1887
Volume 30, Issue 3
  • ISSN: 1354-0793
  • E-ISSN:

Abstract

In hydrocarbon exploration, total organic carbon (TOC) content and Rock-Eval pyrolysis are commonly employed geochemical techniques that offer concise insights into kerogen type, effective source-rock identification and thermal maturity. In the current study, the data obtained from Rock-Eval pyrolysis has been used to define the source-rock quality, generative potential, kerogen type, maturity of the source sediments and kerogen kinetics of the Baisakhi–Bhadesar Formation of Kimmeridgian–Tithonian (154.7–145.6 Ma) age. Basinal level hydrogen index (HI), TOC content, source-rock maturity, transformation ratio and heat-flow maps have been generated by integrating the data from pyrolysis with previously available data from wells drilled in the basin. The TOC content of the Kimmeridgian–Tithonian sequence ranges from 0.03 to 12.71% in the studied samples, with an average TOC content of 1.28%, indicating good source-rock quality. The HI, in collaboration with and vitrinite reflectance (VR) data, demonstrates that the Baisakhi–Bhadesar Formation is characterized by type II, a mixture of type II/III and type III kerogen facies and exhibits good source-rock quality and poor to good generative potential in the basin. The studied samples are marginally mature to mature in nature ( , 430–450°C; VR, 0.52–0.72%). A maturity analysis of the basin suggests that during the Late Jurassic most areas were under the oil window zone, except for the Bhakhari Tibba and Miajlar areas. The transformation ratio overlay for the Kimmeridgian–Tithonian source sequences shows better transformations of the source rock in the area of the Shagarh Sub-basin. Kerogen kinetics of the studied Baisakhi–Bhadesar Formation demonstrate that the activation energy ranges between 46 and 74 kcal mol with the significant distribution of activation energy being 54 kcal mol (42.07%), representing a strong heterogeneous type of organic matter in the sediments. Based on lithological, palaeontological and electrolog studies, a shallow-marine to nearshore environment of deposition with a sediment-input direction from the SE has been inferred for the Kimmeridgian–Tithonian sequences. The results of this study quantitatively establish the role of the Kimmeridgian–Tithonian sequence as a source rock, ultimately contributing to the generation of hydrocarbons in the basin along with spatial changes in the quality of source sediments in different parts of the basin.

Loading

Article metrics loading...

/content/journals/10.1144/petgeo2023-097
2024-08-28
2024-09-12
Loading full text...

Full text loading...

References

  1. Akande, S.O., Egenhoff, S.O., Obaje, N.G., Ojo, O.J., Adekeye, O.A. and Erdtmann, B.D.2012. Hydrocarbon potential of Cretaceous sediments in the Lower and Middle Benue Trough, Nigeria: insights from new source rock facies evaluation. Journal of African Earth Sciences, 64, 34–47, https://doi.org/10.1016/j.jafrearsci.2011.11.008
    [Google Scholar]
  2. Al-Areeq, N.M.2018. Petroleum source rocks characterization and hydrocarbon generation. In: Zoveidavianpoor, M. (ed.) Recent Insights in Petroleum Science and Engineering. InTech, London, https://doi.org/10.5772/intechopen.70092
    [Google Scholar]
  3. Al-Areeq, N.M., Al-Badani, M.A., Salman, A.H. and Albaroot, M.A.2018. Petroleum source rocks characterization and hydrocarbon generation of the Upper Jurassic succession in Jabal Ayban field, Sabatayn Basin, Yemen. Egyptian Journal of Petroleum, 27, 835–851, https://doi.org/10.1016/j.ejpe.2017.12.005
    [Google Scholar]
  4. Algeo, T.J. and Maynard, J.B.2004. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chemical Geology, 206, 289–318, https://doi.org/10.1016/j.chemgeo.2003.12.009
    [Google Scholar]
  5. Behar, F., Vandenbroucke, M., Tang, Y., Marquis, F. and Espitalie, J.1997. Thermal cracking of kerogen in open and closed systems: determination of kinetic parameters and stoichiometric coefficients for oil and gas generation. Organic Geochemistry, 26, 321–339, https://doi.org/10.1016/S0146-6380(97)00014-4
    [Google Scholar]
  6. Bhowmick, P.K.2008. Phanerozoic petroliferous basin of India. In: Singhvi, A.K., Bhattacharya, A. and Guha, S. (eds) Glimpses of Geoscience Research in India; The Indian Report to IUGS. INSA, New Delhi, 253–268.
