1887
Volume 30, Issue 4
  • ISSN: 1354-0793
  • E-ISSN:

Abstract

This study investigates the petroleum potential of mudstones of the Late Cretaceous Haymana Formation in the Haymana Basin, Turkey. The lithofacies, pore structure and source-rock characteristics of the mudstones are examined using stratigraphic, sedimentological, petrophysical and organic geochemical methods along four stratigraphic sections and other sampling sites. The depositional model presents a facies distribution within a submarine fan system. According to the bulk mineralogy, the identified lithofacies are mixed mudstone, mixed siliceous mudstone, marl, mixed carbonate mudstone, argillaceous/siliceous mudstone and clay-rich siliceous mudstone. XRD and mercury intrusion measurements suggest that the macropores (>50 nm) of the mudstones formed by dissolution of calcite, while mesopores (2–50 nm) developed around the clay–quartz/feldspar. Of the analysed samples, no lithofacies class is distinct with any specific range of porosity or permeability, which suggests a strong heterogeneity in pore throat size, mineral content and grain size. The black shale from the NW of the basin with a total organic carbon (TOC) content of 1.19%, S1 value of 0.07 mg g, S2 value of 1.01 mg g and a value of 441°C is a relatively more mature source rock, although it still exhibits a poor petroleum potential. Overall, the TOC values (average of 0.38%) of the mudstones suggest organic-poor rock characteristics for the Haymana Formation in the studied parts of the Haymana Basin.

Loading

Article metrics loading...

/content/journals/10.1144/petgeo2023-078
2024-11-29
2025-01-15
Loading full text...

Full text loading...

References

  1. Acar, A.2000. Investigation of Organic Facies and Diagenetic Properties of the Haymana Formation in the North of Tuz Gölü Basin. PhD thesis, Ankara University, Ankara, Turkey.
    [Google Scholar]
  2. Acar, A., Sari, A., Sonel, N. and Aliyev, S.2007. Source rock characterization and depositional environment of the Late Cretaceous Haymana Formation in the Salt Lake Basin of Turkey. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 29, 277–291, doi: 10.1080/00908319096575810.1080/009083190965758
    https://doi.org/10.1080/009083190965758 [Google Scholar]
  3. Akarsu, İ.1971. II. Bölge AR/TPO/747 nolu sahanın terk raporu. Petrol İşleri Genel Müdürlüğü, Ankara.
    [Google Scholar]
  4. Akyürek, B., Duru, M. et al.1997. 1:100 000 ölçekli Türkiye jeoloji haritaları. Ankara F-15 paftası. Maden Tetkik ve Arama Genel Müdürlüğü, 55. Jeoloji Etütleri Dairesi, Ankara.
    [Google Scholar]
  5. Alkan Gun, B.2017. Source Rock Evaluation of the Paleocene Kirkkavak Formation in the Haymana Basin, Central Anatolia, Turkey. MSc thesis, The University of Alabama.
    [Google Scholar]
  6. Arıkan, Y.1975. Tuzgölü havzasının jeolojisi ve petrol imkanları. MTA Bülteni, 85, 17–38.
    [Google Scholar]
  7. Atıcı, G., Dönmez, M., Çobankaya, M., Sevin, M., Gündoğdu, E.A., Esirtgen, E. and Şimşek, E.2014. 1:100 000 ölçekli Türkiye jeoloji haritaları. Ankara J-29 paftası. Maden Tetkik ve Arama Genel Müdürlüğü, 209.Jeoloji Etütleri Dairesi, Ankara.
