1887
Volume 30, Issue 3
  • ISSN: 1354-0793
  • E-ISSN:

Abstract

In fold-and-thrust belts where there is a high degree of structural complexity, artificial geometrical distortions are often present on seismic reflection profiles. These need to be minimized during modelling. We document a workflow in which depth mapping, velocity model building, well calibration and cross-section balancing are integrated into the seismic interpretation process to generate trustworthy structural models in complex zones. The proposed methodology is exemplified by a case study from the foothills zone of the Colombian Eastern Cordillera. In addition, sequential kinematic restoration of the modelled structure allowed an evaluation to be made of hydrocarbon migration routes during the period between the Oligocene and the middle Miocene. Following the previously mentioned workflow, we document a failed exploratory case study where all elements of the petroleum system are present except the trap. In this context, the documented case is a typical velocity pull-up. From this and published case studies, we conclude that in Andean settings and probably most on land contractional-foothill settings, the use of seismic images only does not provide enough evidence for the presence of traps and additional surface geological signatures must be documented. The proposed workflow therefore appears to be a useful tool for evaluating the exploration risk in structurally complex fold-and-thrust belt settings.

Loading

Article metrics loading...

/content/journals/10.1144/petgeo2023-113
2024-07-05
2024-09-12
Loading full text...

Full text loading...

References

  1. Almendral, A., Robles, W., Parra, M., Mora, A., Ketcham, R. and Raghib, M.2015. FetKin: coupling kinematic restorations and temperature to predict thrusting, exhumation histories, and thermochronometric ages. AAPG Bulletin, 99, 1557–1573, https://doi.org/10.1306/07071411112
    [Google Scholar]
  2. Anderson, V.J., Shanahan, T.M., Saylor, J.E., Horton, B.K. and Mora, A.2014. Sources of local and regional variability in the MBT′/CBT paleotemperature proxy: Insights from a modern elevation transect across the Eastern Cordillera of Colombia. Organic Geochemistry, 69, 42–51, https://doi.org/10.1016/j.orggeochem.2014.01.022
    [Google Scholar]
  3. Anderson, V.J., Horton, B.K., Saylor, J.E., Mora, A., Tesón, E., Breecker, D.O. and Ketcham, R.A.2016. Andean topographic growth and basement uplift in southern Colombia: implications for the evolution of the Magdalena, Orinoco, and Amazon river systems. Geosphere, 12, 1235–1256, https://doi.org/10.1130/GES01294.1
    [Google Scholar]
  4. Bancroft, J.2007. A Practical Understanding of Pre- and Post-Stack Migrations, Volume 2. Society of Exploration Geophysicists (SEG), Houston, TX.
    [Google Scholar]
  5. Bayona, G., Cardona, A. et al.2013. Onset of fault reactivation in the Eastern Cordillera of Colombia and proximal Llanos Basin; responsable to Caribbean–South American convergence in the early Palaeogene time. Geological Society, London, Special Publications, 377, 285–314, https://doi.org/10.1144/SP377.5
    [Google Scholar]
  6. Beasley, C. and Lynn, W.1992. The zero-velocity layer: migration from irregular surfaces. Geophysics, 57, 1435–1443, https://doi.org/10.1190/1.1443211
    [Google Scholar]
  7. Butler, R., Bond, C., Cooper, M. and Watkins, H.2018. Interpreting structural geometry in fold-thrust belts: why style matters. Journal of Structural Geology, 114, 251–273, https://doi.org/10.1016/j.jsg.2018.06.019
    [Google Scholar]
  8. Caballero, V., Parra, M., Mora, A., Lopez-Arias, C., Rojas, L.E., Quintero, I. and Horton, B.K.2013. Factors controlling selective abandonment and reactivation in thick skin orogens: a case study in the Magdalena Valley, Colombia. Geological Society, London, Special Publications, 377, 343–367, https://doi.org/10.1144/SP377.4
    [Google Scholar]
  9. Caballero, V.M., Rodríguez, G., Naranjo, J.F., Mora, A. and De La Parra, F.2020. From facies analysis, stratigraphic surfaces, and depositional sequences to stratigraphic traps in the Eocene–oligocene record of the southern Llanos and northern Magdalena Basin. Servicio Geológico Colombiano Publicaciones Geológicas Especiales, 37, 283–330, https://doi.org/10.32685/pub.esp.37.2019.10
    [Google Scholar]
  10. Cameron, M.K., Fomel, S.B. and Sethian, J.A.2007. Seismic velocity estimation from time migration velocities. Inverse Problems, 23, 1329–1369, https://doi.org/10.1088/0266-5611/23/4/001
    [Google Scholar]
  11. Carrillo, E., Mora, A. et al.2016. Movement vectors and deformation mechanisms in kinematic restorations: a case study from the Colombian Eastern Cordillera. Interpretation, 4, T31–T48, https://doi.org/10.1190/INT-2015-0049.1
    [Google Scholar]
  12. Cazier, E., Hayward, A., Espinosa, G., Velandia, J., Mugniot, J.-F. and Leel, W.1995. Petroleum geology of the Cusiana Field, Llanos Basin Foothills, Colombia. AAPG Bulletin, 79, 1444–1462, https://doi.org/10.1306/7834D9FE-1721-11D7-8645000102C1865D
    [Google Scholar]
  13. Colleta, B., Hebrard, F., Letouzey, J., Werner, P. and Rudkiweicz, J.1990. Tectonic style and crustal structure of the Eastern Cordillera, Colombia from a balanced cross section. In:Letouzey, J. (ed.) Petroleum and Tectonics in Mobile Belts. Editions Technip, Paris, 81–100.