    [Google Scholar]
  7. Biswas, S.K.1987. Regional tectonic framework, structure and evolution of the western marginal basins of India. Tectonophysics, 135, 307–327, https://doi.org/10.1016/0040-1951(87)90115-6
    [Google Scholar]
  8. Biswas, M., Gogoi, M.P., Mondal, B., Sivasankar, T., Mukherjee, S. and Dasgupta, S.2022. Geomorphic assessment of active tectonics in Jaisalmer basin (Western Rajasthan, India). Geocarto International, 37, 12 382–12 413, https://doi.org/10.1080/10106049.2022.2066726
    [Google Scholar]
  9. Burnham, A.K. and Sweeney, J.J.1989. A chemical kinetic model of vitrinite maturation and reflectance. Geochimica et Cosmochimica Acta, 53, 2649–2657, https://doi.org/10.1016/0016-7037(89)90136-1
    [Google Scholar]
  10. Carr, A.D. and Williamson, J.E.1990. The relationship between aromaticity, vitrinite reflectance and maceral composition of coals: implications for the use of vitrinite reflectance as a maturation parameter. Organic Geochemistry, 16, 313–323, https://doi.org/10.1016/0146-6380(90)90051-Z
    [Google Scholar]
  11. Carvajal-Ortiz, H. and Gentzis, T.2015. Critical considerations when assessing hydrocarbon plays using Rock-Eval pyrolysis and organic petrology data: data quality revisited. International Journal of Coal Geology, 152, 113–122, https://doi.org/10.1016/j.coal.2015.06.001
    [Google Scholar]
  12. Das Gupta, S.K.1975. A revision of the Mesozoic–Tertiary stratigraphy of the Jaisalmer Basin, Rajasthan. Indian Journal of Earth Sciences, 2, 77–94.
    [Google Scholar]
  13. Demaison, G.J. and Moore, G.T.1980. Anoxic environments and oil source bed genesis. AAPG Bulletin, 64, 1179–1209, https://doi.org/10.1306/2f91945e-16ce-11d7-8645000102c1865d
    [Google Scholar]
  14. Dembicki, H.2009. Three common source rock evaluation errors made by geologists during prospect or play appraisals. AAPG Bulletin, 93, 341–356, https://doi.org/10.1306/10230808076
    [Google Scholar]
  15. Dembicki, H.2022. Practical Petroleum Geochemistry for Exploration and Production. 2nd edn. Elsevier, Amsterdam, https://doi.org/10.1016/C2021-0-01572-8
    [Google Scholar]
  16. Dow, W.G.1977. Kerogen studies and geological interpretations. Journal of Geochemical Exploration, 7, 79–99, https://doi.org/10.1016/0375-6742(77)90078-4
    [Google Scholar]
  17. Durand, B.1980. Kerogen: Insoluble Organic Matter from Sedimentary Rocks. Editions Technip, Paris.
    [Google Scholar]
  18. Espitalié, J.1986. Use of Tmax as a maturation index for different types of organic matter: comparison with vitrinite reflectance. In: Burrus, J. (ed.) Thermal Modelling in Sedimentary Basins. Publications de l'Institut Français du Pétrole, 44. Editions Technip, Paris, 475–496.
    [Google Scholar]
  19. Espitalié, J., Laporte, J.L., Madec, M., Marquis, F., Leplat, P., Paulet, J. and Boutefeu, A.1977a. Rapid method for source rock characterization, and for determination of their petroleum potential and degree of evolution. Oil & Gas Science and Technology – Revue d'IFP Energies nouvelles, 31, 23–42, https://doi.org/10.2516/ogst:1977002
    [Google Scholar]
  20. Espitalié, J., Laporte, J.L., Madec, M., Marquis, F., Leplat, P., Paulet, J. and Boutefeu, A.1977b. Rapid method for source rock characterization and for evaluating their petroleum potential and their degree of evolution. Institute Français du Pétrole and Labofina S.A., 31, 23–42, https://doi.org/10.2516/ogst:1977002
    [Google Scholar]
  21. Espitalié, J., Marquis, F. and Barsony, I.1984. Geochemical logging. In: Voorhees, K.J. (ed.) Analytical Pyrolysis – Techniques and Applications. Butterworths, London, 276–304.
    [Google Scholar]
  22. Espitalié, J., Marquis, F. and Sage, L.1987. Organic geochemistry of the Paris basin. In: Brooks, J. and Glennie, K. (eds) Petroleum Geology of North West Europe. Graham and Totman, London, 71–86.
