1887
Volume 30, Issue 1
  • ISSN: 1354-0793
  • E-ISSN:

Abstract

Fracture networks play a critical role in fluid flow within reservoirs, and it is therefore important to understand the interactions and influences of these networks. Our study focuses on the Southern Chotts–Jeffara Basin, which hosts reservoirs within Triassic, Permian and Ordovician units containing significant hydrocarbon accumulations. Recent developments on the structural understanding of the basin have proved that a regional shortening phase occurred between the Permian and Jurassic, forming open folds and a distributed fracture network. Analysis of late Paleozoic and Mesozoic outcrops within the basin has identified several sets of fractures (with dip directions and dip angles of 150/80 and 212/86) and compressional structural features that support this shortening hypothesis. We have integrated fracture data from surface analogues and subsurface analysis of advanced seismic attributes and well data through structural linking to form a 2D hybrid fracture model of the reservoirs in the region. Through analytical aperture modelling and numerical simulation, we found that the fractures orientated 212° in combination with large-scale fractures contribute significantly to the fluid-flow orientation and potential reservoir permeability. Our presented fracture workflow and framework provide an insight into network characterization within naturally fractured reservoirs of Tunisia, and how certain structures form fluid pathways that influence flow and production.

Data and figures detailing fracture characterisation and modelling along open folds in southern Tunisia are available at https://doi.org/10.6084/m9.figshare.c.6904499

Loading

Article metrics loading...

/content/journals/10.1144/petgeo2023-039
2023-12-11
2024-04-24
Loading full text...

Full text loading...

References

  1. Baghbanan, A. and Jing, L.2008. Stress effects on permeability in a fractured rock mass with correlated fracture length and aperture. International Journal of Rock Mechanics and Mining Sciences, 45, 1320–1334, https://doi.org/10.1016/j.ijrmms.2008.01.015
    [Google Scholar]
  2. Bahrouni, N., Bouaziz, S. et al.2014. Neotectonic and seismotectonic investigation of seismically active regions in Tunisia: a multidisciplinary approach. Journal of Seismology, 18, 235–256, https://doi.org/10.1007/s10950-013-9395-y
    [Google Scholar]
  3. Balberg, I., Anderson, C.H., Alexander, S. and Wagner, N.1984. Excluded volume and its relation to the onset of percolation. Physical Review B, 30, 3933, https://doi.org/10.1103/PhysRevB.30.3933
    [Google Scholar]
  4. Balti, T., Nasr, I.H. and Inoubli, M.H.2018. Petrophysical characterization of upper Permian reservoir in southern Tunisia. In: Sundararajan, N., Eshagh, M., Saibi, H., Meghraoui, M., Al-Garni, M. and Giroux, B. (eds) On Significant Applications of Geophysical Methods. CAJG 2018. Advances in Science, Technology & Innovation. Springer, Cham, Switzerland, 169–171, https://doi.org/10.1007/978-3-030-01656-2_38
    [Google Scholar]
  5. Baouche, R., Sen, S. and Feriel, H.A.2022. Determining shear failure gradient and optimum drilling mud window in the Ourhoud oil field, Berkine Basin, Algeria. Interpretation, 10, SF1–SF7, https://doi.org/10.1190/INT-2021-0134.1
    [Google Scholar]
  6. Barton, N.2014. Non-linear behaviour for naturally fractured carbonates and frac-stimulated gas-shales. First Break, 32, https://doi.org/10.3997/1365-2397.2014011
    [Google Scholar]
  7. Barton, N. and Bandis, S.1980. Technical note: some effects of scale on the shear strength of joints. International Journal of Rock Mechanics and Mining Sciences, 17, 69–73, https://doi.org/10.1016/0148-9062(80)90009-1
    [Google Scholar]
  8. Belayneh, M.W., Matthai, S.K., Blunt, M.J. and Rogers, S.F.2009. Comparison of deterministic with stochastic fracture models in water-flooding numerical simulations. AAPG Bulletin, 93, 1633–1648, https://doi.org/10.1306/07220909031
    [Google Scholar]
  9. Belfield, W.C. and Sovich, J.P.1995. Fracture statistics from horizontal wellbores. Journal of Canadian Petroleum Technology, 34, https://doi.org/10.2118/95-06-04
    [Google Scholar]
  10. Ben Ferjani, A., Burollet, P. and Mejri, F.1990. Petroleum Geology of Tunisia, Entreprise Tunisienne d'Activités Pétrolières (E.T.A.P.), Tunis.