    [Google Scholar]
  8. Aydemir, A.2011. An integrated geophysical investigation of Haymana Basin and hydrocarbon prospective Kirkkavak formation in Central Anatolia, Turkey. Petroleum Geoscience, 17, 91–100, doi: 10.1144/1354-079310-00410.1144/1354‑079310‑004
    https://doi.org/10.1144/1354-079310-004 [Google Scholar]
  9. Baudin, F., Disnar, J.-R., Martinez, P. and Dennielou, B.2010. Distribution of the organic matter in the channel–levees systems of the Congo mud-rich deep-sea fan (West Africa). Implication for deep offshore petroleum source rocks and global carbon cycle. Marine and Petroleum Geology, 27, 995–1010, doi: 10.1016/j.marpetgeo.2010.02.00610.1016/j.marpetgeo.2010.02.006
    https://doi.org/10.1016/j.marpetgeo.2010.02.006 [Google Scholar]
  10. Bilgin, A.Z.2014. 1:100 000 ölçekli Türkiye jeoloji haritaları. Ankara İ-28 paftası. Maden Tetkik ve Arama Genel Müdürlüğü, 208. Jeoloji Etütleri Dairesi, Ankara.
    [Google Scholar]
  11. Boggs, S., Jr1992. Petrology of Sedimentary Rocks. Merrill/Macmillan, New York.
    [Google Scholar]
  12. Boggs, S., Jr2006. Principles of Stratigraphy and Sedimentology. 4th edn. Pearson Prentice-Hall, Upper Saddle River, NJ.
    [Google Scholar]
  13. Büyükutku, A.G. and Sari, A.2011. The Diagenesis of Haymana Sandstones (Upper Cretaceous), Yakacik Vicinity, Northwest of Ankara (Salt Lake Basin), Turkey. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 33, 795–804, doi: 10.1080/1556703080190986210.1080/15567030801909862
    https://doi.org/10.1080/15567030801909862 [Google Scholar]
  14. Cao, Z., Liu, G., Zhan, H., Li, C., You, Y., Yang, C. and Jiang, H.2016. Pore structure characterization of Chang-7 tight sandstone using MICP combined with N2GA techniques and its geological control factors. Scientific Reports, 6, 36919, doi: 10.1038/srep3691910.1038/srep36919
    https://doi.org/10.1038/srep36919 [Google Scholar]
  15. Chalmers, G.R., Bustin, R.M. and Power, I.M.2012. Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units. AAPG Bulletin, 96, 1099–1119, doi: 10.1306/1017111105210.1306/10171111052
    https://doi.org/10.1306/10171111052 [Google Scholar]
  16. Chen, L., Jiang, Z.X., Liu, K.Y., Tan, J.Q., Gao, F.L. and Wang, P.F.2017. Pore structure characterization for organic-rich lower Silurian shale in the Upper Yangtze Platform, South China: a possible mechanism for pore development. Journal of Natural Gas Science and Engineering, 46, 1–15, doi: 10.1016/j.jngse.2017.07.00910.1016/j.jngse.2017.07.009
    https://doi.org/10.1016/j.jngse.2017.07.009 [Google Scholar]
  17. Clarkson, C.R., Solano, N. et al.2013. Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion. Fuel, 103, 606–616, doi: 10.1016/j.fuel.2012.06.11910.1016/j.fuel.2012.06.119
    https://doi.org/10.1016/j.fuel.2012.06.119 [Google Scholar]
  18. Coşkun, B., Özdemir, A. and Işık, V.1990. Haymana-Mandıra-Dereköy arasındaki sahanın petrol imkanları. Türkiye Petrol Jeologları Derneği Bülteni, 2, 135–143.
    [Google Scholar]
  19. Curtis, M.E., Cardott, B.J., Sondergeld, C.H. and Rai, C.S.2012. Development of organic porosity in the Woodford shale with increasing thermal maturity. International Journal of Coal Geology, 103, 26–31, doi: 10.1016/j.coal.2012.08.00410.1016/j.coal.2012.08.004
    https://doi.org/10.1016/j.coal.2012.08.004 [Google Scholar]
  20. Demirel, İ.H. and Şahbaz, A.1994. Petrofacies and provenance characteristics and petroleum potential of Haymana, Paşadağ-Aladağ Basins. In: Proceedings of the 10th Petroleum Congress of Turkey. Chamber of Petroleum Engineers Publications, 5–20 [in Turkish].