    [Google Scholar]
  23. Farhaduzzaman, M., Abdullah, W.H. and Islam, M.A.2015. Petroleum source rock properties of the Neogene Bhuban shales, Bengal Basin, Bangladesh. Sains Malaysiana, 44, 571–579, https://doi.org/10.17576/jsm-2015-4404-12
    [Google Scholar]
  24. Farshori, M.Z.1972. The Geology of Sindh. University of Sindh, Jamshoro, Pakistan.
    [Google Scholar]
  25. Fuersich, F.T., Alberti, M. and Pandey, D.K.2014. Stratigraphy and Palaeoenvironments of the Jurassic Rocks of Kachchh. Field Guide. Freunde der nordbayerischen Geowissenschaften, 7.
    [Google Scholar]
  26. Gorai, D., Arya, J., Whiso, K., Singh, S., Goyal, N. and Sweta, S.2020. Sedimentological, Biostratigraphic and Geochemical studies of new exploratory wells drilled in Frontier Basins. Oil and Natural Gas Corporation (ONGC) Report.
    [Google Scholar]
  27. Gupta, R., Bartaria, S. and Shukla, R.1996. Source rock evaluation of Jaisalmer basin. Oil and Natural Gas Corporation (ONGC) Report.
    [Google Scholar]
  28. Hazra, B., Varma, A.K. et al.2015. Petrographic insights of organic matter conversion of Raniganj basin shales, India. International Journal of Coal Geology, 150–151, 193–209, https://doi.org/10.1016/j.coal.2015.09.001
    [Google Scholar]
  29. Hunt, J.M.1995. Petroleum Geochemistry and Geology. 2nd edn. W.H. Freeman and Company, New York.
    [Google Scholar]
  30. Hutton, A., Bharati, S. and Robl, T.1994. Chemical and petrographic classification of kerogen/macerals. Energy & Fuels, 8, 1478–1488, https://doi.org/10.1021/ef00048a038
    [Google Scholar]
  31. Kar, N.R., Mani, D. et al.2022. Source rock properties and kerogen decomposition kinetics of Eocene shales from petroliferous Barmer basin, western Rajasthan, India. Journal of Natural Gas Science and Engineering, 100, https://doi.org/10.1016/j.jngse.2022.104497
    [Google Scholar]
  32. Khan, N., Konaté, A.A. and Zhu, P.2013. Integrated geophysical study of the Lower Indus Platform basin area of Pakistan. International Journal of Geosciences, 04, 1242–1247, https://doi.org/10.4236/ijg.2013.49118
    [Google Scholar]
  33. Khatri, A., Chauhan, P., Rao, P.L.S. and Rao, P.H.2015. Hydrocarbon prospectivity of Indian sedimentary basins – a review. International Journal of Scientific Research, 4, 82–86.
    [Google Scholar]
  34. Lafargue, E., Marquis, F. and Pillot, D.1998. Rock-Eval 6 applications in hydrocarbon exploration, production, and soil contamination studies. Revue de l'Institut Francais du Petrole, 53, 421–437, https://doi.org/10.2516/ogst:1998036
    [Google Scholar]
  35. Langford, F.F. and Blanc-Valleron, M.-M.1990. Interpreting Rock-Eval pyrolysis data using graphs of pyrolizable hydrocarbons vs. total organic carbon. AAPG Bulletin, 74, 799–804, https://doi.org/10.1306/0C9B238F-1710-11D7-8645000102C1865D
    [Google Scholar]
  36. Lupoi, J.S., Fritz, L.P., Parris, T.M., Hackley, P.C., Solotky, L., Eble, C.F. and Schlaegle, S.2017. Assessment of thermal maturity trends in Devonian–Mississippian source rocks using Raman spectroscopy: limitations of peak-fitting method. Frontiers in Energy Research, 5, 24, https://doi.org/10.3389/fenrg.2017.00024
    [Google Scholar]
  37. Ma, B., Ji, L., Jin, P., Zhang, M., Yuan, B. and Long, L.2022. Geochemical characteristics and depositional paleoenvironment of source rocks from the Lower Cretaceous Chijinbao Formation in Jiuxi Basin, China. Journal of Petroleum Science and Engineering, 210, https://doi.org/10.1016/j.petrol.2021.109968
    [Google Scholar]
  38. Magoon, L.B. and Dow, W.G.1994. The petroleum system. AAPG Memoirs, 60, 3–24, https://doi.org/10.1306/M60585C1
    [Google Scholar]
  39. McCarthy, K., Rojas, K., Niemann, M., Palmowski, D., Peters, K. and Stankiewicz, A.2011. Basic petroleum geochemistry for source rock evaluation. Oilfield Review, 23, 32–43.