    [Google Scholar]
  11. Bergbauer, S. and Pollard, D.D.2004. A new conceptual fold-fracture model including prefolding joints, based on the Emigrant Gap anticline, Wyoming. Geological Society of America Bulletin, 116, 294–307, https://doi.org/10.1130/B25225.1
    [Google Scholar]
  12. Berrone, S., Scialo, S. and Vicini, F.2019. Parallel meshing, discretization, and computation of flow in massive discrete fracture networks. SIAM Journal on Scientific Computing, 41, C317–C338, https://doi.org/10.1137/18M1228736
    [Google Scholar]
  13. Besser, H. and Hamed, Y.2019. Causes and risk evaluation of oil and brine contamination in the Lower Cretaceous Continental Intercalaire aquifer in the Kebili region of southern Tunisia using chemical fingerprinting techniques. Environmental Pollution, 253, 412–423, https://doi.org/10.1016/j.envpol.2019.07.020
    [Google Scholar]
  14. Bisdom, K., Gauthier, B.D.M., Bertotti, G. and Hardebol, N.J.2014. Calibrating discrete fracture-network models with a carbonate three-dimensional outcrop fracture network: Implications for naturally fractured reservoir modeling. AAPG Bulletin, 98, 1351–1376, https://doi.org/10.1306/02031413060
    [Google Scholar]
  15. Bisdom, K., Bertotti, G. and Nick, H.M.2016a. The impact of different aperture distribution models and critical stress criteria on equivalent permeability in fractured rocks. Journal of Geophysical Research: Solid Earth, 121, 4045–4063, https://doi.org/10.1002/2015JB012657
    [Google Scholar]
  16. Bisdom, K., Bertotti, G. and Nick, H.M.2016b. A geometrically based method for predicting stress-induced fracture aperture and flow in discrete fracture networks. AAPG Bulletin, 100, 1075–1097, https://doi.org/10.1306/02111615127
    [Google Scholar]
  17. Bodin, S., Petitpierre, L., Wood, J., Elkanouni, I. and Redfern, J.2010. Timing of Early to Mid-Cretaceous tectonic phases along North Africa: new insights from the Jeffara escarpment (Libya–Tunisia). Journal of African Earth Sciences, 58, 489–506, https://doi.org/10.1016/j.jafrearsci.2010.04.010
    [Google Scholar]
  18. Boersma, Q., Hardebol, N., Barnhoorn, A. and Bertotti, G.2018. Mechanical factors controlling the development of orthogonal and nested fracture network geometries. Rock Mechanics and Rock Engineering, 51, 3455–3469, https://doi.org/10.1007/s00603-018-1552-8
    [Google Scholar]
  19. Boersma, Q.D., Bruna, P.O., de Hoop, S., Vinci, F., Tehrani, A.M. and Bertotti, G.2021. The impact of natural fractures on heat extraction from tight Triassic sandstones in the West Netherlands Basin: a case study combining well, seismic and numerical data. Netherlands Journal of Geoscience, 100, E6, https://doi.org/10.1017/njg.2020.21
    [Google Scholar]
  20. Bonnet, E., Bour, O., Odling, N.E., Davy, P., Main, I., Cowie, P. and Berkowitz, B.2001. Scaling of fracture systems in geological media. Reviews of Geophysics, 39, 347–383, https://doi.org/10.1029/1999RG000074
    [Google Scholar]
  21. Bouaziz, S.1995. Etude de la tectonique cassante dans la plate-forme et l'Atlas Sahariens (Tunisie méridionale): Evolution des paléochamps de contraintes et implications géodynamiques. PhD thesis, l'Université de Tunis II, Tunis, Tunisia.
    [Google Scholar]
  22. Bouaziz, S. and Ben Salem, H.1987. Carte géologique au 1/100000 de Kirchaou. Feuille No. 100. National Office of Mines (ONM), Tunis.
  23. Bouaziz, S. and M'Hadhbi, M.1987. Carte géologique au 1/100000 de Sidi Toui. Feuille No. 109. National Office of Mines (ONM), Tunis.
  24. Bouaziz, S., Barrier, E., Soussi, M., Turki, M.M. and Zouari, H.2002. Tectonic evolution of the northern African margin in Tunisia from paleostress data and sedimentary record. Tectonophysics, 357, 227–253, https://doi.org/10.1016/S0040-1951(02)00370-0
    [Google Scholar]
  25. Bourbiaux, B.2010. Fractured reservoir simulation: a challenging and rewarding issue. Oil & Gas Science and Technology – Revue de l'Institut Français du Pétrole, 65, 227–238, https://doi.org/10.2516/ogst/2009063
    [Google Scholar]
  26. Branellec, M., Callot, J.P., Nivière, B. and Ringenbach, J.C.2015. The fracture network, a proxy for mesoscale deformation: constraints on layer parallel shortening history from the Malargüe fold and thrust belt, Argentina. Tectonics, 34, 623–647, https://doi.org/10.1002/2014TC003738
    [Google Scholar]
  27. Brouwer, F. and Huck, A.2011. An integrated workflow to optimize discontinuity attributes for the imaging of faults. In: Marfurt, K.J., Gao, D. et al. (eds) Attributes: New Views on Seismic Imaging – Their Use in Exploration and Production: Proceedings of the 31st Annual GCSSEPM Foundation Bob F. Perkins Research Conference. Gulf Coast Section SEPM (GCSSEPM), Houston, TX, 496–533, https://doi.org/10.5724/gcs.11.31.0496
    [Google Scholar]
  28. Brown, A.B.2001. Understanding seismic attributes. Geophysics, 66, 47–48, https://doi.org/10.1190/1.1444919
    [Google Scholar]
  29. Bruna, P.-O., Bertotti, G., Ben Amor, S., Nasri, A. and Ouahchi, S.2019a. Analysis of the pre- and post variscan unconformity deformations: new insights for the characterisation of the Ordovician and Triassic reservoirs in the Southern Chotts Basin, Tunisia. Paper presented at thePESGB Africa E&P Conference 2019, 1–2 October 2019, London, UK.
