1887
Volume 30, Issue 3
  • ISSN: 1354-0793
  • E-ISSN:

Abstract

The formation of the Punta del Este Basin is associated with the fragmentation of West Gondwana and consequently the opening of the South Atlantic Ocean during the Early Cretaceous. The basin comprises the Cretaceous depocentre of the Uruguayan continental margin (UCM). This study provides a seismic stratigraphic analysis of the Cretaceous post-rift sedimentary interval in the basin by defining its seismic facies, depositional sequences, shelf-edge trajectories and palaeophysiographical settings. All depositional sequences of the Cretaceous post-rift sedimentary interval represent intense basinward progradation marked by two depositional trends. The Lower Cretaceous sedimentary interval exhibits a dominant flat-to-descending shelf-edge trajectory with a migration of up to 37 km. Deposition occurred over an irregular physiography with proximal NW–SE and distal WSW–ENE trends controlled by the characteristics of the volcanic margin. The basin geometry has strong implications for understanding the deposition of a deep-water turbidite system in the UCM, with a strong analogy to the recent discovery of the Venus well in the Orange Basin, offshore Namibia. Towards the Late Cretaceous, the NW–SE depositional trend was controlled by a NE–SW slope break, indicating deposition over the south and north highs. A low-angle ascending shelf-edge trajectory was observed, with a migration of up to 16 km.

Loading

Article metrics loading...

/content/journals/10.1144/petgeo2023-063
2024-07-05
2024-09-12
Loading full text...

Full text loading...