    [Google Scholar]
  21. Diaz, H.G., Miller, C. and Lewis, R.2012. sCore: A classification scheme for organic mudstones based on bulk mineralogy. AAPG Search and Discovery Article #40951, AAPG 2012 Southwest Section Meeting, 19–22 May 2012, Fort Worth, Texas, USA.
    [Google Scholar]
  22. Dickinson, W.R.1995. Forearc basins. In: Busby, C.J. and Ingersoll, R.V. (eds) Tectonics of Sedimentary Basins. Blackwell Science, Oxford, UK, 221–262.
    [Google Scholar]
  23. Dribus, J.R.2014. Consideration of the origin and characteristics of turbidite sediments. Petrophysics, 55, 88–95.
    [Google Scholar]
  24. Dullien, F.A.L., Zarcone, C., MacDonald, I.F., Collins, A. and Brochard, R.D.E.1989. The effects of surface roughness on the capillary pressure curves and heights of capillary rise in glass bead packs. Journal of Colloid and Interface Science, 127, 363–372, doi: 10.1016/0021-9797(89)90042-810.1016/0021‑9797(89)90042‑8
    https://doi.org/10.1016/0021-9797(89)90042-8 [Google Scholar]
  25. Erdem, Y.2016. 1:100 000 ölçekli Türkiye jeoloji haritaları. Ankara J-28 paftası. Maden Tetkik ve Arama Genel Müdürlüğü, 236. Jeoloji Etütleri Dairesi, Ankara.
    [Google Scholar]
  26. Esmeray-Senlet, S., Ozkan-Altiner, S., Altiner, D. and Miller, K.G.2015. Planktonic foraminiferal biostratigraphy, microfacies analysis and sequence stratigraphy across the Cretaceous/Paleogene boundary in the Haymana Basin, Central Anatolia, Turkey. Journal of Sedimentary Research, 85, 489–508, doi: 10.2110/jsr.2015.3110.2110/jsr.2015.31
    https://doi.org/10.2110/jsr.2015.31 [Google Scholar]
  27. Espitalie, J., Marquis, F. and Barsony, I.1984. Geochemical logging. In: Voorhees, K.J. (ed.) Analytical Pyrolysis – Techniques and Applications. Butterworth, Boston, MA, 276–304.
    [Google Scholar]
  28. Espitalié, J., Deroo, G. and Marquis, F.1985. Rock-Eval pyrolysis and its applications. Revue de l'Institut Francais du Petrole, 40, 563–579.
    [Google Scholar]
  29. Fildani, A., Hanson, A.D., Chen, Z., Moldowan, J.M., Graham, S.A. and Arriola, P.R.2005. Geochemical characteristics of oil and source rocks and implications for petroleum systems, Talara basin, northwest Peru. AAPG Bulletin, 89, 1519–1545, doi: 10.1306/0630050409410.1306/06300504094
    https://doi.org/10.1306/06300504094 [Google Scholar]
  30. Folk, R.L.1965. Petrology of Sedimentary Rocks. 2nd edn. Hemphill, Austin, TX.
    [Google Scholar]
  31. Geçer, A., Buyukutku, A., Caetano, P.S., Rocha, F.T., Kıbrıs, M.E. and Albayrak, M.2019. Reservoir potential of the Haymana Formation submarine fan sandstones in the Haymana Basin of Turkey. Journal of Petroleum Exploration and Production Technology, 9, 1819–1837, doi: 10.1007/s13202-019-0666-110.1007/s13202‑019‑0666‑1
    https://doi.org/10.1007/s13202-019-0666-1 [Google Scholar]
  32. Giesche, H.2006. Mercury porosimetry: a general (practical) overview. Particle & Particle Systems Characterization, 23, 9–19, doi: 10.1002/ppsc.20060100910.1002/ppsc.200601009
    https://doi.org/10.1002/ppsc.200601009 [Google Scholar]
  33. Gonzales, E. and Alarcon, P.2002. Potencial hidrocarburifero de la cuenca Talara. Presented at theIngepet-Perupetro 2002 Seminar, 6–8 November 2002, Lima, Peru.