    [Google Scholar]
  14. Cooper, M., Addison, F. et al.1995. Basin development and tectonic history of the Llanos Basin, Eastern Cordillera, and Middle Magdalena Valley, Colombia. AAPG Bulletin, 79, 1421–1442, https://doi.org/10.1306/7834D9F4-1721-11D7-8645000102C1865D
    [Google Scholar]
  15. Dalhstrom, C.1969. Balanced cross sections. Canadian Journal of Earth Sciences, 6, 743–757, https://doi.org/10.1139/e69-069
    [Google Scholar]
  16. DeCelles, P. and Giles, K.1996. Foreland basin system. Basin Research, 8, 105–123, https://doi.org/10.1046/j.1365-2117.1996.01491.x
    [Google Scholar]
  17. Gómez-Moncada, R., Mora, A. et al.2022a. Decoding of groundwater recharge in Deep aquifers of foreland Basins using stable isotopes and anion-cation analysis a case study in the southern Llanos Basin. Journal of South America Earth Sciences, 120, 104079, https://doi.org/10.1016/j.jsames.2022.104079
    [Google Scholar]
  18. Gómez-Moncada, R., Mora, A. et al.2022b. Implications of groundwater Flow on the preservation of heavy and extra-heavy oil accumulations in the Southern Llanos Basin, Colombia. Journal of South America Earth Sciences, 119, 104013, https://doi.org/10.1016/j.jsames.2022.104013
    [Google Scholar]
  19. Gray, S.2005. Gaussian beam migration of common-shot records. Geophysics, 70, S71–S77, https://doi.org/10.1190/1.1988186
    [Google Scholar]
  20. Hubral, P.1977. Time migration - some ray theoretical aspects. Geophysical Prospecting, 25, 738–745, https://doi.org/10.1111/j.1365-2478.1977.tb01200.x
    [Google Scholar]
  21. Iversen, E. and Tygel, M.2008. Image-ray tracing for joint 3D seismic velocity estimation and time-to-depth conversion. Geophysics, 73, S99–S114, https://doi.org/10.1190/1.2907736
    [Google Scholar]
  22. Jimenez, L., Mora, A. et al.2013. Segmentation and growth of foothill thrust-belts adjacent to inverted grabens: the case of the Colombian Llanos foothills. Geological Society, London, Special Publications, 377, 189–220, https://doi.org/10.1144/SP377.11
    [Google Scholar]
  23. Julivert, M.1968. Colombie, Précambrien, Paléozoïque, Mésozoïque, et intrusions d’âge mésozoïque–tertiaire, Vol. 5. Centre National de la Recherche Scientifique, Paris.
    [Google Scholar]
  24. Kammer, A. and Mora, A.1999. Structural style and amount of shortening of the folded Bogotá segment, Eastern Cordillera of Colombia. Zentralblatt fuer Geologie und Paleontologie, I, 823–838.