References

  1. Bagley, G.2022. The Emerging Orange Basin Oil Province in Namibia – A New Global Hot Spot for Exploration. Westwood Global Energy Group, London, https://www.westwoodenergy.com/news/westwood-insight/the-emerging-orange-basin-oil-province-in-namibia-a-new-global-hot-spot-for-exploration
    [Google Scholar]
  2. Berg, O.R.1982. Seismic detection and evaluation of delta and turbidite sequences: Their application to exploration for the subtle trap. AAPG Bulletin, 66, 1271–1288, https://doi.org/10.1306/03B5A78C-16D1-11D7-864500010`2C1865D
    [Google Scholar]
  3. Berton, F. and Vesely, F.F.2016a. Stratigraphic evolution of Eocene clinoforms from northern Santos Basin, offshore Brazil: evaluating controlling factors on shelf-margin growth and deep-water sedimentation. Marine and Petroleum Geology, 78, 356–372, https://doi.org/10.1016/j.marpetgeo.2016.09.007
    [Google Scholar]
  4. Berton, F. and Vesely, F.F.2016b. Seismic expression of depositional elements associated with a strongly progradational shelf margin: Northern Santos Basin, southeastern Brazil. Brazilian Journal of Geology, 46, 585–603, https://doi.org/10.1590/2317-4889201620160031
    [Google Scholar]
  5. Brown, L.F., Benson, J.M. et al.1995. Sequence Stratigraphy in Offshore South African Divergent Basins: An Atlas on Exploration for Cretaceous Lowstand Traps by Soekor (Pty) Ltd. AAPG Studies in Geology, 41.
    [Google Scholar]
  6. Carvajal, C.R. and Steel, R.J.2006. Thick turbidite successions from supply-dominated shelves during sea-level highstand. Geology, 34, 665–668, https://doi.org/10.1130/G22505.1
    [Google Scholar]
  7. Catuneanu, O.2006. Principles of Sequence Stratigraphy. Elsevier, Amsterdam.
    [Google Scholar]
  8. Catuneanu, O., Galloway, W.E., Kendall, C.G.S.C., Miall, A.D., Posamentier, H.W., Strasser, A. and Tucker, M.E.2011. Sequence stratigraphy: methodology and nomenclature. Newsletters on Stratigraphy, 44, 173–245, https://doi.org/10.1127/0078-0421/2011/0011
    [Google Scholar]
  9. Chauvet, F., Sapin, F., Geoffroy, L., Ringenbach, J.C. and Ferry, J.N.2021. Conjugate volcanic passive margins in the austral segment of the South Atlantic - Architecture and development. Earth-Science Reviews, 212, 103461, https://doi.org/10.1016/j.earscirev.2020.103461
    [Google Scholar]
  10. Conti, B., Perinotto, J.A., Veroslavsky, G., Castillo, M.G., de Santa Ana, H., Soto, M. and Morales, E.2017. Speculative petroleum systems of the southern Pelotas Basin, offshore Uruguay. Marine and Petroleum Geology, 83, 1–25, https://doi.org/10.1016/j.marpetgeo.2017.02.022
    [Google Scholar]
  11. Conti, B., Ferro, S., Tomasini, J. and Gristo, P.2019. Deep water Aptian turbidite system in Punta del Este Basin, a new play offshore Uruguay. Search and Discovery Article #11266, AAPG International Conference & Exhibition, August 27–30, 2019, Buenos Aires, Argentina, https://www.searchanddiscovery.com/pdfz/documents/2019/11266conti/ndx_conti.pdf.html
    [Google Scholar]
  12. Conti, B., Marmisolle, J., Novo, R. and Rodriguez, P.2021. Maldonado triple-junction rifting structure offshore Uruguay: characteristics and petroleum implications. Petroleum Geology of the Southern South Atlantic Conference, 6–7 October 2021, Geological Society, London,29–30.
    [Google Scholar]
  13. Creaser, A., Hernández-Molina, F.J., Badalini, G., Thompson, P., Walker, R., Soto, M. and Conti, B.2017. A Late Cretaceous mixed (turbidite–contourite) system along the Uruguayan Margin: sedimentary and palaeoceanographic implications. Marine Geology, 390, 234–253, https://doi.org/10.1016/j.margeo.2017.07.004
    [Google Scholar]
  14. Daners, G. and Guerstein, G.R.2004. Dinoflagelados del Maastrichtiense–Paleógeno en la formación Gaviotín, Punta del Este, C. In: Veroslavsky, G., Ubilla, M. and Martínez, S. (eds) Cuencas Sedimentarias de Uruguay: Geología, Paleontología y Recursos Naturales – Cenozoico [Sedimentary Basins of Uruguay: Geology, Paleontology and Natural Resources – Cenozoic]. DIRAC, Montevideo, 37–62.
    [Google Scholar]
  15. Fanetti, D., Anselmetti, F.S., Chapron, E., Sturm, M. and Vezzoli, L.2008. Megaturbidite deposits in the Holocene basin fill of Lake Como (Southern Alps, Italy). Palaeogeography, Palaeoclimatology, Palaeoecology, 259, 323–340, https://doi.org/10.1016/j.palaeo.2007.10.014
    [Google Scholar]
  16. Franke, D., Neben, S., Ladage, S., Schreckenberger, B. and Hinz, K.2007. Margin segmentation and volcano-tectonic architecture along the volcanic margin off Argentina/Uruguay, South Atlantic. Marine Geology, 244, 46–67, https://doi.org/10.1016/j.margeo.2007.06.009
    [Google Scholar]
  17. Gladczenko, T.P., Hinz, K., Eldholm, O., Meyer, H., Neben, S. and Skogseid, J.1997. South Atlantic volcanic margins. Journal of the Geological Society, London, 154, 465–470, https://doi.org/10.1144/gsjgs.154.3.0465
    [Google Scholar]