    [Google Scholar]
  30. Bruna, P.-O., Lavenu, A.P., Matonti, C. and Bertotti, G.2019b. Are stylolites fluid-flow efficient features?Journal of Structural Geology, 125, 270–277, https://doi.org/10.1016/j.jsg.2018.05.018
    [Google Scholar]
  31. Bruna, P.-O., Straubhaar, J., Prabhakaran, R., Bertotti, G., Bisdom, K., Mariethoz, G. and Meda, M.2019c. A new methodology to train fracture network simulation using multiple point statistics. Solid Earth, 10, 537–559, https://doi.org/10.5194/se-10-537-2019
    [Google Scholar]
  32. Bruna, P.-O., Smith, R.Y., Ben Amor, S., Masi, B., Moscariello, A. and Bertotti, G.2020. Permian to Jurassic shortening controlling thickness changes and fracture patterns in the Chotts and Jeffara Basins, Central Tunisia: implications for petroleum reservoirs. Paper presented at the3rd Conference of the Arabian Journal of Geosciences, 2–5 November 2020, online.
    [Google Scholar]
  33. Bruna, P.-O., Bertotti, G., Amor, S.B., Nasri, A. and Ouahchi, S.2022a. Vertical movements and petroleum system modelling in the southern Chotts Basin, Central Tunisia. In: Meghraoui, M., Sundararajan, N. et al. (eds) Advances in Geophysics, Tectonics and Petroleum Geosciences: Proceedings of the 2nd Springer Conference of the Arabian Journal of Geosciences (CAJG-2), Tunisia 2019. Springer Nature, 619–622, https://doi.org/10.1007/978-3-030-73026-0_137
    [Google Scholar]
  34. Bruna, P.-O., Dixon, R., Bertotti, G., Lovell-Kennedy, J. and Redfern, J.2022b. A new Permo-Triassic model for Northern Africa: challenging the prevailing models. Paper presented at theAAPG/EAGE MEDINA Conference and Exhibition, 12–14 September 2022, Tunis, Tunisia.
    [Google Scholar]
  35. Burollet, P.F.1991. Structures and tectonics of Tunisia. Tectonophysics, 195, 359–369, https://doi.org/10.1016/0040-1951(91)90221-D
    [Google Scholar]
  36. Cacace, M. and Jacquey, A.B.2017. Flexible parallel implicit modelling of coupled thermal–hydraulic–mechanical processes in fractured rocks. Solid Earth, 8, 921–941, https://doi.org/10.5194/se-8-921-2017
    [Google Scholar]
  37. Cacas, M.C., Daniel, J.M. and Letouzey, J.2001. Nested geological modelling of naturally fractured reservoirs. Petroleum Geoscience, 7, S43–S52, https://doi.org/10.1144/petgeo.7.S.S43
    [Google Scholar]
  38. Cappa, F. and Rutqvist, J.2011. Modeling of coupled deformation and permeability evolution during fault reactivation induced by deep underground injection of CO2. International Journal of Greenhouse Gas Control, 5, 336–346, https://doi.org/10.1016/j.ijggc.2010.08.005
    [Google Scholar]
  39. Chilès, J.P.2005. Stochastic modeling of natural fractured media: a review. In: Leuangthong, O. and Deutsch, C.V. (eds) Geostatistics Banff 2004. Quantitative Geology and Geostatistics, 14. Springer, Dordrecht, The Netherlands, 285–294, https://doi.org/10.1007/978-1-4020-3610-1_29
    [Google Scholar]
  40. ChopraS. and MarfurtK.J.2007. Seismic Attributes for Prospect Identification and Reservoir Characterization. Society of Exploration Geophysicists, Tulsa, OK.
    [Google Scholar]
  41. Chugunova, T., Corpel, V. and Gomez, J.P.2017. Explicit fracture network modelling: from multiple point statistics to dynamic simulation. Mathematical Geosciences, 49, 541–553, https://doi.org/10.1007/s11004-017-9687-9
    [Google Scholar]
  42. Cruz, F., Roehl, D. and do Amaral Vargas, E., Jr2019. An XFEM implementation in Abaqus to model intersections between fractures in porous rocks. Computers and Geotechnics, 112, 135–146, https://doi.org/10.1016/j.compgeo.2019.04.014
    [Google Scholar]
  43. Darcel, C., Bour, O., Davy, P. and De Dreuzy, J.R.2003. Connectivity properties of two-dimensional fracture networks with stochastic fractal correlation. Water Resources Research, 39, 1272, https://doi.org/10.1029/2002WR001628
    [Google Scholar]
  44. Dershowitz, W.S. and Herda, H.H.1992. Interpretation of fracture spacing and intensity. In:33rd US Symposium on Rock Mechanics, Santa Fe, NM, June 1992. American Rock Mechanics Association (ARMA), Alexandria, VA, 757–766.