    [Google Scholar]
  25. Kammer, A., Piraquive, A., Gomez, C., Mora, A. and Velasquez, A.2020. Structural styles of the eastern Cordillera of Colombia. Servicio Geológico Colombiano Publicaciones Geológicas Especiales, 37, 143–183, https://doi.org/10.32685/pub.esp.37.2019.06
    [Google Scholar]
  26. Ketcham, R., Mora, A. and Parra, M.2018. Deciphering exhumation and burial history with multi-sample down-well thermochronometric inverse modelling. Basin Research, 30, 48–64, https://doi.org/10.1111/bre.12207
    [Google Scholar]
  27. Lan, H. and Zhang, Z.2014. Reverse time migration from irregular surface by flattening surface topography. Tectonophysics, 627, 26–37, https://doi.org/10.1016/j.tecto.2014.04.015
    [Google Scholar]
  28. Larner, K.L., Hatton, L., Gibson, B.S. and Hsu, I.1981. Depth migration of imaged time sections. Geophysics, 46, 734–750, https://doi.org/10.1190/1.1441212
    [Google Scholar]
  29. Li, S. and Fomel, F.2015. A robust approach to time-to-depth conversion and interval velocity estimation in the presence of the lateral velocity variations. Geophysical Prospecting, 2, 315–337, https://doi.org/10.1111/1365-2478.12191
    [Google Scholar]
  30. Liu, H., Li, B., Liu, H., Tong, X., Liu, Q., Wang, X. and Liu, W.2012. The issues of prestack reverse time migration and solutions with graphic processing unit implementation. Geophysical Prospecting, 60, 906–918, https://doi.org/10.1111/j.1365-2478.2011.01032.x
    [Google Scholar]
  31. Liu, Q., Zhang, J. and Gao, H.2016. Reverse-time migration from rugged topography using irregular, unstructured mesh. Geophysical Prospecting, 65, 453–466, https://doi.org/10.1111/1365-2478.12415
    [Google Scholar]
  32. Malz, A., Madritsch, H. and Kley, J.2015. Improving 2D seismic interpretation in challenging settings by integration of restoration techniques: a case study from the Jura fold-and-thrust belt (Switzerland). Interpretation, 3, SAA37–SAA58, https://doi.org/10.1190/INT-2015-0012.1
    [Google Scholar]
  33. Martinez, J.2006. Structural evolution of the Llanos foothills, Eastern Cordillera, Colombia. Journal of South American Earth Sciences, 21, 510–520, https://doi.org/10.1016/j.jsames.2006.07.010
    [Google Scholar]
  34. Martinez, J., Patiño, M., Mora, A., Arias Martínez, J.P. and Tesón, E.2022. Structural styles and evolution of the Colombian Eastern foothills Piedemonte triangle zone. In:Zamora, G. and Mora, A. (eds) Andean Structural Styles: A Seismic Atlas. Elsevier, Amsterdam, 181–193, https://doi.org/10.1016/B978-0-323-85175-6.00013-4
    [Google Scholar]
  35. Mora, A. and Parra, M.2008. The structural style of footwall shortcuts along the eastern foothills of the Colombian Eastern Cordillera. Differences with other inversion-related structures. Ciencia, Tecnología & Futuro, 3, 7–21, https://doi.org/10.29047/01225383.460
    [Google Scholar]
  36. Mora, A., Parra, M., Strecker, M., Kammer, A., Dimaté, C. and Rodriguez, F.2006. Cenozoic contractional reactivation of Mesozoic extensional structures in the Eastern Cordillera of Colombia. Tectonics, 25, TC2010, https://doi.org/10.1029/2005TC001854
    [Google Scholar]
  37. Mora, A., Parra, M., Strecker, M., Sobel, E., Hooghiemstra, H., Torres, V. and Jaramillo, J.2008. Climatic forcing of asymmetric orogenic evolution in the Eastern Cordillera of Colombia. Geological Society of America Bulletin, 120, 930–949, https://doi.org/10.1130/B26186.1
    [Google Scholar]
  38. Mora, A., Gaona, T. et al.2009. The role of inherited extensional fault segmentation and linkage in contractional orogenesis: a reconstruction of the Lower Cretaceous inverted basins in the Eastern Cordillera of Colombia. Basin Research, 21, 111–137, https://doi.org/10.1111/j.1365-2117.2008.00367.x
    [Google Scholar]
  39. Mora, A., Horton, B.K. et al.2010a. Migration of Cenozoic deformation in the Eastern Cordillera of Colombia interpreted from fission-track results and structural studies: implications for hydrocarbon systems. AAPG Bulletin, 94, 1543–1580, https://doi.org/10.1306/01051009111
    [Google Scholar]
  40. Mora, A., Parra, M. et al.2010b. The eastern foothills of the Eastern Cordillera of Colombia. An example of multiple factors controlling structural styles and active tectonics. Geological Society of America Bulletin, 122, 11–12, https://doi.org/10.1130/B30033.1
    [Google Scholar]
  41. Mora, A., Reyes-Harker, A. et al.2013. Inversion tectonics under increasing rates of shortening and sedimentation: Cenozoic example from the Eastern Cordillera of Colombia. Geological Society, London, Special Publications, 377, 411–442, https://doi.org/10.1144/SP377.6
    [Google Scholar]
  42. Mora, A., Casallas, W. et al.2015a. Kinematic restoration of contractional basement structures using thermokinematic models: A key tool for petroleum systems modelling. AAPG Bulletin, 99, 1575–1598, https://doi.org/10.1306/04281411108
    [Google Scholar]
  43. Mora, A., Parra, M. et al.2015b. What drives orogenic asymmetry in the northern Andes?: A case study from the apex of the Northern Andean orocline. AAPG Memoirs, 108, 547–586.