    [Google Scholar]
  34. Görür, N., Oktay, F.Y., Seymen, İ. and Şengör, A.M.C.1984. Palaeotectonic evolution of the Tuzgölü basin complex, Central Turkey: sedimentary record of the Neo-Tethyan closure. Geological Society, London, Special Publications, 17, 467–481, doi: 10.1144/GSL.SP.1984.017.01.3410.1144/GSL.SP.1984.017.01.34
    https://doi.org/10.1144/GSL.SP.1984.017.01.34 [Google Scholar]
  35. GSA1963. Rock-Color Chart. 2nd edn. Geological Society of America, New York.
    [Google Scholar]
  36. Gülyüz, E., Özkaptan, M., Kaymakci, N., Persano, C. and Stuart, F.M.2019. Kinematic and thermal evolution of the Haymana Basin, a fore-arc to foreland basin in Central Anatolia (Turkey). Tectonophysics, 766, 326–339, doi: 10.1016/j.tecto.2019.06.02010.1016/j.tecto.2019.06.020
    https://doi.org/10.1016/j.tecto.2019.06.020 [Google Scholar]
  37. Haq, B.U.2014. Cretaceous eustasy revisited. Global and Planetary Change, 113, 44–58, doi: 10.1016/j.gloplacha.2013.12.00710.1016/j.gloplacha.2013.12.007
    https://doi.org/10.1016/j.gloplacha.2013.12.007 [Google Scholar]
  38. Hessler, A.M. and Sharman, G.R.2018. Subduction zones and their hydrocarbon systems. Geosphere, 14, 2044–2067, doi: 10.1130/GES01656.110.1130/GES01656.1
    https://doi.org/10.1130/GES01656.1 [Google Scholar]
  39. Huseynov, A.2007. Sedimentary Cyclicity in the Upper Cretaceous Successions of the Haymana Basin (Turkey): Depositional Sequences as Response to Relative Sea-Level Changes. MSc thesis, Middle East Technical University, Ankara, Turkey.
    [Google Scholar]
  40. Jarvie, D.M. and Hill, R.J.2011. Understanding unconventional resource potential by conventional petroleum systems assessment. AAPG Search and Discovery Article #40840, West Texas Geological Society Fall Symposium, 28–30 September 2011, Midland, Texas, USA.
    [Google Scholar]
  41. Jarvis, I., Mabrouk, A., Richard, T.J. and de Cabrera, S.2002. Late Cretaceous (Campanian) carbon isotope events, sea level change and correlation of the Tethyan and Boreal realms. Palaeogeography, Palaeoclimatology, Palaeoecology, 118, 215–248, doi: 10.1016/S0031-0182(02)00578-310.1016/S0031‑0182(02)00578‑3
    https://doi.org/10.1016/S0031-0182(02)00578-3 [Google Scholar]
  42. Karabeyoğlu, A.U., Özkan-Altıner, S. and Altıner, D.2019. Quantitative analysis of planktonic foraminifera across the Cretaceous–Paleogene transition and observations on the extinction horizon, Haymana Basin, Turkey. Cretaceous Research, 104, 104169, doi: 10.1016/j.cretres.2019.06.01510.1016/j.cretres.2019.06.015
    https://doi.org/10.1016/j.cretres.2019.06.015 [Google Scholar]
  43. Katz, A.J. and Thompson, A.H.1986. Quantitative prediction of permeability in porous rock. Physical Review B, 34, 8179–8181, doi: 10.1103/PhysRevB.34.817910.1103/PhysRevB.34.8179
    https://doi.org/10.1103/PhysRevB.34.8179 [Google Scholar]
  44. Katz, A.J. and Thompson, A.H.1987. Prediction of rock electrical conductivity from mercury injection measurements. Journal of Geophysical Research: Solid Earth, 92, 599–607, doi: 10.1029/jb092ib01p0059910.1029/jb092ib01p00599
    https://doi.org/10.1029/jb092ib01p00599 [Google Scholar]
  45. Kinley, T.J., Cook, L.W., Breyer, J.A., Jarvie, D.M. and Busbey, A.B.2008. Hydrocarbon potential of the Barnett Shale Mississippian, Delaware Basin, west Texas and southeastern New Mexico. AAPG Bulletin, 92, 967–991, doi: 10.1306/0324080712110.1306/03240807121
    https://doi.org/10.1306/03240807121 [Google Scholar]
  46. Koçyiğit, A.1987. Tectono-stratigraphy of the Hasanoglan (Ankara) region: evolution of the Karakaya orogen. Bulletin of Earth Sciences Application and Research Center of Hacettepe University, 14, 269–293.