    [Google Scholar]
  45. Dhaoui, M., Gabtni, H., Jallouli, C., Jleilia, A., Mickus, K.L. and Turki, M.M.2014. Gravity analysis of the Precambrian basement topography associated with the northern boundary of Ghadames basin (southern Tunisia). Journal of Applied Geophysics, 111, 299–311, https://doi.org/10.1016/j.jappgeo.2014.10.014
    [Google Scholar]
  46. Ebner, M., Koehn, D., Toussaint, R. and Renard, F.2009. The influence of rock heterogeneity on the scaling properties of simulated and natural stylolites. Journal of Structural Geology, 31, 72–82, https://doi.org/10.1016/j.jsg.2008.10.004
    [Google Scholar]
  47. Elfeel, M.A. and Geiger, S.2012. Static and dynamic assessment of DFN permeability upscaling. Paper SPE-154369-MS presented at theSPE Europec/EAGE Annual Conference, 4–7 June 2012, Copenhagen, Denmark, https://doi.org/10.2118/154369-MS
    [Google Scholar]
  48. Elmouttie, M.K., Krähenbühl, G., Poropat, G.V. and Kelso, I.2014. Stochastic representation of sedimentary geology. Rock Mechanics and Rock Engineering, 47, 507–518, https://doi.org/10.1007/s00603-013-0411-x
    [Google Scholar]
  49. El Rabia, A., Inoubli, M.H., Ouaja, M., Abidi, O., Sebei, K. and Jlailia, A.2018. Salt tectonics and its effect on the structural and sedimentary evolution of the Jeffara Basin, Southern Tunisia. Tectonophysics, 744, 350–372, https://doi.org/10.1016/j.tecto.2018.07.015
    [Google Scholar]
  50. Ern, A., Hédin, F., Pichot, G. and Pignet, N.2022. Hybrid high-order methods for flow simulations in extremely large discrete fracture networks. SMAI Journal of Computational Mathematics, 8, 375–398, https://doi.org/10.5802/smai-jcm.92
    [Google Scholar]
  51. Fekirine, B. and Abdallah, H.1998. Palaeozoic lithofacies correlatives and sequence stratigraphy of the Saharan platform, Algeria. Geological Society, London, Special Publications, 132, 97–108, https://doi.org/10.1144/GSL.SP.1998.132.01.05
    [Google Scholar]
  52. Frizon de Lamotte, D., Raulin, C., Mouchot, N., Wrobel-Daveau, J.C., Blanpied, C. and Ringenbach, J.C.2011. The southernmost margin of the Tethys realm during the Mesozoic and Cenozoic: Initial geometry and timing of the inversion processes. Tectonics, 30, TC3002, https://doi.org/10.1029/2010TC002691
    [Google Scholar]
  53. Frizon de Lamotte, D., Tavakoli-Shirazi, S. et al.2013. Evidence for late Devonian vertical movements and extensional deformation in northern Africa and Arabia: integration in the geodynamics of the Devonian world. Tectonics, 32, 107–122, https://doi.org/10.1002/tect.20007
    [Google Scholar]
  54. Gabtni, H., Jallouli, C., Mickus, K.L., Zouari, H. and Turki, M.M.2009. Deep structure and crustal configuration of the Jeffara basin (Southern Tunisia) based on regional gravity, seismic reflection and borehole data: how to explain a gravity maximum within a large sedimentary basin?Journal of Geodynamics, 47, 142–152, https://doi.org/10.1016/j.jog.2008.07.004
    [Google Scholar]
  55. Galeazzi, S., Point, O., Haddadi, N., Mather, J. and Druesne, D.2010. Regional geology and petroleum systems of the Illizi–Berkine area of the Algerian Saharan platform: an overview. Marine and Petroleum Geology, 27, 143–178, https://doi.org/10.1016/j.marpetgeo.2008.10.002
    [Google Scholar]
  56. Genter, A., Castaing, C., Dezayes, C., Tenzer, H., Traineau, H. and Villemin, T.1997. Comparative analysis of direct (core) and indirect (borehole imaging tools) collection of fracture data in the Hot Dry Rock Soultz reservoir (France). Journal of Geophysical Research: Solid Earth, 102, 15 419–15 431, https://doi.org/10.1029/97JB00626
    [Google Scholar]
  57. Geuzaine, C. and Remacle, J.F.2009. Gmsh: a 3-D finite element mesh generator with built-in pre-and post-processing facilities. International Journal for Numerical Methods in Engineering, 79, 1309–1331, https://doi.org/10.1002/nme.2579
    [Google Scholar]
  58. Gharbi, M., Espurt, N. and Masrouhi, A.2015. Style of Atlassic tectonic deformation and geodynamic evolution of the southern Tethyan margin, Tunisia. Marine and Petroleum Geology, 66, 801–816, https://doi.org/10.1016/j.marpetgeo.2015.07.020
    [Google Scholar]
  59. Gharsalli, R. and Bédir, M.2020. Sequence stratigraphy of the subsurface cambro-ordovician siliciclastic deposits in the Chotts basin, Southern Tunisia: Petroleum implications. Journal of African Earth Sciences, 172, 103997, https://doi.org/10.1016/j.jafrearsci.2020.103997
    [Google Scholar]
  60. Grech, P. and Addala, K.2014. Sabria Field – Unlocking reserves through understanding. Paper presented at the4th Tunisian Oil and Gas Summit, 25–27 September 2014, Hamammet, Tunisia.
    [Google Scholar]
  61. Grimm Lima, M.M., Schädle, P., Vogler, D., Saar, M.O. and Kong, X.Z.2020. A numerical model for formation dry-out during CO2 injection in fractured reservoirs using the MOOSE framework: implications for CO2-based geothermal energy extraction. In: Proceedings World Geothermal Congress 2020 Reykjavik, Iceland, 26 April–2 May 2020. ETH Zurich, Zurich, Switzerland, 15024.