  18. Gong, C., Wang, Y., Steel, R.J., Olariu, C., Xu, Q., Liu, X. and Zhao, Q.2015. Growth styles of shelf-margin clinoforms: prediction of sand- and sediment-budget partitioning into and across the shelf. Journal of Sedimentary Research, 85, 209–229, https://doi.org/10.2110/jsr.2015.10
    [Google Scholar]
  19. Gristo, P., Conti, B., Rodríguez, P., Novo, R., Marmisolle, J. and de Santa Ana, H.2022. Volumetric assessment of oil and gas prospective resources in the offshore of Uruguay. In: 11° Congreso de Exploración y Desarrollo de Hidrocarburos (Conexplo), 8–11 de noviembre, Mendoza, Argentina. Instituto Argentino del Petróleo y del Gas (IAPG), Buenos Aires.
    [Google Scholar]
  20. Hedley, R., Intawong, A., Winter, F. and Sibeya, V.2022. Hydrocarbon play concepts in the Orange Basin in light of the Venus and graff oil discoveries. First Break, 40, 91–95, https://doi.org/10.3997/1365-2397.fb2022043
    [Google Scholar]
  21. Heine, C., Zoethout, J. and Müller, R.D.2013. Kinematics of the South Atlantic rift. Solid Earth, 4, 215–253, https://doi.org/10.5194/se-4-215-2013
    [Google Scholar]
  22. Henriksen, S., Fichler, C. et al.2005. The Norwegian Sea during the Cenozoic. Norwegian Petroleum Society Special Publications, 12, 111–133, https://doi.org/10.1016/S0928-8937(05)80046-3
    [Google Scholar]
  23. Henriksen, S., Helland-Hansen, W. and Bullimore, S.2011. Relationships between shelf-edge trajectories and sediment dispersal along depositional dip and strike: a different approach to sequence stratigraphy. Basin Research, 23, 3–21, https://doi.org/10.1111/j.1365-2117.2010.00463.x
    [Google Scholar]
  24. Hernández-Molina, F.J., Soto, M. et al.2016. A contourite depositional system along the Uruguayan continental margin: sedimentary, oceanographic and paleoceanographic implications. Marine Geology, 378, 333–349, https://doi.org/10.1016/j.margeo.2015.10.008
    [Google Scholar]
  25. Hinz, K., Neben, S., Schreckenberger, B., Roeser, H.A., Block, M., Goncalves de Souza, K. and Meyer, H.1999. The Argentine continental margin north of 48°S; sedimentary successions, volcanic activity during break up. Marine and Petroleum Geology, 161, 1–25, https://doi.org/10.1016/S0264-8172(98)00060-9
    [Google Scholar]
  26. Jackson, M.P.A., Cramez, C. and Fonck, J.M.2000. Role of subaerial volcanic rocks and mantle plumes in creation of South Atlantic margins: implications for salt tectonics and source rocks. Marine and Petroleum Geology, 17, 477–498, https://doi.org/10.1016/S0264-8172(00)00006-4
    [Google Scholar]
  27. Kirby, A., Hernández-Molina, F.J., Rodriguez, P. and Conti, B.2021. Sedimentary stacking pattern of plastered drifts: an example from the Cenozoic on the Uruguayan continental slope. Marine Geology, 440, 106567, https://doi.org/10.1016/j.margeo.2021.106567
    [Google Scholar]
  28. Kress, P., Catuneanu, O., Gerster, R. and Bolatti, N.2021. Tectonic and stratigraphic evolution of the Cretaceous western South Atlantic. Marine and Petroleum Geology, 133, 105197, https://doi.org/10.1016/j.marpetgeo.2021.105197
    [Google Scholar]
  29. Mayall, M. and Kneller, B.2021. Seismic interpretation workflows for deep-water systems: A practical guide for the subsurface. AAPG Bulletin, 105, 2127–2157, https://doi.org/10.1306/05262120094
    [Google Scholar]
  30. Mitchum, R.M., Jr, Vail, P.R. and Thompson, S., III1977. Seismic stratigraphy and global changes of sea level. Part 2: The depositional sequence as a basic unit for stratigraphic analysis. AAPG Memoirs, 26, 53–97, https://doi.org/10.1306/M26490C4
    [Google Scholar]
  31. Morales, E.2013. Evolução tectônica e estratigráfica das bacias da margem continental do Uruguai. PhD thesis, Universidade Estadual Paulista ‘Júlio de Mesquita Filho’, São Paulo, Brazil.
    [Google Scholar]
  32. Morales, E., de Santa Ana, H., Chang, H.K., Corrêa, F.S. and Veroslavsky, G.2010. Migración de depocentros en las cuencas Punta del Este y Pelotas (offshore de Uruguay). In: Actas VI Congreso Uruguayo de Geología, 12 al 14 de mayo de 2010, Montevideo, Sociedad Uruguaya de Geología, Montevideo, 125 [CD-ROM].
    [Google Scholar]
  33. Morales, E., Chang, H.K. et al.2017. Tectonic and stratigraphic evolution of the Punta del Este and Pelotas basins (offshore Uruguay). Petroleum Geoscience, 23, 415–426, https://doi.org/10.1144/petgeo2016-059
    [Google Scholar]
  34. Moulin, M., Aslanian, D. et al.2005. Geological constraints on the evolution of the Angolan margin based on reflection and refraction seismic data (ZaïAngo project). Geophysical Journal International, 162, 793–810, https://doi.org/10.1111/j.1365-246X.2005.02668.x
    [Google Scholar]
  35. Moulin, M., Aslanian, D. and Unternehr, P.2010. A new starting point for the South and Equatorial Atlantic Ocean. Earth-Science Reviews, 98, 1–37, https://doi.org/10.1016/j.earscirev.2009.08.001
    [Google Scholar]
