1887
Volume 29, Issue 4
  • ISSN: 1354-0793
  • E-ISSN:

Abstract

This study presents the results of a joint Chemostrat–APT study that aimed to produce a suite of radioactive heat production data for basement rocks in the Faroe Shetland Basin to enable more accurate basin modelling to be undertaken. To enable regional studies to be undertaken, the basement has been split into four zones based on similarities. Zone A is formed of high grade metamorphic basement from the Rockall trough (quads 154 & 164) SW of the Laxfordian front. Zone B comprises granodioritic, tonalitic and dioritic Neoarchean aged (2700–2830 Ma) high grade metamorphic basement from the SW of the Rona Ridge and Basin (wells 202/08-1, 204/15-2, 205/161, 205/21-1A, 206/7a-2, 206/08-2, 206/09-2 and 206/12-1) and NE of the Laxfordian front. Zone C contains Neoarchean aged high grade metamorphic basement of a predominantly granitic and quartz rich granitoid composition from the NE of the Rona Ridge (wells 207/01-3, 207/02-1, 208/23-1 and 208/26-1). Zone D differs from the rest of the material in this study in that it is Caledonian ( 460 Ma) granitic plutonic basement from Quads 209 (Ereland volcanic centre). Radioactive heat production values were derived from potassium, thorium and uranium data produced from the analysis of eighty-four basement samples by ICP-OES and ICP-MS analysis. Each mapped basement zone was then assigned a mean radioactive heat production value for use in future basin modelling studies; Zone A = 0.21 µWm, Zone B, 0.64 µWm, zone C = 0.88 µWm and zone D = 2.1 µWm.

Tables containing full mineralogical (SI 1) and U-Pb geochronological analytical (SI 2) data at https://doi.org/10.6084/m9.figshare.c.6771540

This article is part of the New learning from exploration and development in the UKCS Atlantic Margin collection available at: https://www.lyellcollection.org/topic/collections/new-learning-from-exploration-and-development-in-the-ukcs-atlantic-margin

Loading

Article metrics loading...

/content/journals/10.1144/petgeo2022-039
2023-09-13
2025-05-24
Loading full text...

Full text loading...