    [Google Scholar]
  62. Gutierrez, M. and Youn, D.-J.2015. Effects of fracture distribution and length scale on the equivalent continuum elastic compliance of fractured rock masses. Journal of Rock Mechanics and Geotechnical Engineering, 7, 626–637, https://doi.org/10.1016/j.jrmge.2015.07.006
    [Google Scholar]
  63. Gutmanis, J., i Oró, L.A., Díez-Canseco, D., Chebbihi, L., Awdal, A. and Cook, A.2018. Fracture analysis of outcrop analogues to support modelling of the subseismic domain in carbonate reservoirs, south-central Pyrenees. Geological Society, London, Special Publications, 459, 139–156, https://doi.org/10.1144/SP459.2
    [Google Scholar]
  64. Healy, D., Rizzo, R.E. et al.2017. FracPaQ: A MATLAB™ toolbox for the quantification of fracture patterns. Journal of Structural Geology, 95, 1–16, https://doi.org/10.1016/j.jsg.2016.12.003
    [Google Scholar]
  65. Hooker, J.N., Gomez, L.A., Laubach, S.E., Gale, J.F.W. and Marrett, R.2012. Effects of diagenesis (cement precipitation) during fracture opening on fracture aperture-size scaling in carbonate rocks. Geological Society, London, Special Publications, 370, 187–206, https://doi.org/10.1144/SP370.9
    [Google Scholar]
  66. Hooker, J.N., Laubach, S.E. and Marrett, R.2014. A universal power-law scaling exponent for fracture apertures in sandstones. Geological Society of America Bulletin, 126, 1340–1362, https://doi.org/10.1130/B30945.1
    [Google Scholar]
  67. Huang, N., Jiang, Y., Liu, R. and Li, B.2017. Estimation of permeability of 3-D discrete fracture networks: an alternative possibility based on trace map analysis. Engineering Geology, 226, 12–19, https://doi.org/10.1016/j.enggeo.2017.05.005
    [Google Scholar]
  68. Jabir, A., Cerepi, A., Loisy, C. and Rubino, J.-L.2020. Stratigraphy, sedimentology and paleogeography of a Palaeozoic succession, Ghadames and Jefarah basin, Libya and Tunisia. Journal of African Earth Sciences, 163, 103642, https://doi.org/10.1016/j.jafrearsci.2019.103642
    [Google Scholar]
  69. Jaglan, H., Qayyum, F. and Hélène, H.2015. Unconventional seismic attributes for fracture characterization. First Break, 33, 101–109, https://doi.org/10.3997/1365-2397.33.3.79520
    [Google Scholar]
  70. Jing, L. and Stephansson, O.2007. Fundamentals of Discrete Element Methods for Rock Engineering: Theory and Applications. Elsevier, Amsterdam.
    [Google Scholar]
  71. Johns, R.A., Steude, J.S., Castanier, L.M. and Roberts, P.V.1993. Nondestructive measurements of fracture aperture in crystalline rock cores using X ray computed tomography. Journal of Geophysical Research: Solid Earth, 98, 1889–1900, https://doi.org/10.1029/92JB02298
    [Google Scholar]
  72. Jung, A., Fenwick, D.H. and Caers, J.2013. Training image-based scenario modeling of fractured reservoirs for flow uncertainty quantification. Computational Geosciences, 17, 1015–1031, https://doi.org/10.1007/s10596-013-9372-0
    [Google Scholar]
  73. Karatalov, N., Stefaniak, A. and Vaughan, L.2017. DFN modeling aided reservoir characterization. Paper SPE-188641-MS presented at theAbu Dhabi International Petroleum Exhibition & Conference, 13–16 November 2017, Abu Dhabi, UAE.
    [Google Scholar]
  74. Kattenhorn, S.A. and Pollard, D.D.2001. Integrating 3-D seismic data, field analogs, and mechanical models in the analysis of segmented normal faults in the Wytch Farm oil field, southern England, United Kingdom. AAPG Bulletin, 85, 1183–1210, https://doi.org/10.1306/8626CA91-173B-11D7-8645000102C1865D
    [Google Scholar]
  75. Khoshbakht, F., Azizzadeh, M., Memarian, H., Nourozi, G.H. and Moallemi, S.A.2012. Comparison of electrical image log with core in a fractured carbonate reservoir. Journal of Petroleum Science and Engineering, 86, 289–296, https://doi.org/10.1016/j.petrol.2012.03.007
    [Google Scholar]
  76. Kraouia, S., Mabrouk El Asmi, A., Ben Salem, A. and Saidi, M.2019. Geopetroleum evaluation of the Ordovician and Triassic reservoirs in the southern part of Chotts area (Southern Tunisia) and maturity modeling. In:Banerjee, S., Barati, R. and Pati, S. (eds) Advances in Petroleum Engineering and Petroleum Geochemistry: Proceedings of the 1st Springer Conference of the Arabian Journal of Geosciences (CAJG-1), Tunisia 2018. Springer, Cham, Switzerland, 153–156, https://doi.org/10.1007/978-3-030-01578-7_36
    [Google Scholar]
  77. Lamarche, J., Lavenu, A.P.C., Gauthier, B.D.M., Guglielmi, Y. and Jayet, O.2012. Relationships between fracture patterns, geodynamics and mechanical stratigraphy in carbonates (South-East Basin, France). Tectonophysics, 581, 231–245, https://doi.org/10.1016/j.tecto.2012.06.042
    [Google Scholar]