    [Google Scholar]
  40. Mendhe, V.A., Kumar, V. et al.2018. Evaluation of gas resource potentiality, geochemical and mineralogical characteristics of Permian shale beds of Latehar–Auranga Coalfield, India. International Journal of Coal Geology, 196, 43–62, https://doi.org/10.1016/j.coal.2018.06.022
    [Google Scholar]
  41. Merrill, R.K. (ed.) 1991. Source and Migration Processes and Evaluation Techniques. AAPG Treatise of Petroleum Geology. American Association of Petroleum Geologists, Tulsa, OK, https://doi.org/10.1306/TrHbk543
    [Google Scholar]
  42. Misra, P.C., Singh, N.P., Sharma, D.C., Upadhyay, H., Kakroo, A.K. and Saini, M.L.1993. Lithostratigraphy of Indian Petroliferous Basins, Document-II West Rajasthan. KDMIPE, Oil and Natural Gas Corporation (ONGC) report.
    [Google Scholar]
  43. Mukherjee, S.2017. Brittle shear tectonics in a narrow continental rift: asymmetric nonvolcanic Barmer basin (Rajasthan, India). Journal of Geology, 125, 561–591, https://doi.org/10.1086/693095
    [Google Scholar]
  44. Nton, M.E., Ikhane, P.R. and Tijani, M.N.2009. Aspect of rock-eval studies of the Maastrichtian–Eocene sediments from subsurface, in the Eastern Dahomey Basin Southwestern Nigeria. European Journal of Scientific Research, 25, 417–427.
    [Google Scholar]
  45. Okiongbo, K.S., Aplin, A.C. and Larter, S.R.2005. Changes in type II kerogen density as a function of maturity: evidence from the Kimmeridge Clay Formation. Energy & Fuels, 19, 2495–2499, https://doi.org/10.1021/ef050194 + 
    [Google Scholar]
  46. Oldham, R.D.1886. Geology of northern Jaisalmer. Records of the Geological Survey of India, 19, 157–159.
    [Google Scholar]
  47. Pandey, R.2022. Tectonic evolution of Jaisalmer Basin (Rajasthan, India). In: Mukherjee, S., Dasgupta, S., Majumdar, S.C., Mandal, S. and Dasgupta, T. (eds) Handbook of Petroleum Geoscience: Exploration, Characterization, and Exploitation of Hydrocarbon Reservoirs. John Wiley & Sons, Chichester, UK, 374–393, https://doi.org/10.1002/9781119679998.ch20
    [Google Scholar]
  48. Pandey, R. and Maurya, A.S.2020. Hydrocarbon uncertainty based on Facies Analysis: Middle Jurassic Sequence (Jaisalmer Formation), Jaisalmer Basin, Rajasthan. Journal of the Geological Society of India, 95, 301–307, https://doi.org/10.1007/s12594-020-1429-9
    [Google Scholar]
  49. Pandey, D.K. and Pooniya, D.2015. Sequence stratigraphy of the Oxfordian to Tithonian sediments (Baisakhi Formation) in the Jaisalmer Basin. Volumina Jurassica, 13, 65–76.
    [Google Scholar]
  50. Pandey, R., Nonia, B.P., Mahanti, S., Pradhan, U.C. and Maurya, A.S.2018. Geocellular model for Tertiary reservoirs in Manhera Tibba Gas Field, Jaisalmer Basin, Rajasthan, India. Search and Discovery Article #20456, 2018 AAPG International Conference and Exhibition, 4-7 November 2018, Cape Town, South Africa.
    [Google Scholar]
  51. Pandey, R., Kumar, D., Maurya, A. and Pandey, P.2019a. Evolution of gas bearing structures in Jaisalmer Basin (Rajasthan), India. The Journal of the Indian Geophysical Union, 23, 398–407.
    [Google Scholar]
  52. Pandey, R., Kumar, D., Maurya, A.S. and Pandey, P.2019b. Hydrocarbon generation potential of source rocks in Jaisalmer Basin, Rajasthan, India. Current Science, 116, 822–827, https://doi.org/10.18520/cs/v116/i5/822-827
    [Google Scholar]
  53. Pandit, M.K., Shekhawat, L.S., Ferreira, V.P., Sial, A.N. and Bohra, S.K.1999. Trondhjemite and granodiorite assemblages from West of Barmer: probable basement for Malani magmatism in western India. Journal of the Geological Society of India, 53, 89–96.
