1887
Volume 29, Issue 4
  • ISSN: 1354-0793
  • E-ISSN:

Abstract

In Tunisia Chotts Basin, the upper Silurian (Ludfordian) Fegaguira Formation comprises organic-rich black mudstones deposited during a major anoxic event. It is a prolific source rock, having yielded a large volume of oil and gas from conventional reservoirs that reached about 69 MMboe, with around 45 MMboe as recoverable reserves still to be produced. Based on various investigations, the stratigraphy of the Fegaguira Formation is updated and its unconventional play potential is assessed.

It is divided, in the present work, into three units (HSII.1, HSII.2 and HSII.3) characterized by gamma-ray values of up to 400° API, organic matter content (up to 17 wt% total organic carbon) and petroleum potential (up to 60 mgHC g rock) with mature Type II marine kerogen. The first and the second units, which are dominantly organic-rich mudstones, can be compared to the Mississippian Barnett, Miocene Antelope and Cretaceous Tuscaloosa shales of the USA.

Evaluation of the brittleness index shows that the HSII.1 and HSII.2 units are mostly ductile and comparable to tight oil and gas reservoirs, while the third HSII.3 unit, where organic-rich facies are juxtaposed to organic-lean limestone beds with natural fractures (porosity between 3 and 7%), may be compared to the Niobrara B Formation.

Within the shale-oil fairway of the Chotts Basin, the estimated recoverable oil is around 1.3 Bbbl. It is comparable to the recoverable oil estimated volume for the Middle Member of the Bakken in the USA. This study demonstrates that the Fegaguira Formation source rock should be considered as an additional unconventional oil-shale target for Tunisia.

Loading

Article metrics loading...

/content/journals/10.1144/petgeo2023-015
2023-09-11
2025-05-19
Loading full text...

Full text loading...

References

  1. Achèche, M.H., M'rabet, A., Ghariani, H., Ouahchi, A. and Montgomery, S.L.2001. Ghadames Basin, southern Tunisia: reappraisal of Triassic reservoirs a future prospectivity. AAPG Bulletin, 85, 765–780, https://doi.org/10.1306/8626C9F1-173B-11D7-8645000102C1865D
    [Google Scholar]
  2. Al-Juboury, A.I., Qader, F.M. et al.2021. Organic and inorganic geochemical and mineralogical assessments of the Silurian Akkas Formation, western Iraq. Journal of Petroleum Geology, 44, 69–96, https://doi.org/10.1111/jpg.12779
    [Google Scholar]
  3. Allen, P.A. and Allen, J.R.1990. Basin Analysis Principles and Applications. Blackwell Scientific, Oxford, UK, 282–283, 301.
    [Google Scholar]
  4. Antoshkina, A.I., Valyaeva, O.V., Isaenko, S.I. and Prots'ko, O.S.2012. Upper Ludfordian black shales as indicators of euxinic conditions, Subpolar Urals. Geochemistry International, 50, 1038–1043, https://doi.org/10.1134/S0016702912100023
    [Google Scholar]
  5. Askri, H., Belmechari, A. et al.1995. Geologie de l'Algerie. Schlumberger WEC Sonatrach.
    [Google Scholar]
  6. Aydin, E.2017. Pore Characterization and FE-SEM Analysis of the Niobrara Formation in the Aristocrat Angus PC H11-07 Core, Wattenberg Field, Denver Basin, Colorado. Master of Science Thesis, Geology, Colorado School of Mines, Golden, Colorado, p. 145.
    [Google Scholar]
  7. Baumgardner, R.W., Hamlin, H.S. and Rowe, H.D.2016. Lithofacies of the Wolfcamp and Lower Leonard intervals, southern Midland Basin. Report of investigations, University of Texas at Austin, Bureau of Economic Geology.