  78. Laronne Ben-Itzhak, L., Aharonov, E., Karcz, Z., Kaduri, M. and Toussaint, R.2014. Sedimentary stylolite networks and connectivity in limestone: large-scale field observations and implications for structure evolution. Journal of Structural Geology, 63, 106–123, https://doi.org/10.1016/j.jsg.2014.02.010
    [Google Scholar]
  79. Laubach, S.E. and Ward, M.E.2006. Diagenesis in porosity evolution of opening-mode fractures, Middle Triassic to Lower Jurassic la Boca Formation, NE Mexico. Tectonophysics, 419, 75–97, https://doi.org/10.1016/j.tecto.2006.03.020
    [Google Scholar]
  80. Lavenu, A.R.C., Lamarche, J., Gallois, A. and Gauthier, B.D.M.2013. Tectonic versus diagenetic origin of fractures in a naturally fractured carbonate reservoir analog (Nerthe anticline, southeastern France). AAPG Bulletin, 97, 2207–2232, https://doi.org/10.1306/04041312225
    [Google Scholar]
  81. Lavier, L.L. and Buck, W.R.2002. Half graben versus large-offset low-angle normal fault: importance of keeping cool during normal faulting. Journal of Geophysical Research: Solid Earth, 107, ETG 8-1–ETG 8-13, https://doi.org/10.1029/2001JB000513
    [Google Scholar]
  82. Lazzez, M., Zouaghi, T. and Youssef, M.B.2008. Austrian phase on the Northern African margin inferred from sequence stratigraphy and sedimentary records in southern Tunisia (Chotts and Djeffara areas). Comptes Rendus Geoscience, 340, 543–552, https://doi.org/10.1016/j.crte.2008.05.005
    [Google Scholar]
  83. Lei, Q., Latham, J.P. and Tsang, C.F.2017. The use of discrete fracture networks for modelling coupled geomechanical and hydrological behaviour of fractured rocks. Computers and Geotechnics, 85, 151–176, https://doi.org/10.1016/j.compgeo.2016.12.024
    [Google Scholar]
  84. Lepillier, B., Daniilidis, A., Doonechaly Gholizadeh, N., Bruna, P.O., Kummerow, J. and Bruhn, D.2019. A fracture flow permeability and stress dependency simulation applied to multi-reservoirs, multi-production scenarios analysis. Geothermal Energy, 7, 24, https://doi.org/10.1186/s40517-019-0141-8
    [Google Scholar]
  85. Li, J.Z., Laubach, S., Gale, J. and Marrett, R.2018. Quantifying opening-mode fracture spatial organization in horizontal wellbore image logs, core and outcrop: Application to Upper Cretaceous Frontier Formation tight gas sandstones, USA. Journal of Structural Geology, 108, 137–156, https://doi.org/10.1016/j.jsg.2017.07.005
    [Google Scholar]
  86. Loza Espejel, R., Alves, T.M. and Blenkinsop, T.G.2020. Multi-scale fracture network characterisation on carbonate platforms. Journal of Structural Geology, 140, 104160, https://doi.org/10.1016/j.jsg.2020.104160
    [Google Scholar]
  87. Maerten, L., Maerten, F., Lejri, M. and Gillespie, P.2016. Geomechanical paleostress inversion using fracture data. Journal of Structural Geology, 89, 197–213, https://doi.org/10.1016/j.jsg.2016.06.007
    [Google Scholar]
  88. Manzocchi, T.2002. The connectivity of two-dimensional networks of spatially correlated fractures. Water Resources Research, 38, 1162, https://doi.org/10.1029/2000WR000180
    [Google Scholar]
  89. Marrett, R., Ortega, O.J. and Kelsey, C.M.1999. Extent of power-law scaling for natural fractures in rock. Geology, 27, 799–802, https://doi.org/10.1130/0091-7613(1999)027<0799:EOPLSF>2.3.CO;2
    [Google Scholar]
  90. Mathieu, G.1949. Contribution à L’étude des Monts Troglodytes dans l'Extrême-Sudtunisien: Géologie Régionale des Environs de Matmata Medenine et Foum-Tatahouine. Annales des Mines et de la Geologie, 4. Direction des Travaux Publics, Régence de Tunis, Protectorat Français.
    [Google Scholar]
  91. Mauldon, M. and Dershowitz, W.2000. A multi-dimensional system of fracture abundance measures. Geological Society of America Abstracts with Programs, 32, 474.
    [Google Scholar]
  92. Mejri, F., Burollet, P.F. and Ferjani, A.B.2006. Petroleum Geology of Tunisia: A Renewed Synthesis. Enterprise Tunisienne d'Activités Pétrolières (ETAP), Tunis.
    [Google Scholar]
  93. Micarelli, L., Benedicto, A. and Wibberley, C.A.J.2006. Structural evolution and permeability of normal fault zones in highly porous carbonate rocks. Journal of Structural Geology, 28, 1214–1227, https://doi.org/10.1016/j.jsg.2006.03.036
    [Google Scholar]
  94. Michie, E.A.H., Haines, T.J., Healy, D., Neilson, J.E., Timms, N.E. and Wibberley, C.A.J.2014. Influence of carbonate facies on fault zone architecture. Journal of Structural Geology, 65, 82–99, https://doi.org/10.1016/j.jsg.2014.04.007
    [Google Scholar]
  95. Mitchell, T.M. and Faulkner, D.R.2009. The nature and origin of off-fault damage surrounding strike-slip fault zones with a wide range of displacements: A field study from the Atacama fault system, northern Chile. Journal of Structural Geology, 31, 802–816, https://doi.org/10.1016/j.jsg.2009.05.002
    [Google Scholar]