    [Google Scholar]
  44. Mora, A., García-Bautista, D.F. et al.2019a. Tectonic evolution of petroleum systems within the onshore Llanos Basin: insights on the presence of Orinoco heavy oil analogs in Colombia and a comparison with other heavy oil provinces worldwide. AAPG Bulletin, 103, 1179–1224, https://doi.org/10.1306/1003181611417236
    [Google Scholar]
  45. Mora, A., Gomez, R.A. et al.2019b. Water flow, oil biodegradation and hydrodynamic traps in the Llanos basin, Colombia. AAPG Bulletin, 103, 1225–1264, https://doi.org/10.1306/1003181611317237
    [Google Scholar]
  46. Mora, A., Teson, E. et al.2020. The Eastern foothills of Colombia. Servicio Geologico Colombiano Publicaciones Geologicas Especiales, 37, 123–142, https://doi.org/10.32685/pub.esp.37.2019.05
    [Google Scholar]
  47. Nemčok, M., Mora, A. and Cosgrove, J.W.2013. Thick-skin-dominated orogens; from initial inversion to full accretion – an introduction. Geological Society, London, Special Publications, 377, 1–17, https://doi.org/10.1144/SP377.17
    [Google Scholar]
  48. Parra, M., Mora, A., Sobel, E., Strecker, M. and Gonzalez, R.2009. Episodic orogenic-front migration in the northern Andes: Constraints from low-temperature thermochronology in the Eastern Cordillera, Colombia. Tectonics, 28, TC4004, https://doi.org/10.1029/2008TC002423
    [Google Scholar]
  49. Parra, M., Mora, A., Jaramillo, C., Torres, V., Zeilinger, G. and Strecker, M.2010. Tectonic controls on Cenozoic foreland basin development in the north-eastern Andes, Colombia. Basin Research, 22, 874–903, https://doi.org/10.1111/j.1365-2117.2009.00459.x
    [Google Scholar]
  50. Parravano, V., Teixell, A. and Mora, A.2015. Influence of salt in the tectonic development of the frontal thrust belt of the eastern Cordillera (Guatiquía area, Colombian Andes). Interpretation, 3, SAA17–SAA27, https://doi.org/10.1190/INT-2015-0011.1
    [Google Scholar]
  51. Ramírez-Arias, J.C., Mora, A. et al.2012. The asymmetric evolution of the Colombian Eastern Cordillera. Tectonic inheritance or climatic forcing? New evidence from thermochronology and sedimentology. Journal of South American Earth Sciences, 39, 112–137, https://doi.org/10.1016/j.jsames.2012.04.008
    [Google Scholar]
  52. Reshef, M.1991. Depth migration from irregular surfaces with depth extrapolation methods. Geophysics, 56, 119–122, https://doi.org/10.1190/1.1442947
    [Google Scholar]
  53. Reyes-Harker, A., Ruiz-Valdivieso, C. et al.2015. Cenozoic paleogeography of the Andean foreland and retroarc hinterland of Colombia Paleogeography of the Northern Andes. AAPG Bulletin, 99, 1407–1453, https://doi.org/10.1306/06181411110
    [Google Scholar]
  54. Rosero, A., Carrero, M., Ceballos, C. and Mora, A.2022. Seismic and structural analysis of the San Francisco oil field (Colombia). Structural controls on a complex hydrocarbon charge history. In:Zamora, G. and Mora, A. (eds) Andean Structural Styles: A Seismic Atlas. Elsevier, Amsterdam, 195–206, https://doi.org/10.1016/B978-0-323-85175-6.00014-6
    [Google Scholar]
  55. Salazar, V., Hoyos, D., Loza, J., Suarez, D. and Calderón, Z.2011. Metodología para la selección de Pozos candidatos a perforar en condiciones de bajo balance. Aplicación al Campo Castilla de Ecopetrol S.A: Revista Fuentes, 9, 63–71.