References

  1. Carr, A.D. and Scotchman, I.C.2003. Thermal history modelling in the southern Faroe–Shetland Basin. Petroleum Geoscience, 9, 333–345, https://doi.org/10.1144/1354-079302-494
    [Google Scholar]
  2. Chambers, L., Darbyshire, F., Noble, S. and Ritchie, D.2005. NW UK Continental Margin: Chronology and Isotope Geochemistry.
    [Google Scholar]
  3. Chemostrat multiclient study: NE129. Chemostratigraphy of the Palaeocene, U.K. Rockall Basin.
  4. Chemostrat report2014. Dating West of Shetland basement using U-Pb Zircon ages: A reconnaissance study.
  5. Eberl, D.D.2003. User's Guide to RockJock -- A Program for Determining Quantitative Mineralogy from Powder x-Ray Diffraction Data. USGS Open-File Report 03-78.
    [Google Scholar]
  6. Finlay, A.J., Selby, D. and Osborne, M.2011. Re-Os geochronology and fingerprinting of United Kingdom Atlantic Margin oil: temporal implications for regional petroleum systems. Geology, 39, 475–478, https://doi.org/10.1130/G31781.1
    [Google Scholar]
  7. Finlay, A.J.2019. Calculated radioactive heat production in the North Sea: new data for petroleum systems analysis. Petroleum Systems Analysis ‘Science or Art?’ conference, The Geological Society, London.
    [Google Scholar]
  8. Finlay, A.J., Carr, A., Hedley, B., Holt, B., O'Neil, P., Gardner, D. and Darling, J.2018. Calculated radioactive heat production from basement & sediments: implications for basin & petroleum system modelling. PETEX, London.
    [Google Scholar]
  9. Gardiner, D., Schofield, N. et al.2019. Modelling petroleum expulsion in sedimentary basins: the importance of igneous intrusion timing and basement composition. Geology, 47, 904–908, https://doi.org/10.1130/G46578.1
    [Google Scholar]
  10. Holdsworth, R.E., Morton, A. et al.2019. The nature and significance of the Faroe-Shetland Terrane: linking Archaean basement blocks across the North Atlantic. Precambrian Research, 321, 154–171, https://doi.org/10.1016/j.precamres.2018.12.004
    [Google Scholar]
  11. Holmes, A.J., Griffith, C.E. and Scotchman, I.C.1999. The Jurassic petroleum system of the West of Britain Atlantic margin–an integration of tectonics, geochemistry and basin modelling. In:Geological Society, London, Petroleum Geology Conference Series, 5. Geological Society of London, 1351–1365, https://doi.org/10.1144/0051351
    [Google Scholar]
  12. Iliffe, J.E., Robertson, A.G., Ward, G.H.F., Wynn, C., Pead, S.D.M. and Cameron, N.1999. The importance of fluid pressures and migration to the hydrocarbon prospectivity of the Faeroe–Shetland White Zone. In:Geological Society, London, Petroleum Geology Conference Series, 5. Geological Society of London, 601–611, https://doi.org/10.1144/005060
    [Google Scholar]
  13. Jarvis, I. and Jarvis, K.E.1992a. Inductively coupled plasma-atomic emission spectrometry in exploration geochemistry. Journal of Geochemical Exploration, 44, 139–200, https://doi.org/10.1016/0375-6742(92)90050-I
    [Google Scholar]
  14. Jarvis, I. and Jarvis, K.E.1992b. Plasma spectrometry in the earth sciences: techniques, applications and future trends. Chemical Geology, 95, 1–33, https://doi.org/10.1016/0009-2541(92)90041-3
    [Google Scholar]
  15. Kirkland, C.L., Yakymchuk, C., Szilas, K., Evans, N., Hollis, J., McDonald, B. and Gardiner, N.J.2018. Apatite: a U-Pb thermochronometer or geochronometer?Lithos, 318–319, 143–157, https://doi.org/10.1016/j.lithos.2018.08.007
    [Google Scholar]
  16. Lamers, E. and Carmichael, S.M.M.1999. The Paleocene deepwater sandstone play West of Shetland. In: A.J. Fleet and S.A.R. Boldy (eds) Geological Society, London, Petroleum Geology Conference Series, 5. Geological Society of London, 645–659, https://doi.org/10.1144/0050645
    [Google Scholar]
  17. Layfield, L.K., Schofield, N. et al.2022. New insights into the structure, geology and hydrocarbon prospectivity along the central-northern Corona Ridge, Faroe–Shetland Basin. Petroleum Geoscience, 28, petgeo2021-090, https://doi.org/10.1144/petgeo2021-090
    [Google Scholar]
  18. Mark, D.F., Parnell, J., Kelley, S.P., Lee, M., Sherlock, S.C. and Carr, A.2005. Dating of multistage fluid flow in sandstones. Science, 309, 2048–2051, https://doi.org/10.1126/science.1116034
    [Google Scholar]
  19. Marshall, D.1996. Ternplot: an excel spreadsheet for Ternary diagrams. Computers and Geosciences, 22, 697–699, https://doi.org/10.1016/0098-3004(96)00012-X
    [Google Scholar]
  20. Moore, J.K. and He, Z.2021. The west of Shetland petroleum system. GeoExpro, 18, https://www.geoexpro.com/articles/2021/06/the-west-of-shetland-petroleum-system
    [Google Scholar]
  21. Paton, C., Hellstrom, J., Paul, B., Woodhead, J. and Hergt, J.2011. Iolite: freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry, 26, 2508–2518, https://doi.org/10.1039/c1ja10172b
    [Google Scholar]
  22. Ritchie, J.D. and Hitchen, K.1996. Early Paleogene offshore igneous activity to the northwest of the UK and its relationship to the North Atlantic Igneous Province. Geological Society, London, Special Publications, 101, 63–78, https://doi.org/10.1144/GSL.SP.1996.101.01.04
    [Google Scholar]
  23. Ritchie, J.D., Noble, D., Darbyshire, F., Mllar, I. and Chambers, L.2011. Pre-Devonian. BGS Research Report RR/11/01. In:Ritchie, J.D., Ziska, H., Johnson, H. and Evans, D. (eds) Geology of the Faroe-Shetland Basin and Adjacent Areas, British Geological Survey Research Report, RR/11/01; Jarðfeingi Research Report, RR/11/01, 71–78.
    [Google Scholar]
  24. Sales, J.K.1997. Seal Strength vs. Trap Closure – A Fundamental Control on the Distribution of Oil and Gas. In:Surdam, R.C. (ed.) AAPG Memoir 67: Seals, Traps, and the Petroleum System, p. 57–83.
    [Google Scholar]
  25. Salminen, R., Batista, J. et al.2005. Part 1: Background information, methodology and maps. In:Salminen, R. (ed.) Geochemical Atlas of Europe. EruoGeoSurveys, Espoo, Finland, p. 13–-389.
    [Google Scholar]
  26. Sláma, J., Košler, J. et al.2008. Plešovice zircon – a new natural reference material for U–Pb and Hf isotopic microanalysis. Chemical Geology, 249, 1–35, https://doi.org/10.1016/j.chemgeo.2007.11.005
    [Google Scholar]
  27. Streckeisen, A.1967. Classification and nomenclature of igneous rocks. Nues Jarbuch fur Mineralogie Abhandlungen, 107, 144–240.
    [Google Scholar]
  28. Turcotte, D.L. and Schubert, G.2014. Geodynamics. Cambridge University Press, Cambridge, UK.
    [Google Scholar]
  29. Vermeesch, P.2012. On the visualisation of detrital age distributions. Chemical Geology, 312, 190–194, https://doi.org/10.1016/j.chemgeo.2012.04.021
    [Google Scholar]
  30. Wiedenbeck, M., Allé, P. et al.1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandards Newsletter, 19, 1–23, https://doi.org/10.1111/j.1751-908X.1995.tb00147.x
    [Google Scholar]
  31. Wiedenbeck, M., Hanchar, J.M. et al.2004. Further characterisation of the 91500 zircon crystal. Geostandards and Geoanalytical Research, 28, 9–39, https://doi.org/10.1111/j.1751-908X.2004.tb01041.x
    [Google Scholar]
  32. Zimmermann, S., Mark, C., Chew, D. and Voice, P.J.2018. Maximising data and precision from detrital zircon U-Pb analysis by LA-ICPMS: the use of core-rim ages and the single-analysis concordia age. Sedimentary Geology, 375, 5–13, https://doi.org/10.1016/j.sedgeo.2017.12.020
    [Google Scholar]
/content/journals/10.1144/petgeo2022-039
Loading
/content/journals/10.1144/petgeo2022-039
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error