  96. Nelson, R.A.2001. Geologic Analysis of Naturally Fractured Reservoirs. Gulf Professional Publishing, Houston, TX.
    [Google Scholar]
  97. Olson, J.E.2003. Sublinear scaling of fracture aperture versus length: an exception or the rule?Journal of Geophysical Research: Solid Earth, 108, 2413, https://doi.org/10.1029/2001JB000419
    [Google Scholar]
  98. Olson, J.E. and Schultz, R.A.2011. Comment on ‘A note on the scaling relations for opening mode fractures in rock’ by CH Scholz. Journal of Structural Geology, 33, 1523–1524, https://doi.org/10.1016/j.jsg.2011.07.004
    [Google Scholar]
  99. Ortega, O.J., Marrett, R.A. and Laubach, S.E.2006. A scale-independent approach to fracture intensity and average spacing measurement. AAPG Bulletin, 90, 193–208, https://doi.org/10.1306/08250505059
    [Google Scholar]
  100. Pan, D., Li, S., Xu, Z., Zhang, Y., Lin, P. and Li, H.2019. A deterministic–stochastic identification and modelling method of discrete fracture networks using laser scanning: development and case study. Engineering Geology, 262, 105310, https://doi.org/10.1016/j.enggeo.2019.105310
    [Google Scholar]
  101. Permann, C.J., Gaston, D.R. et al.2020. MOOSE: enabling massively parallel multiphysics simulation. SoftwareX, 11, 100430, https://doi.org/10.1016/j.softx.2020.100430
    [Google Scholar]
  102. Piazolo, S., Bons, P.D. et al.2019. A review of numerical modelling of the dynamics of microstructural development in rocks and ice: Past, present and future. Journal of Structural Geology, 125, 111–123, https://doi.org/10.1016/j.jsg.2018.05.025
    [Google Scholar]
  103. Poulet, T., Paesold, M. and Veveakis, M.2017. Multi-physics modelling of fault mechanics using REDBACK: a parallel open-source simulator for tightly coupled problems. Rock Mechanics and Rock Engineering, 50, 733–749, https://doi.org/10.1007/s00603-016-0927-y
    [Google Scholar]
  104. Poulet, T., Lesueur, M. and Kelka, U.2021. Dynamic modelling of overprinted low-permeability fault cores and surrounding damage zones as lower dimensional interfaces for multiphysics simulations. Computers & Geosciences, 150, 104719, https://doi.org/10.1016/j.cageo.2021.104719
    [Google Scholar]
  105. Raulin, C., de Lamotte, D.F., Bouaziz, S., Khomsi, S., Mouchot, N., Ruiz, G. and Guillocheau, F.2011. Late Triassic–early Jurassic block tilting along E–W faults, in southern Tunisia: New interpretation of the Tebaga of Medenine. Journal of African Earth Sciences, 61, 94–104, https://doi.org/10.1016/j.jafrearsci.2011.05.007
    [Google Scholar]
  106. Reeh, G., Boote, D. and Reston, T.2019. Structural history of the Jefarrah Fault system, NW Libya. Presented at thePESGB HCS E&P Africa Conference, 1–2 October 2019, London, UK.
    [Google Scholar]
  107. Richard, P.D., Bazalgette, L., Volery, C. and Toukhi, A.2022. Scale discrepancy paradox between observation and modelling in fractured reservoir models in oil and gas industry. Geological Magazine, 159, 1914–1935, https://doi.org/10.1017/S0016756822000620
    [Google Scholar]
  108. Roskam, P.A.2016. Sub-Seismic Deformation in the Sabria Oilfield, Central Tunisia. MSc thesis, Delft University of Technology, Delft, The Netherlands.
    [Google Scholar]
  109. RPS Energy2018. Reserves & Contingent Resources Evaluation: Sabria, Chouech Es Saida, Ech Chouech, and Sanghar Fields, Tunisia. Report No. CC01512 prepared for Serinus Energy Inc. RPS Energy Canada Ltd, Calgary, Alberta, Canada.
    [Google Scholar]
  110. Saïd, A., Baby, P., Chardon, D. and Ouali, J.2011. Structure, paleogeographic inheritance, and deformation history of the southern Atlas foreland fold and thrust belt of Tunisia. Tectonics, 30, TC6004, https://doi.org/10.1029/2011TC002862
    [Google Scholar]
  111. Sanderson, D.J. and Nixon, C.W.2015. The use of topology in fracture network characterization. Journal of Structural Geology, 72, 55–66, https://doi.org/10.1016/j.jsg.2015.01.005
    [Google Scholar]
  112. Serinus Energy2022. Corporate Presentation November 2022. Serinus Energy plc.
  113. Smith, R.Y.2020. Regional Geology and Fracture Network Characterisation of the Southern Chotts and Jeffara Basins, Central Tunisia. MSc thesis, Delft University of Technology, Delft, The Netherlands.