    [Google Scholar]
  56. Sánchez, J., Horton, B.K., Tesón, E., Mora, A., Ketcham, R.A. and Stockli, D.F.2012. Kinematic evolution of Andean fold-thrust structures along the boundary between the Eastern Cordillera and Middle Magdalena Valley basin, Colombia. Tectonics, 31, 1–24, https://doi.org/10.1029/2011TC003089
    [Google Scholar]
  57. Sánchez, N., Mora, A. et al.2015. Petroleum system modeling in the Eastern Cordillera of Colombia using geochemistry and timing of thrusting and deformation. AAPG Bulletin, 99, 1537–1556, https://doi.org/10.1306/04161511107
    [Google Scholar]
  58. Sánchez, N., Pacheco, J., Guzman-Vega, M.A., Mora, A. and Horton, B.2021. Timing of hydrocarbon entrapment in the eastern foothills of the Eastern Cordillera of Colombia. Interpretation, 9, T145–T159, https://doi.org/10.1190/INT-2020-0058.1
    [Google Scholar]
  59. Sarmiento, L.2001. Mesozoic Rifting and Cenozoic Basin Inversion History of the Eastern Cordillera, Colombian Andes: Inferences from Tectonic Models. PhD thesis, Vrije Universiteit, Amsterdam, The Netherlands.
    [Google Scholar]
  60. Sarmiento-Rojas, L.F., Van Wess, J.D. and Cloetingh, S.2006. Mesozoic transtensional basin history of the Eastern Cordillera, Colombian Andes: Inferences from tectonic models. Journal of South American Earth Sciences, 21, 383–411, https://doi.org/10.1016/j.jsames.2006.07.003
    [Google Scholar]
  61. Saylor, J.E., Horton, B.K., Stockli, D.F., Mora, A. and Corredor, J.2012. Structural and thermochronological evidence for Paleogene basement-involved shortening in the axial Eastern Cordillera, Colombia. Journal of South American Earth Sciences, 39, 202–215, https://doi.org/10.1016/j.jsames.2012.04.009
    [Google Scholar]
  62. Silva, A., Mora, A. et al.2013. Basin compartmentalization and drainage evolution during rift positive inversion: evidence from multiple techniques in the Eastern Cordillera of Colombia. Geological Society, London, Special Publications, 377, 369–409, https://doi.org/10.1144/SP377.15
    [Google Scholar]
  63. Teixell, A., Ruiz, J.C., Teson, E. and Mora, A.2015. The structure of an inverted back-arc rift: Insights from a transect across the Eastern Cordillera of Colombia near Bogotá. AAPG Memoirs, 108, 499–515, https://doi.org/10.1306/13531947M1083650
    [Google Scholar]
  64. Tesón, E., Mora, A. et al.2013. Relationship of Mesozoic graben development, stress, Shortening magnitude, and structural style in the Eastern Cordillera of the Colombian Andes. Geological Society, London, Special Publications, 377, 257–283, https://doi.org/10.1144/SP377.10
    [Google Scholar]
  65. Velásquez, A. and Alfonso, H.2008. Depth-conversion techniques and challenges in complex sub-Andean provinces. Interpretation, 6, 209–229, https://doi.org/10.1190/INT-2017-0046.1
    [Google Scholar]
  66. Vestrum, R. and Cameron, G.2022. Seismic imaging in fold-and-thrust belts. In:Zamora, G. and Mora, A. (eds) Andean Structural Styles: A Seismic Atlas. Elsevier, Amsterdam, 29–41, https://doi.org/10.1016/B978-0-323-85175-6.00002-X
    [Google Scholar]
  67. Wiggins, J.W.1984. Kirchhoff integral extrapolation and migration of nonplanar data. Geophysysics, 49, 1239–1248, https://doi.org/10.1190/1.1441752
    [Google Scholar]
  68. Yilmaz, O2001. Seismic Data Analysis: Processing, Inversion, and Interpretation of Seismic Data. Society of Exploration Geophysicists, Tulsa, OK, 1028 p., https://doi.org/10.1190/1.9781560801580
    [Google Scholar]
  69. Zamora, G. and Mora, A. (eds) 2022. Andean Structural Styles: A Seismic Atlas. Elsevier, Amsterdam, https://doi.org/10.1016/C2020-0-02398-4
    [Google Scholar]
  70. Zhu, T.2012. Complex-beam migration and land depth imaging. CSEG Recorder, 37, 22–26.
    [Google Scholar]
/content/journals/10.1144/petgeo2023-113
Loading
/content/journals/10.1144/petgeo2023-113
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error