    [Google Scholar]
  8. Behar, F., Beaumont, V. and De B Penteado, H.L.2001. Technologie Rock-Eval 6: performances et developpements. Oil and Gas Science and Technology - Revue l'Institut Français du Pétrole Energies nouvelles, 56, 111–134, https://doi.org/10.2516/ogst:2001013
    [Google Scholar]
  9. Belhaj Mohamed, A., Saidi, M. and Soussi, M.2015. Organic geochemistry of the Paleozoic source rocks in the Chotts Basin, Southern Tunisia. Paper SPE-175830-MS presented at theSPE North Africa Technical Conference and Exhibition, 14–16 September 2015, Cairo, Egypt, https://doi.org/10.2118/175830-MS
    [Google Scholar]
  10. Bellini, E. and Massa, D.1980. A stratigraphic contribution to the Palaeozoic of the Southern Basins of Libya. In:Salem, M.J. and Busrewil, M.T. (eds) Geology of Libya. Academic Press, London, 3–56.
    [Google Scholar]
  11. Ben Ferjani, A., Burollet, P. and Mejri, F.1990. Petroleum Geology of Tunisia. Entreprise Tunisienne des Activités Pétrolières.
    [Google Scholar]
  12. Berry, W.B.N. and Boucot, A.J.1973. Glacio-eustatic control on late Ordoviclan–Early Silurian platform sedimentation and faunal changes. Geological Society of America Bulletin, 4, 275–284, https://doi.org/10.1130/0016-7606(1973)84<275:GCOLOS>2.0.CO;2
    [Google Scholar]
  13. Bonnefous, J.1963. Synthèse stratigraphique sur le Gothlandien des sondages du Sud Tunisien. Revue de l'Institut Français du Pétrole, 18, 1437–1447.
    [Google Scholar]
  14. Boote, D.R.D., Clark-Lowes, D.D. and Traut, M.W.1998. Paleozoic petroleum systems of North Africa. Geological Society, London, Special Publications, 132, 7–68, https://doi.org/10.1144/GSL.SP.1998.132.01.02
    [Google Scholar]
  15. Bruna, P.-O., Bertotti, G., Amor, S.B., Nasri, A. and Ouahchi, S.2019. Analysis of the pre-and post Variscan unconformity deformations: new insights for the characterisation of the Ordovician and Triassic reservoirs in the Southern Chotts Basin, Tunisia. Abstract presented at thePESGB/HCS E&P Africa Conference: Africa is Back; Smarter, Better, Stronger, 1–2 October 2019, London, UK.
    [Google Scholar]
  16. Busson, G.1967. Le Mésozoïque saharien. 1re partie: l'Extrême Sud tunisien, Éditions du Centre national de la recherche scientifique, 51. CNRS Éditions, Paris, 29–42.
    [Google Scholar]
  17. Campagna, D.J.2015. What makes a play unconventional?: Exploring for the unconventional play.Search and Discovery Article #110221, AAPG DPA Playmaker, 31 March 2015, Calgary, Alberta, Canada.
    [Google Scholar]
  18. Curtis, M.E., Cardott, B.J. and Sondergeld, C.2012. Development of organic porosity in the Woodford Shale with increasing thermal maturity. International Journal of Coal Geology, 103, 26–31, https://doi.org/10.1016/j.coal.2012.08.004
    [Google Scholar]
  19. Dardour, A.M., Boote, D.R.D. and Baird, A.W.2004. Stratigraphic controls on Paleozoic petroleum systems, Ghadames Basin, Libya. Journal of Petroleum Geology, 27, 141–162, https://doi.org/10.1111/j.1747-5457.2004.tb00050.x
    [Google Scholar]
  20. Dixon, R.J., Moore, J.K.S. et al.2009. The ‘Hercynian’ unconformity in North Africa: its nature and significance; a case study from Southern Tunisia and NorthWest Libya. Abstract presented at thePESGB Conference: Africa: New Concepts for the Oldest Continent, London, UK.