    [Google Scholar]
  47. Koçyiğit, A.1991. An example of an accretionary forearc basin from Central Anatolia and its implications for the history of subduction of Neo-Tethys in Turkey. Geological Society of American Bulletin, 103, 22–36, doi: 10.1130/0016-7606(1991)103<0022:AEOAAF>2.3.CO;210.1130/0016‑7606(1991)103<0022:AEOAAF>2.3.CO;2
    https://doi.org/10.1130/0016-7606(1991)103<0022:AEOAAF>2.3.CO;2 [Google Scholar]
  48. Kuila, U.2013. Measurement and Interpretation of Porosity and Pore-Size Distribution in Mudrocks: The Hole Story of Shales. PhD thesis, Colorado School of Mines, Golden, Colorado, USA.
    [Google Scholar]
  49. Loucks, R.G., Reed, R.M., Ruppel, S.C. and Hammes, U.2012. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bulletin, 96, 1071–1098, doi: 10.1306/0817111106110.1306/08171111061
    https://doi.org/10.1306/08171111061 [Google Scholar]
  50. Magoon, L.B.1994. Tuxedni–Hemlock(!) petroleum system in Cook Inlet, Alaska, USA. AAPG Memoirs, 60, 359–370, https://doi.org/10.1306/M60585C22
    [Google Scholar]
  51. Maravelis, A. and Zelilidis, A.2010. Organic geochemical characteristics of the late Eocene–early Oligocene submarine fans and shelf deposits on Lemnos Island, NE Greece. Journal of Petroleum Science and Engineering, 71, 160–168, doi: 10.1016/j.petrol.2010.01.01010.1016/j.petrol.2010.01.010
    https://doi.org/10.1016/j.petrol.2010.01.010 [Google Scholar]
  52. Mastalerz, M., Schimmelmann, A., Drobniak, A. and Chen, Y.2013. Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient: insights from organic petrology, gas adsorption, and mercury intrusion. AAPG Bulletin, 97, 1621–1643, doi: 10.1306/0401131219410.1306/04011312194
    https://doi.org/10.1306/04011312194 [Google Scholar]
  53. Nairn, S.P., Robertson, A.H.F., Ünlügenç, U.C., Tasli, K. and Inan, N.2013. Tectonostratigraphic evolution of the Cretaceous–Cenozoic central Anatolian basins: an integrated study of diachronous ocean closure and continental collision. Geological Society, London, Special Publications, 372, 343–384, doi: 10.1144/SP372.910.1144/SP372.9
    https://doi.org/10.1144/SP372.9 [Google Scholar]