    [Google Scholar]
  54. Peters, K.E.1986. Guidelines for evaluating petroleum source rock using programmed pyrolysis. AAPG Bulletin, 70, 318–329, https://doi.org/10.1306/94885688-1704-11d7-8645000102c1865d
    [Google Scholar]
  55. Peters, K.E. and Cassa, M.R.1994. Applied source rock geochemistry. AAPG Memoirs, 60, 93–120, https://doi.org/10.1306/M60585C5
    [Google Scholar]
  56. Rao, V.R.1972. Subsurface stratigraphy, tectonic setting and petroleum prospects of the Jaisalmer area, Rajasthan, India. In: Proceedings of the Fourth Symposium of Development in Petroleum Resources of Asia and the Far East, Volume 1. Mineral Resources Development Series, 41. United Nations, New York, 366–371.
    [Google Scholar]
  57. Raza, A., Mahmoud, M., Alafnan, S., Arif, M. and Glatz, G.2022. H2, CO2, and CH4 adsorption potential of kerogen as a function of pressure, temperature, and maturity. International Journal of Molecular Sciences, 23, https://doi.org/10.3390/ijms232112767
    [Google Scholar]
  58. Roy, A.B. and Jakhar, S.R.2002. Geology of Rajasthan (Northwest India) Precambrian to Recent. Scientific Publishers, New Delhi.
    [Google Scholar]
  59. Salukhe, S. and Kulkarni, K.2018. First record of Ptilophyllum from the Baisakhi Formation (Jurassic), Jaisalmer district, Rajasthan, India. Journal of the Palaeontological Society of India, 63, 181–189.
    [Google Scholar]
  60. Sfidari, E., Zamanzadeh, S.M., Dashti, A., Opera, A. and Tavakkol, M.H.2016. Comprehensive source rock evaluation of the Kazhdumi Formation, in the Iranian Zagros Foldbelt and adjacent offshore. Marine and Petroleum Geology, 71, 26–40, https://doi.org/10.1016/j.marpetgeo.2015.12.011
    [Google Scholar]
  61. Siawal, A. and Kaul, A.K.2006. Tectonic Evolution of Western Margin of India. Oil and Natural Gas Corporation (ONGC) Report.
    [Google Scholar]
  62. Singh, N.P.1996. Mesozoic–Tertiary biostratigraphy and biogeochronological datum planes in Jaisalmer Basin, Rajasthan. In: Pandey, J., Azmi, R.J., Bhandari, A. and Dave, A. (eds) Contributions to the XV Indian Colloquium on Micropaleontology and Stratigraphy. KDMIPE and WIHG, Dehradu, India, 63–89.
    [Google Scholar]
  63. Singh, N.P.2006. Mesozoic lithostratigraphy of the Jaisalmer basin, Rajasthan. Journal of the Palaeontological Society of India, 51, 1–25.
    [Google Scholar]
  64. Singh, J., Aswal, H.S., Jagpat, B., Nayak, K.K., Grover, R., Biswas, S. and Murthy, M.S.2009. Litho-biostratigraphy, depositional environments and sequence stratigraphy of Mesozoic sediments in part of Jaisalmer basin, with special reference to exploratory wells RBT #1 and CHT #2. Oil and Natural Gas Corporation (ONGC) Report.
    [Google Scholar]
  65. Sinha, A.K., Yadav, R.K. and Qureshi, S.M.1993. Status of exploration in South Shahgarh Subbasin of Jaisalmer basin, Rajasthan. In:Biswas, S.K. (ed.) Proceedings of the Second Seminar on Petroliferous Basins of India, Volume 1. Indian Petroleum Publishers, Dehradun, India, 285–334.