    [Google Scholar]
  21. Dixon, R.J., Moore, J.K.S. et al.2010. Integrated petroleum systems and play fairway analysis in a complex Palaeozoic Basin: Ghadames-Illizi Basin, North Africa. Geological Society, London, Petroleum Geology Conference Series, 7, 735–760, https://doi.org/10.1144/0070735
    [Google Scholar]
  22. Djouder, H., Lüning, S., Da Silva, A.C., Abdallah, H. and Boulvain, F.2018. Silurian deltaic progradation, Tassilin Ajjer plateau, southeastern Algeria: sedimentology, ichnology and sequence stratigraphy. Journal of African Earth Sciences, 142, 170–192, https://doi.org/10.1016/j.jafrearsci.2018.03.008
    [Google Scholar]
  23. Echikh, K.1998. Geology and hydrocarbon occurrences in the Ghadamis Basin, Algeria, Tunisia, Libya. Geological Society, London, Special Publications, 132, 109–129, https://doi.org/10.1144/GSL.SP.1998.132.01.06
    [Google Scholar]
  24. EIA2013. Technically Recoverable Shale Oil and Shale Gas Resources: An Assessment of 137 Shale Formations in 41 Countries Outside the United States. Energy Information Agency (EIA), United States Department of Energy, Washington, DC.
    [Google Scholar]
  25. English, K.L., Redfern, J., Bertotti, G., English, J.M. and Cherif, R.Y.2016. Intraplate uplift: new constraints on the Hoggar dome from the Illizi basin (Algeria). Basin Research, 29, 377–393, https://doi.org/10.1111/bre.12182
    [Google Scholar]
  26. Espitalié, J., Deroo, G. and Marquis, F.1985. Rock-Eval Pyrolysis and its Applications. Preprint. Institut Francais du Petrole, Geologie No. 27299.
    [Google Scholar]
  27. Espitalie, J., Marquis, F., Sage, L. and Barsony, I.1987. Géochimie organique du bassin de Paris. Oil and Gas Science and Technology – Revue de l'Institut Français du Pétrole, 42, 271–302, https://doi.org/10.2516/ogst:1987017
    [Google Scholar]
  28. ETAP2023. Ksar Issa Open block assessment, Unpublished document, 4p.
    [Google Scholar]
  29. Ferjaoui, M., Meskini, A. and Achèche, M.H.2001. Modeling of hydrocarbon generation and expulsion from Tannezuft and Aouinet Ouinine Formations in southern Tunisia. In: Abstracts [extended] of Technical Talks, Posters and Core Displays: The CSPG Annual Convention, 2001. Canadian Society of Petroleum Geologists (CSPG), Calgary, Canada, 120–129.
    [Google Scholar]
  30. Fourati, L., Lindskog, T., Ghanem, M. and Soussi, M.2012. Middle to late Ordovician play characterization in Sud Remada permit, southern Tunisia, northern edge of Ghadames Basin. In: 74th EAGE Conference and Exhibition incorporating EUROPEC 2012. European Association of Geoscientists & Engineers (EAGE), Houten, The Netherlands, https://doi.org/10.3997/2214-4609.20148765
    [Google Scholar]
  31. Gabtni, H., Jallouli, H., Mickus, K.L. and Turki, M.M.2013. Geodynamics of the southern Tethyan margin in Tunisia and Maghrebian domain: new constraints from the integrated geophysical study. Arabian Journal of Geosciences, 6, 271–286, https://doi.org/10.1007/s12517-011-0362-z
    [Google Scholar]
  32. Gale, J.F.W., Laubach, S.E., Olson, J.E., Eichhubl, P. and Fall, A.2014. Natural fractures in shale: a review and new observations. AAPG Bulletin, 98, 2165–2216, https://doi.org/10.1306/08121413151
    [Google Scholar]
  33. Galeazzi, S., Point, O., Haddadi, N., Mather, J. and Druesne, D.2010. Regional geology and petroleum systems of the Illizi–Berkine area of the Algerian Saharan Platform: an overview. Marine and Petroleum Geology, 27, 143–178, https://doi.org/10.1016/j.marpetgeo.2008.10.002
    [Google Scholar]
  34. Gambacorta, G., Caronni, V. et al.2016. Hot shale in an ice world: Paleoceanographic evolution of the northern Gondwana margin during the early Paleozoic (Tanezzuft Formation, Tunisia). Marine and Petroleum Geology, 72, 393–411, https://doi.org/10.1016/j.marpetgeo.2016.02.015
    [Google Scholar]
  35. Gamero-Diaz, H., Miller, C., Lewis, R. and Contreras-Fuentes, C.2013. Evaluating the impact of mineralogy on reservoir quality and completion quality of organic shale plays. AAPG Rocky Mountain Section Meeting, Salt Lake City, Utah, September 22–24.