    [Google Scholar]
  114. Smith, R.Y., Lesueur, M., Kelka, U., Poulet, T. and Koehn, D.2022. Using fractured outcrops to calculate permeability tensors: implications for geothermal fluid flow and the influence of seismic-scale faults. Geological Magazine, 159, 2262–2278, https://doi.org/10.1017/S0016756822000309
    [Google Scholar]
  115. Snow, D.T.1969. Anisotropy permeability of fractured media. Water Resources Research, 5, 1273–1289, https://doi.org/10.1029/WR005i006p01273
    [Google Scholar]
  116. Soua, M.2014. Paleozoic oil/gas shale reservoirs in southern Tunisia: An overview. Journal of African Earth Sciences, 100, 450–492, https://doi.org/10.1016/j.jafrearsci.2014.07.009
    [Google Scholar]
  117. Soumaya, A., Kadri, A., Ayed, N.B., Kim, Y.S., Dooley, T.P., Rajabi, M. and Braham, A.2020. Deformation styles related to intraplate strike-slip fault systems of the Saharan–Tunisian Southern Atlas (North Africa): New kinematic models. Journal of Structural Geology, 140, 104175, https://doi.org/10.1016/j.jsg.2020.104175
    [Google Scholar]
  118. Stampfli, G.M. and Borel, G.2002. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth and Planetary Science Letters, 196, 17–33, https://doi.org/10.1016/S0012-821X(01)00588-X
    [Google Scholar]
  119. Stephenson, B.J., Koopman, A., Hillgartner, H., McQuillan, H., Bourne, S., Noad, J.J. and Rawnsley, K.2007. Structural and stratigraphic controls on fold-related fracturing in the Zagros Mountains, Iran: implications for reservoir development. Geological Society, London, Special Publications, 270, 1–21, https://doi.org/10.1144/GSL.SP.2007.270.01.01
    [Google Scholar]
  120. Stoll, M., Huber, F.M. et al.2019. Experimental and numerical investigations on the effect of fracture geometry and fracture aperture distribution on flow and solute transport in natural fractures. Journal of Contaminant Hydrology, 221, 82–97, https://doi.org/10.1016/j.jconhyd.2018.11.008
    [Google Scholar]
  121. Swanson, M.T.1988. Pseudotachylyte-bearing strike-slip duplex structures in the Fort Foster Brittle Zone, S. Maine. Journal of Structural Geology, 10, 813–828, https://doi.org/10.1016/0191-8141(88)90097-1
    [Google Scholar]
  122. Tavani, S., Mencos, J., Bausà, J. and Muñoz, J.A.2011. The fracture pattern of the Sant Corneli Bóixols oblique inversion anticline (Spanish Pyrenees). Journal of Structural Geology, 33, 1662–1680, https://doi.org/10.1016/j.jsg.2011.08.007
    [Google Scholar]
  123. Terzaghi, R.D.1965. Sources of error in joint surveys. Geotechnique, 15, 287–304, https://doi.org/10.1680/geot.1965.15.3.287
    [Google Scholar]
  124. Toublanc, A., Renaud, S., Sylte, J.E., Clausen, C.K., Eiben, T. and Nådland, G.2005. Ekofisk Field: fracture permeability evaluation and implementation in the flow model. Petroleum Geoscience, 11, 321–330, https://doi.org/10.1144/1354-079304-622
    [Google Scholar]
  125. Troudi, H., Chevalier, F. and Alouani, W.2018. Insight on the exploration potential of the Ordovician gas play in Tunisia Ghadames Basin, North Africa. Paper SPE-192634-MSpresented at theAbu Dhabi International Petroleum Exhibition & Conference, 12–15 November 2018, Abu Dhabi, UAE, https://doi.org/10.2118/192634-MS
    [Google Scholar]
  126. Walsh, J.J. and Watterson, J.1988. Analysis of the relationship between displacements and dimensions of faults. Journal of Structural Geology, 10, 239–247, https://doi.org/10.1016/0191-8141(88)90057-0
    [Google Scholar]
  127. Watkins, H., Healy, D., Bond, C.E. and Butler, R.W.2018. Implications of heterogeneous fracture distribution on reservoir quality; an analogue from the Torridon Group sandstone, Moine Thrust Belt, NW Scotland. Journal of Structural Geology, 108, 180–197, https://doi.org/10.1016/j.jsg.2017.06.002
    [Google Scholar]
  128. Welch, M.J., Souque, C., Davies, R.K. and Knipe, R.J.2015. Using mechanical models to investigate the controls on fracture geometry and distribution in chalk. Geological Society, London, Special Publications, 406, 281–309, https://doi.org/10.1144/SP406.5
    [Google Scholar]
  129. Whitehead, W.S., Hunt, E.R. and Holditch, S.A.1987. The effects of lithology and reservoir pressure on the in-situ stresses in the Waskom (Travis Peak) Field. Paper SPE-16403-MS presented at theSPE/DOE Joint Symposium on Low Permeability Reservoirs, 18–19 May 1987, Denver, Colorado, USA, https://doi.org/10.2118/16403-MS
    [Google Scholar]
  130. Witherspoon, P.A., Wang, J.S., Iwai, K. and Gale, J.E.1980. Validity of cubic law for fluid flow in a deformable rock fracture. Water Resources Research, 16, 1016–1024, https://doi.org/10.1029/WR016i006p01016
    [Google Scholar]
  131. Wu, H. and Pollard, D.D.2002. Imaging 3-D fracture networks around boreholes. AAPG Bulletin, 86, 593–604, https://doi.org/10.1306/61EEDB52-173E-11D7-8645000102C1865D
    [Google Scholar]
  132. Zaafouri, A., Haddad, S. and Mannaî-Tayech, B.2017. Subsurface Permian reef complexes of southern Tunisia: Shelf carbonate setting and paleogeographic implications. Journal of African Earth Sciences, 129, 944–959, https://doi.org/10.1016/j.jafrearsci.2017.02.032
    [Google Scholar]
  133. Zahn, C.K. and Hennings, P.H.2009. Complex fracture development related to stratigraphic architecture: Challenges for structural deformation prediction, Tensleep Sandstone at the Alcova anticline, Wyoming. AAPG Bulletin, 93, 1427–1446, https://doi.org/10.1306/08040909110
    [Google Scholar]
  134. Zhang, L., Kang, Q., Chen, L. and Yao, J.2016. Simulation of flow in multi-scale porous media using the lattice Boltzmann method on quadtree grids. Communications in Computational Physics, 19, 998–1014, https://doi.org/10.4208/cicp.110315.190815a
    [Google Scholar]
  135. Zouari, H., Kamoun, Y. and Regaya, K.1987. Carte Géologique au 1/100000 de Matmata. Feuille No. 91. Centre des Sciences de la Terre (INRST) and National Office of Mines (ONM), Tunis.
http://instance.metastore.ingenta.com/content/journals/10.1144/petgeo2023-039
Loading
/content/journals/10.1144/petgeo2023-039
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error