  54. Okay, A.I.2008. Geology of Turkey: a synopsis. Anschnitt, 21, 19–42.
    [Google Scholar]
  55. Okay, A.I. and Altiner, D.2016. Carbonate sedimentation in an extensional active margin: Cretaceous history of the Haymana region, Pontides. International Journal of Earth Sciences, 105, 2013–2030, doi: 10.1007/s00531-016-1313-410.1007/s00531‑016‑1313‑4
    https://doi.org/10.1007/s00531-016-1313-4 [Google Scholar]
  56. Okay, A.I., Altıner, D. and Kylander-Clark, A.R.C.2019. Major Late Cretaceous mass flows in central Turkey recording the disruption of the Mesozoic continental margin. Tectonics, 38, 960–989, doi: 10.1029/2018TC00507610.1029/2018TC005076
    https://doi.org/10.1029/2018TC005076 [Google Scholar]
  57. Özcan, E. and Özkan-Altiner, S.1997. Late Campanian–Maastrichtian evolution of orbitoidal foraminifera in Haymana Basin succession (Ankara, Central Turkey). Revue de Paleobiologie, 16, 271–290.
    [Google Scholar]
  58. Özkan-Altıner, S. and Özcan, E.1999. Upper Cretaceous planktonic foraminiferal biostratigraphy from NW Turkey: calibration of the stratigraphic ranges of larger benthonic foraminifera. Geological Journal, 34, 287–301, doi: 10.1002/(SICI)1099-1034(199907/09)34:3<287::AID-GJ828>3.0.CO;2-B10.1002/(SICI)1099‑1034(199907/09)34:3<287::AID‑GJ828>3.0.CO;2‑B
    https://doi.org/10.1002/(SICI)1099-1034(199907/09)34:3<287::AID-GJ828>3.0.CO;2-B [Google Scholar]
  59. Peters, K.E.1986. Guidelines for evaluating petroleum source rock using programmed pyrolysis. AAPG Bulletin, 70, 318–329.
    [Google Scholar]
  60. Peters, K.E. and Cassa, M.R.1994. Applied source rock geochemistry. AAPG Memoirs, 60, 93–120.
    [Google Scholar]
  61. Pettijohn, F.J.1975. Sedimentary Rocks. 3rd edn. Harper and Row, New York.
    [Google Scholar]
  62. Potter, P.E., MaynardJ.B. and Depetris, P.J.2005. Mud and Mudstones. Springer, Berlin.
    [Google Scholar]
  63. Reckamp, J.U. and Özbey, S.1960. Petroleum Geology of Temelli and Kuştepe Structures, Polatlı Area. Petrol İşleri Genel Müdürlüğü, Ankara.
    [Google Scholar]
  64. Rigo de Righi, M. and Cortesini, A.1959. Regional Studies in Central Anatolian Basin. Progress Report 1. Turkish Gulf Oil Co., Petrol İşleri Genel Müdürlüğü, Ankara.
    [Google Scholar]
  65. Saidian, M., Kuila, U., Rivera, S. and Prasad, M.2014. A comparative study of porosity measurements in mudrocks. Paper SEG-2014-0426 presented at the2014 SEG Annual Meeting, October 26–31, 2014, Denver, Colorado, USA.
    [Google Scholar]
  66. Sarı, A., Büyükutku, G.A. and Aliyev, A.S.2005. Yakacık civarı (Ankara) Üst Kretase şeyllerinin kaynak kaya potansiyeli. In: 40th Anniversary Geology Symposium, 27–30 September 2005. Karadeniz Technical University (KTU), Trabzon, Turkey, 35.