    [Google Scholar]
  36. Gharsalli, R. and Bédir, M.2020. Sequence stratigraphy of the subsurface Cambro-Ordovician siliciclastic deposits in the Chotts Basin, Southern Tunisia: petroleum implications. Journal of African Earth Sciences, 172, 103997, https://doi.org/10.1016/j.jafrearsci.2020.103997
    [Google Scholar]
  37. Ghenima, R.1993. Etude des roches mères paléozoïques du bassin de Ghadamès. Modélisation de la migration des hydrocarbures et application à l’étude du gisement d'El Borma. PhD thesis, Université d'Orléans, Orléans, France.
    [Google Scholar]
  38. Hamed, Y., Ahmadi, R., Hadji, R., Mokadem, N., Ben Dhia, H. and Ali, W.2013. Groundwater Evolution of the Continental Intercalaire of Southern Tunisia and Part of Southern Algeria: use of Geochemical and Isotopic Indicators. Desalination and Water Treatment, 52, 1990–1996, https://doi.org/10.1080/19443994.2013.806221
    [Google Scholar]
  39. Hennissen, A.I.J., Hough, E., Vane, C.H., Leng, M.J., Kemp, S.J. and Stephenson, H.M.2017. The prospectivity of a potential shale gas play: an example from the southern Pennine Basin (central England, UK). Marine and Petroleum Geology, 86, 1047–1066, https://doi.org/10.1016/j.marpetgeo.2017.06.033
    [Google Scholar]
  40. Jaeger, H., Bonnefous, J. and Massa, D.1975. Le Silurien en Tunisie, ses relations avec le Silurien de Libye nord-occidentale. Bulletin de la Société Géologique de France, Série 7, XVII, 68–76, https://doi.org/10.2113/gssgfbull.S7-XVII.1.68
    [Google Scholar]
  41. Jarvie, D.M.2012a. Shale resource systems for oil and gas: part 1– Shale gas resource systems. AAPG Memoirs, 97, 69–87, https://doi.org/10.1306/13321446M973489
    [Google Scholar]
  42. Jarvie, D.M.2012b. Shale resource systems for oil and gas: part 2 –Shale oil resource systems. AAPG Memoirs, 97, 89–119.
