R . 2019. Can sediment supply variations create sequences? Insights from stratigraphic forward modelling. Basin Research, 31, 274–289, https://doi.org/10.1111/bre.12320
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1144/petgeo2021-053
Loading
/content/journals/10.1144/petgeo2021-053
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error