    [Google Scholar]
  67. Sayıt, K. and Göncüoğlu, M.C.2013. Geodynamic evolution of the Karakaya Mélange Complex, Turkey: A review of geological and petrological constraints. Journal of Geodynamics, 65, 56–65, doi: 10.1016/j.jog.2012.04.00910.1016/j.jog.2012.04.009
    https://doi.org/10.1016/j.jog.2012.04.009 [Google Scholar]
  68. Schieber, J.2010. Common themes in the formation and preservation of intrinsic porosity in shales and mudstones – Illustrated with examples across the Phanerozoic. Paper SPE-132370 presented at theSociety of Petroleum Engineers Unconventional Gas Conference, February 23–25, 2010, Pittsburgh, Pennsylvania, USA, doi: 10.2118/132370-MS10.2118/132370‑MS
    https://doi.org/10.2118/132370-MS [Google Scholar]
  69. Schieber, J., Lazar, R., Bohacs, K., Klimentidis, B., Ottmann, J. and Dumitrescu, M.2016. An SEM study of porosity in the eagle ford shale of Texas – Pore types and porosity distribution in a depositional and sequence stratigraphic context. AAPG Memoirs, 110, 153–172, doi: 10.1306/13541961M110358910.1306/13541961M1103589
    https://doi.org/10.1306/13541961M1103589 [Google Scholar]
  70. Schmidt, G.C.1960. AR/MEM/365-266-367 sahalarının nihai terk raporu. Petrol İşleri Genel Müdürlüğü, Ankara.
    [Google Scholar]
  71. Schimidt, G.C.1975. AR/MEM/365-366-367 sahalarının nihai terk raporu. Petrol İşleri Genel Müdürlüğü, Ankara.
    [Google Scholar]
  72. Selley, R.C.1998. Elements of Petroleum Geology. 2nd edn. Academic Press, San Diego, CA, 197–229.
    [Google Scholar]
  73. Shanmugam, G.2002. Ten turbidite myths. Earth-Science Reviews, 58, 311–341, doi: 10.1016/S0012-8252(02)00065-X10.1016/S0012‑8252(02)00065‑X
    https://doi.org/10.1016/S0012-8252(02)00065-X [Google Scholar]
  74. Shanmugam, G.2003. Deep-marine tidal bottom currents and their reworked sands in modern and ancient submarine canyons. Marine and Petroleum Geology, 20, 471–491, doi: 10.1016/S0264-8172(03)00063-110.1016/S0264‑8172(03)00063‑1
    https://doi.org/10.1016/S0264-8172(03)00063-1 [Google Scholar]
  75. Shanmugam, G.2016. Submarine fans: a critical retrospective (1950–2015). Journal of Palaeogeography, 5, 110–184, doi: 10.1016/j.jop.2015.08.01110.1016/j.jop.2015.08.011
    https://doi.org/10.1016/j.jop.2015.08.011 [Google Scholar]
  76. Shanmugam, G. and Moiola, R.J.1995. Reinterpretation of depositional processes in a classic flysch sequence (Pennsylvanian Jackfork Group), Ouachita Mountains, Arkansas and Oklahoma. AAPG Bulletin, 79, 672–695, doi: 10.1306/8D2B1B6A-171E-11D7-8645000102C1865D10.1306/8D2B1B6A‑171E‑11D7‑8645000102C1865D
    https://doi.org/10.1306/8D2B1B6A-171E-11D7-8645000102C1865D [Google Scholar]
  77. Sirel, E.1975. Polatlı (GB Ankara) güneyinin stratigrafisi. Türkiye Jeoloji Kurumu Bülteni, 18, 181–192.
    [Google Scholar]
  78. Sirel, E. and Gündüz, H.1976. Description and stratigraphic distribution of some species the genera Nummulites, Assilina and Alveolina from the Ilerdian, Cuisian and Lutetian of Haymana region. Türkiye Jeoloji Kurumu Bülteni, 19, 33–44.
    [Google Scholar]
  79. Sondergeld, C.H., Ambrose, R.J., Rai, C.S. and Moncrieff, J.2010. Micro-structural studies of gas shales. Paper SPE-131771 presented at the SPE Conventional Gas Conference, February 23–25, 2010, Pittsburgh, Pennsylvania, USA, doi: 10.2118/131771-MS10.2118/131771‑MS
    https://doi.org/10.2118/131771-MS [Google Scholar]
  80. Stanley, R.G., Pierce, B.S. and Houseknecht, D.W.2011. U.S. Geological Survey 2011 Assessment of Undiscovered Oil and Gas Resources of the Cook Inlet Region, South-Central Alaska. United States Geological Survey Open-File Report 2011-1237.