    [Google Scholar]
  43. Jarvie, D.M.2014. Components and processes affecting producibility and commerciality of shale resource systems. Geologica Acta, 12(4), 307–325, https://doi.org/10.1344/GeologicaActa2014.12.4.3
    [Google Scholar]
  44. Jarvie, D.M., Hill, R.J., Ruble, T.E. and Pollastro, R.M.2007. Unconventional shale-gas systems: the Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bulletin, 91, 475–499, https://doi.org/10.1306/12190606068
    [Google Scholar]
  45. Jin, X., Shah, S.N., Truax, J.A. and Roegiers, J.C.2014. A practical petrophysical approach for brittleness prediction from porosity and sonic logging in shale reservoirs. Paper SPE-170972-MS presented at theSPE Annual Technical Conference and Exhibition, 27–29 October 2014, Amsterdam, The Netherlands, https://doi.org/10.2118/170972-MS
    [Google Scholar]
  46. Kermandji, A.M.H.2007. Silurian–Devonian miospores from the western and central Algeria. Miospores Revue de Micropaléontologie, 50, 109–128, https://doi.org/10.1016/j.revmic.2007.01.003
    [Google Scholar]
  47. Kilani, F., Ghazzay-Souli, W. and Razgallah, S.2014. Palynostratigraphical zonation of Palaeozoic sediments in southern Tunisia (well HBR-1). Arabian Journal of Geosciences, 8, 6317–6327, https://doi.org/10.1007/s12517-014-1607-4
    [Google Scholar]
  48. Le Fever, J.A.2005. Oil production from the Bakken formation: a short history. North Dakota Geological Survey Newsletter, 32, 1–6.
    [Google Scholar]
  49. Legrand, P.1962. Connaissances acquises sur la limite des systèmes Silurien et Dévonien au Sahara septentrional. Mémoires du BRGM, 33, 151–159.
    [Google Scholar]
  50. Legrand, P.1969. Découverte de graptolites entre Gara Djebilet et Aouinet bel Egra, synéclise de Tindouf, Sahara algérien. Bulletin de la Société d'Histoire Naturelle de l'Afrique du Nord, 59, 115–126.
    [Google Scholar]
  51. Legrand, P.1985. Lower Paleozoic rocks of Algeria. In:Holland, C.H. (ed.) Lower Palaeozoic Rocks of the World. Lower Paleozoic of North-Western and West-Central Africa, Volume 4. John Wiley and Sons, London, 5–89.
    [Google Scholar]
  52. Le Hérissé, A., Dorning, K.J., Mullins, G.L. and Wicander, R.2009. Global patterns of organic-walled phytoplankton biodiversity during the late Silurian to earliest Devonian. Palynology, 33, 25–75, https://doi.org/10.1080/01916122.2009.9989665
    [Google Scholar]
  53. Le Heron, D.P., Craig, J. and Etiennej, L.2009. Ancient glaciations and hydrocarbon accumulations in North Africa and the Middle East. Earth-Science Reviews, 93, 47–76, https://doi.org/10.1016/j.earscirev.2009.02.001
    [Google Scholar]
  54. Lehnert, O., Eriksson, M.J., Calner, M., Joachimski, M. and Buggish, W.2007. Concurrent sedimentary and isotopic indications for global climatic cooling in the Late Silurian. Acta Geologica Sinica, 46, 249–255.
    [Google Scholar]
  55. Lopatin, N.V., Zubairaev, S.L., Kos, I.M., Emets, T.P., Romanov, E.A. and Malchikhina, O.V.2003. Unconventional oil accumulations in the Upper Jurassic Bazhenov Black Shale Formation, West Siberian Basin: A self sourced reservoir system. Journal of Petroleum Geology, 26, p. 225–244, https://doi.org/10.1111/j.1747-5457.2003.tb00027.x
    [Google Scholar]
  56. Loydell, D.2011. Graptolite biostratigraphy of the E1-NC174 core, Rhuddanian (lower Llandovery, Silurian), Murzuq Basin (Libya). Bulletin of Geosciences, 87, 651–660, https://doi.org/10.3140/bull.geosci1311
    [Google Scholar]
  57. Lüning, S., Craig, J., Loydell, D.K., Storch, P. and Fitches, B.2000a. Lower Silurian ‘hot shales’ in North Africa and Arabia: regional distribution and depositional model. Earth-Science Reviews, 49, 121–200, https://doi.org/10.1016/S0012-8252(99)00060-4
    [Google Scholar]
  58. Lüning, S., Loydell, D.K., Sutcliffe, O., Ait Salem, A., Zanella, E., Craig, J. and Harper, D.A.T.2000b. Silurian–Lower Devonian black shales in Morocco: which are the organically richest horizons. Journal of Petroleum Geology, 23, 293–311, https://doi.org/10.1111/j.1747-5457.2000.tb01021.x
    [Google Scholar]
  59. Lüning, S., Archer, R., Craig, J. and Loydell, D.K.2003. The Lower Silurian ‘Hot Shales’ and ‘Double Hot Shales’ in North Africa and Arabia. In:Salem, M.J., Oun, K.M. and Seddiq, H.M. (eds) The Geology of Northwest Libya (Ghadamis, Jifarah, Tarabulus and Sabratah Basins), Volume 3. Earth Science Society of Libya, Tripoli, 91–105.