  36. Novo, R., de Jesus Perinotto, J.A., Castillo, M.G. and Conti, B.2023. Heat flow modelling of the Punta del Este Basin (offshore Uruguay) and its correlation with structural crustal domains. Tectonophysics, 854, 229812, https://doi.org/10.1016/j.tecto.2023.229812
    [Google Scholar]
  37. Pérez-Díaz, L. and Eagles, G.2017. South Atlantic paleobathymetry since early Cretaceous. Scientific Reports, 7, 11819, https://doi.org/10.1038/s41598-017-11959-7
    [Google Scholar]
  38. Posamentier, H.W. and Erskine, R.D.1991. Seismic expression and recognition criteria of ancient submarine fans. In: Weimer, P. and Link, M.H. (eds) Seismic Facies and Sedimentary Processes of Submarine Fans and Turbidite Systems. Springer, New York, 197–222, https://doi.org/10.1007/978-1-4684-8276-8_10
    [Google Scholar]
  39. Rodriguez, K., Hodgson, N., Rodríguez, P., Conti, B. and de Santa Ana, H.2022. The rise of Venus on Uruguay's Pelotas Basin. GEO ExPro, 19(4), 66
    [Google Scholar]
  40. Ross, W.C., Watts, D.E. and May, J.F.1995. Insight from stratigraphic modelling: mud-limited versus sand limited depositional systems. AAPG Bulletin, 79, 231–258, https://doi.org/10.1306/8D2B1502-171E-11D7-8645000102C1865D
    [Google Scholar]
  41. Rowlands, H.J., Paton, D., Turner, J.P. and Thompson, P.2015. The influence of basement structure and volcanics on the evolution of the Uruguayan margin. Search and Discovery Article #90216, AAPG Annual Convention and Exhibition, 31 May–3 June, 2015, Denver, Colorado, USA, https://www.searchanddiscovery.com/abstracts/html/2015/90216ace/abstracts/2099767.html
    [Google Scholar]
  42. Sangree, J.B. and Widmier, J.M.1978. Seismic stratigraphy and global changes of sea level, Part 9: Seismic interpretation of clastic depositional facies. AAPG Bulletin, 62, 752–771, https://doi.org/10.1306/C1EA4E46-16C9-11D7-8645000102C1865D
    [Google Scholar]
  43. Scotese, C.2014. Atlas of Late Cretaceous Paleogeographic Maps, PALEOMAP Atlas for ArcGIS, Volume 2, The Cretaceous, Maps 16–22, Mollweide Projection. PALEOMAP Project, Evanston, IL.
    [Google Scholar]
  44. Silveira Luiz Machado, J.P., Ritter Jelinek, A., Stephenson, R., Gaucher, C., Müller Bicca, M., Chiglino, L. and Genezini, F.A.2020. Low-temperature thermochronology of the South Atlantic margin along Uruguay and its relation to tectonic events in west Gondwana. Tectonophysics, 784, 228439, https://doi.org/10.1016/j.tecto.2020.228439
    [Google Scholar]
  45. Soto, M., Morales, E., Veroslavsky, G., de Santa Ana, H., Ucha, N. and Rodríguez, P.2011. The continental margin of Uruguay: crustal architecture and segmentation. Marine and Petroleum Geology, 28, 1676–1689, https://doi.org/10.1016/j.marpetgeo.2011.07.001
    [Google Scholar]
  46. Stoakes, F.A., Campbell, C.V., Cass, R. and Ucha, N.1991. Seismic stratigraphic analysis of the Punta del Este Basin, offshore Uruguay, South America. AAPG Bulletin, 75, 219–240, https://doi.org/10.1306/0C9B278B-1710-11D7-8645000102C1865D
    [Google Scholar]
  47. Swenson, J.B., Paola, C., Pratson, L., Voller, V.R. and Murray, A.B.2005. Fluvial and marine controls on combined subaerial and subaqueous delta progradation: morphodynamic modeling of compound-clinoform development. Journal of Geophysical Research: Earth Surface, 110, F02013, https://doi.org/10.1029/2004JF000265
    [Google Scholar]
  48. TotalEnergies2022. Namibia: TotalEnergies Makes a Significant Discovery in Offshore Block 2913B. TotalEnergies, Paris, https://totalenergies.com/media/news/press-releases/namibia-totalenergies-makes-significant-discovery-offshore-block-2913b
    [Google Scholar]
  49. Ucha, N., de Santa Ana, H. and Veroslavsky, G.2004. La Cuenca Punta del Este: Geología y potencial hidrocarburífero. In: Veroslavsky, G., Ubilla, M. and Martínez, S. (eds) Cuencas Sedimentarias de Uruguay: Geología, Paleontología y Recursos Naturales – Mesozoico. DIRAC, Montevideo, 173–192.
    [Google Scholar]
  50. Van Ranst, G., Pedrosa-Soares, A.C., Novo, T., Vermeesch, P. and De Grave, J.2020. New insights from low-temperature thermochronology into the tectonic and geomorphologic evolution of the south-eastern Brazilian highlands and passive margin. Geoscience Frontiers, 11, 303–324, https://doi.org/10.1016/j.gsf.2019.05.011
    [Google Scholar]
  51. Veroslavsky, G., Daners, G. and de Santa Ana, H.2003. Rocas sedimentarias pérmicas en la plataforma continental uruguaya: El prerift de la Cuenca de Punta del Este. Geogaceta, 34, 203–206.
    [Google Scholar]
  52. Zecchin, M. and Catuneanu, O.2013. High-resolution sequence stratigraphy of clastic shelves I: units and bounding surfaces. Marine and Petroleum Geology, 39, 1–25, https://doi.org/10.1016/j.marpetgeo.2012.08.015
    [Google Scholar]
/content/journals/10.1144/petgeo2023-063
Loading
/content/journals/10.1144/petgeo2023-063
Loading

Data & Media loading...

  • Article Type: Review Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error