    [Google Scholar]
  81. Stow, D.A.V.2005. Sedimentary Rocks in the Field: A Colour Guide. Manson Publishing, London.
    [Google Scholar]
  82. Stow, D.A.V., Huc, A.Y. and Bertrand, P.2001. Depositional processes of black shales in deep water. Marine and Petroleum Geology, 18, 491–498, doi: 10.1016/S0264-8172(01)00012-510.1016/S0264‑8172(01)00012‑5
    https://doi.org/10.1016/S0264-8172(01)00012-5 [Google Scholar]
  83. Thibault, N., Harlou, R. et al.2012. Upper Campanian–Maastrichtian nannofossil biostratigraphy and high-resolution carbon-isotope stratigraphy of the Danish Basin: Towards a standard δ13C curve for the Boreal Realm. Cretaceous Research, 33, 72–90, doi: 10.1016/j.cretres.2011.09.00110.1016/j.cretres.2011.09.001
    https://doi.org/10.1016/j.cretres.2011.09.001 [Google Scholar]
  84. Tissot, B.P. and Welte, D.H.1984. Petroleum Formation and Occurrence. Springer, Berlin.
    [Google Scholar]
  85. Turhan, N.2002. Geological Map of Turkey, Ankara Sheet 1:500 000 Scale. Maden Tetkik ve Arama Genel Müdürlüğü, Ankara.
    [Google Scholar]
  86. Ünalan, G., Yüksel, V., Tekeli, T., Gönenç, O., Seyirt, Z. and Hüseyin, S.1976. Upper Cretaceous–Lower Tertiary stratigraphy and paleogeographic evolution of Haymana–Polatlı Basin. Türkiye Jeoloji Kurultayı Bülteni, 19, 159–176.
    [Google Scholar]
  87. Wagreich, M.2012. ‘OAE 3’ – regional Atlantic organic carbon burial during the Coniacian–Santonian. Climate of the Past, 8, 1447–1455, doi: 10.5194/cp-8-1447-201210.5194/cp‑8‑1447‑2012
    https://doi.org/10.5194/cp-8-1447-2012 [Google Scholar]
  88. Washburn, E.W.1921. Note on a method of determining the distribution of pore sizes in a porous material. Proceedings of the National Academy of Sciences, 7, 115–116, doi: 10.1073/pnas.7.4.11510.1073/pnas.7.4.115
    https://doi.org/10.1073/pnas.7.4.115 [Google Scholar]
  89. Weimer, P. and Link, M.H.1991. Seismic Facies and Sedimentary Processes of Submarine Fans and Turbidite Systems. Springer, New York.
    [Google Scholar]
  90. Yalçınkaya, M.F.2007. Sequence Stratigraphic Investigations on Oil Potential of the Haymana Formation. MSc thesis, Ankara University, Ankara, Turkey.
    [Google Scholar]
  91. Yu, H.D., Lu, C., Chen, W.Z. and Li, H.H.2022. Permeability changes in fractured Tamusu mudstone in the context of radioactive waste disposal. Bulletin of Engineering Geology and the Environment, 80, 7945–7957, doi: 10.1016/j.jrmge.2022.05.01710.1016/j.jrmge.2022.05.017
    https://doi.org/10.1016/j.jrmge.2022.05.017 [Google Scholar]
  92. Yüksel, S.1970. Etude geologique de la region d'Haymana (Turquie Centrale). PhD thesis, Université de Nancy, Nancy, France.
    [Google Scholar]
/content/journals/10.1144/petgeo2023-078
Loading
/content/journals/10.1144/petgeo2023-078
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error