    [Google Scholar]
  60. Masrouhi, A., Gharbi, M., Bellier, O. and Ben Youssef, M.2019. The Southern Atlas Front in Tunisia and its foreland basin: Structural style and regional-scale deformation. Tectonophysics, 764, 1–24, https://doi.org/10.1016/j.tecto.2019.05.006
    [Google Scholar]
  61. Massa, D.1988. Paléozoique de Libye occidentale, stratigraphie paléogéographie. PhD thesis, Université de Nice, Nice, France.
    [Google Scholar]
  62. Mejri, F., Burollet, P.F. and Ben FerjaniA.2006. Petroleum Geology of Tunisia, A Renewed Synthesis. Entreprise tunisienne des activités pétrolières, Tunis.
    [Google Scholar]
  63. Murphy, R.J.2015. Depositional systems interpretation of early Permian mixed siliciclastics and carbonates, Midland Basin, Texas. Master's Thesis, Indiana University, https://scholarworks.iu.edu/dspace/handle/2022/19695
    [Google Scholar]
  64. Negri, A., Ferretti, A., Wagner, T. and Meyers, P.A.2009. Organic-carbon-rich sediments through the Phanerozoic: processes, progress, and perspectives. Palaeogeography, Palaeoclimatology, Palaeoecology, 273, 302–328, https://doi.org/10.1016/j.palaeo.2008.11.005
    [Google Scholar]
  65. OGJ Editors2010. North Africa gets first shale gas frac job, August 30, 2010. The first hydraulic fracturing operation in a shale gas reservoir in North Africa took place earlier this year in the El Franig field in west-central Tunisia in the Ghadames Basin, said Cygam Energy Inc., Calgary. Oil and Gas Journal, 30 August, https://www.ogj.com/drilling-production/article/17282675/north-africa-gets-first-shale-gas-frac-job
    [Google Scholar]
  66. OGP2013. Good Practice Guidelines for the Development of Shale Oil and Gas. OGP Report No. 489.
    [Google Scholar]
  67. Ouirghi, K., Mabrouk El Asmi, A., Belhaj Mohamed, A., Saidi, M. and Fernanda Romero-Sarmiento, M.2022. Organic geochemical study of Permian series from the Jeffara and Dahar areas (Southern Tunisia): identification and characterization of a Tunisian Permian source rock. International Journal of Coal Geology, 252, 1–20, https://doi.org/10.1016/j.coal.2022.103943
    [Google Scholar]
  68. Peters, K.E.1986. Guidelines for evaluating petroleum source rocks using programmed pyrolysis. AAPG Bulletin, 70, 318–329.
    [Google Scholar]
  69. Peters, K.E. and Cassa, M.R.1994. Applied source rock geochemistry. AAPG Memoirs, 60, 93–120.
    [Google Scholar]
  70. Pogacsas, G.Y., Rumpler, J., Koncyz, I., Hassi, J. and Samu, L.1996. Tectonostratigraphic evolution and related hydrocarbon habitat of the Kibili area, Central Tunisia. ETAP Memoire, 10, 209–223.