    [Google Scholar]
  66. Speight, J.G.1996. Review of: Mukhopadhyay, P. K., and W. G. Dow (Editors). “Vitrinite Reflectance as a Maturity Parameter: Applications and Limitations”. Symposium Series No. 570. ISBN 0-8412-2994-5. Washington, DC: American Chemical Society, 1994. 306 pp. $79.95. Energy Sources, 18, 745, https://doi.org/10.1080/00908319608956232
    [Google Scholar]
  67. Stein, R.2007. Upper Cretaceous/lower Tertiary black shales near the North Pole: organic-carbon origin and source-rock potential. Marine and Petroleum Geology, 24, 67–73, https://doi.org/10.1016/j.marpetgeo.2006.10.002
    [Google Scholar]
  68. Suárez-Ruiz, I., Flores, D., Mendonça Filho, J.G. and Hackley, P.C.2012. Review and update of the applications of organic petrology: part 2, geological and multidisciplinary applications. International Journal of Coal Geology, 98, 73–94, https://doi.org/10.1016/j.coal.2012.03.005
    [Google Scholar]
  69. Sweeney, J.J. and Burnham, A.K.1990. Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. AAPG Bulletin, 74, 1559–1570, https://doi.org/10.1306/0C9B251F-1710-11D7-8645000102C1865D
    [Google Scholar]
  70. Sykes, R. and Snowdon, L.R.2002. Guidelines for assessing the petroleum potential of coaly source rocks using Rock-Eval pyrolysis. Organic Geochemistry, 33, 1441–1455, https://doi.org/10.1016/S0146-6380(02)00183-3
    [Google Scholar]
  71. Tao, S., Xu, Y. et al.2017. Geochemistry of the Shitoumei oil shale in the Santanghu Basin, Northwest China: implications for paleoclimate conditions, weathering, provenance and tectonic setting. International Journal of Coal Geology, 184, 42–56, https://doi.org/10.1016/j.coal.2017.11.007
    [Google Scholar]
  72. Teichmüller, M.1989. The genesis of coal from the viewpoint of coal petrology. International Journal of Coal Geology, 12, 1–87, https://doi.org/10.1016/0166-5162(89)90047-5
    [Google Scholar]
  73. Thomas, B.M.1979. Geochemical analysis of hydrocarbon occurrences in northern Perth basin, Australia. AAPG Bulletin, 63, 573–597, https://doi.org/10.1306/2f9184be-16ce-11d7-8645000102c1865d
    [Google Scholar]
  74. Tissot, B.P. and Welte, D.H.1984. Petroleum Formation and Occurrence. 2nd edn. Springer, Berlin.
    [Google Scholar]
  75. Vandenbroucke, M. and Largeau, C.2007. Kerogen origin, evolution and structure. Organic Geochemistry, 38, 719–833, https://doi.org/10.1016/j.orggeochem.2007.01.001
    [Google Scholar]
  76. van Krevelen, D.W.1993. Coal: Typology–Physics–Chemistry–Constitution. 3rd edn. Elsevier, Amsterdam.
    [Google Scholar]
  77. Veeraswamy, K., Azeez, K.K.A., Patro, P.K., Gupta, A.K. and Babu, N.2020. Electrical resistivity structure across the Jaisalmer Basin (Rajasthan, NW India) derived from magnetotelluric data: inferences on basin architecture and basement morphology. Journal of Applied Geophysics, 181, https://doi.org/10.1016/j.jappgeo.2020.104147
    [Google Scholar]
  78. Wang, G. and Carr, T.R.2013. Organic-rich Marcellus Shale lithofacies modeling and distribution pattern analysis in the Appalachian Basin. AAPG Bulletin, 97, 2173–2205, https://doi.org/10.1306/05141312135
    [Google Scholar]
  79. Wu, H., Feng, C. et al.2023. Positive and negative effects of marine transgression on the quality of lacustrine source rocks in the Upper Cretaceous Songliao Basin, China. Marine and Petroleum Geology, 153, https://doi.org/10.1016/j.marpetgeo.2023.106267
    [Google Scholar]
  80. Yang, S. and Horsfield, B.2020. Critical review of the uncertainty of Tmax in revealing the thermal maturity of organic matter in sedimentary rocks. International Journal of Coal Geology, 225, https://doi.org/10.1016/j.coal.2020.103500
    [Google Scholar]
  81. Zadan, K. and Arbab, K.A.2015. A review on lithostratigraphy and biostratigraphy of Jaisalmer basin, western Rajasthan, India. International Research Journal of Earth Sciences, 3, 37–45.
    [Google Scholar]
  82. Zhang, J., Li, Y., Liu, J., Yan, X., Li, L. and Shen, W.2021. Modeling hydrocarbon generation of deeply buried Type III Kerogen: a study on gas and oil potential of Lishui Sag, East China Sea Shelf Basin. Frontiers in Earth Science, 8, https://doi.org/10.3389/feart.2020.609834
    [Google Scholar]
/content/journals/10.1144/petgeo2023-097
Loading
/content/journals/10.1144/petgeo2023-097
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error