    [Google Scholar]
  71. Rezaee, R.2015. Fundamentals of Gas Shale Reservoirs. John Wiley and Sons, Hoboken, NJ, https://doi.org/10.1002/9781119039228
    [Google Scholar]
  72. Rezouga, N., Belhaj Mohamed, A., Saidi, M. and Bouazizi, I.2012. Assessment of unconventional shale reservoir: the Fegaguira Fm, Chotts Basin, Tunisia.Paper SPE-150830-MS presented at theNorth Africa Technical Conference and Exhibition, 20–22 February 2012, Cairo, Egypt, https://doi.org/10.2118/150830-MS
    [Google Scholar]
  73. Romero-Sarmiento, M.F., Riboulleau, A., Vecoli, M. and Versteegh, G.J.M.2010. Occurrence of retene in upper Silurian–lower Devonian sediments from North Africa: origin and implications. Organic Geochemistry, 41, 302–306, https://doi.org/10.1016/j.orggeochem.2009.10.003
    [Google Scholar]
  74. Romero-Sarmiento, M.F., Pillot, D., Letort, G., Lamoureux-Var, V., Beaumont, V., Huc, A.Y. and Garcia, B.2015. New Rock-Eval method for characterization of unconventional shale resource systems. Oil and Gas Science and Technology – Revue de l'Institut Français du Pétrole, 71, 37, https://doi.org/10.2516/ogst/2015007
    [Google Scholar]
  75. Romero-Sarmiento, M.F., Ramiro-Ramirez, S., Berthe, G., Fleury, M. and Littke, R.2017. Geochemical and petrophysical source rock characterization of the Vaca-Muerta Formation, Argentina: implications for unconventional petroleum resource estimations. International Journal of Coal Geology, 184, 27–41, https://doi.org/10.1016/j.coal.2017.11.004
    [Google Scholar]
  76. Slatt, R.M.2011. Important geological properties of unconventional resource shales: review. Central European Journal of Geosciences, 3, 435–448, https://doi.org/10.2478/s13533-011-0042-2
    [Google Scholar]
  77. Sonnenberg, S.A.2011. The Niobrara Petroleum System, a Major Tight Resource Play in the Rocky Mountain Region. Search and Discovery Article #10355, pp. 1–32.
    [Google Scholar]
  78. Soua, M.2014. Paleozoic oil/gas shale reservoirs in southern Tunisia: an overview. Journal of African Earth Sciences, 100, 450–492, https://doi.org/10.1016/j.jafrearsci.2014.07.009
    [Google Scholar]
  79. Soussi, M.2002. Le Jurassique de la Tunisie atlasique. Stratigraphie, dynamique sédimentaire, paléogéographie et intérêt pétrolier. Travaux et Documents des Laboratoires de Géologie de Lyon, 157, https://www.persee.fr/doc/geoly_0750-6635_2002_mon_157_1
    [Google Scholar]
  80. Soussi, M.2009. Lithostratigraphic Revision and Petroleum System Assessment of the Jurassic of the Chotts Area, Southern Tunisia. Thani-Emirates, Unpublished Report Tn-003 E-15.
    [Google Scholar]
  81. Soussi, M.2013. Facies, Depositional Model, Sequence Stratigraphy, Reservoir Layering and Fairways of the Middle–Upper Ordovician of Bir Ben Tartar Concession from Cores to E-logs. Storm, Unpublished Report.
    [Google Scholar]
  82. Soussi, M.2019. Phanerozoic global sea-level changes: evidences from Tunisia illustrating how Eduard Suess’ concepts (Gondwana,Tethys, Eustasy) are still relevant. In:Boughdiri, M., Bádenas, B., Selden, P., Jaillard, E., Bengtson, P. and Granier, B. (eds) Paleobiodiversity and Tectono-Sedimentary Records in the Mediterranean Tethys and Related Eastern Areas. Advances in Science, Technology and Innovation. Springer, Cham, Switzerland, 3–6, https://doi.org/10.1007/978-3-030-01452-0_1
    [Google Scholar]
  83. Soussi, M., Niedzwiedzki, G. et al.2017. Middle Triassic (Anisian–Ladinian) Tejra red beds and Late Triassic (Carnian) carbonate sedimentary records of southern Tunisia, Saharan Platform: biostratigraphy, sedimentology, and implication on regional stratigraphic correlations. Marine and Petroleum Geology, 79, 222–256, https://doi.org/10.1016/j.marpetgeo.2016.10.019
    [Google Scholar]
  84. Stricanne, L., Munnecke, A. and Pross, J.2006. Assessing mechanisms of environmental change: palynological signals across the Late Ludlow (Silurian) positive excursion (δ13C, δ18O) on Gotland, Sweden. Palaeogeography, Palaeoclimatology, Palaeoecology, 230, 1–31, https://doi.org/10.1016/j.palaeo.2005.07.003
    [Google Scholar]
  85. Sweeney, J.J. and Burnham, A.K.1990. Evaluation of a simple mode1 of vitrinite reflectance based on chemical kinetics. AAPG Bulletin, 74, 1559–1570, https://doi.org/10.1306/0C9B251F-1710-11D7-8645000102C1865D
    [Google Scholar]
  86. Tanfous Amri, D., Dhahri, F., Soussi, M., Gabtni, H. and Bedir, M.2017. The role of E–W basement faults in the Mesozoic geodynamic evolution of the Gafsa and Chotts basins, south-central Tunisia. Journal of Earth System Science, 126, 1–22, https://doi.org/10.1007/s12040-017-0876-1
    [Google Scholar]
  87. Tomassini, F., Kietzman, D., Fatín, M., Crousse, L. and Reijenstein, H.2014. Estratigrafía y Análisis de facies de La Formación Vaca Muerta en el área El Trapial, Cuenca Neuquina, Argentina. In: Simposio de Recursos No Convencionales: Ampliando el Horizonte EnergéticoInstituto Argentino del Petróleo y el Gas (IAPG), Buenos Aires, 591–599.
    [Google Scholar]
  88. Troudi, H., Rezouga, N. and Meskini, A.2012. The unconventional gas play in Tunisia Ghadames Basin requires a certain edge.Presented at theIG/AIG – Shale Gas Workshop, 27–29 February 2012, Oran, Algeria.
    [Google Scholar]
  89. Turner, P. and Sherif, H.2007. A giant Late Triassic Early Jurassic evaporitic basin on the Saharan Platform, North Africa. Geological Society London Special Publications, 285, 87–105, https://doi.org/10.1144/SP285.6
    [Google Scholar]
  90. Vecoli, M., Riboulleau, A. and Versteegh, G.J.M.2009. Palynology, organic geochemistry, and carbon isotope analysis of the latest Ordovician through Silurian clastic succession from borehole Tt1, GhadamisBasin, southern Tunisia, North Africa: palaeoenvironmental interpretation. Palaeogeography, Palaeoclimatology, Palaeoecology, 273, 378–394, https://doi.org/10.1016/j.palaeo.2008.05.015
    [Google Scholar]
  91. Wu, W. and Grana, D.2017. Integrated petrophysics and rock physics modeling for well-log interpretation of elastic, electrical, and petrophysical properties. Jounal of Applied Geophysics, 146, 54–66, https://doi.org/10.1016/j.jappgeo.2017.09.007
    [Google Scholar]
  92. Zaafouri, A., Haddad, S. and Mannaî-Tayech, B.2017. Subsurface Permian reef complexes of southern Tunisia: shelf carbonate setting and paleogeographic implications. Journal of African Earth Sciences, 129, 944–959, https://doi.org/10.1016/j.jafrearsci.2017.02.032
    [Google Scholar]
/content/journals/10.1144/petgeo2023-015
Loading
/content/journals/10.1144/petgeo2023-015
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error