1887
Volume 30, Issue 3
  • ISSN: 1354-0793
  • E-ISSN:

Abstract

The petroleum potential of onshore basins in Colombia has been partly controlled by the Andean Orogeny since the end of the Cretaceous. Its Axial Zone has at least one understudied active petroleum system with a rather low petroleum potential and few commercial medium to heavy oil accumulations, raising questions about how the Andean deformation influenced the petroleum system and the possible undiscovered accumulations. We examine the timing of this petroleum system in the Axial Zone through oil–source correlations and two 2D petroleum system models across the Boyacá and Soápaga faults based on cross-sections.

Modelling reveals the direct control of deformation on generation–accumulation in the Axial Zone, where the Lower Cretaceous source rocks, due to high heat flows during the synrift phase, started generation so early (100 to 60 Ma) that no reservoirs or traps were yet available to allow hydrocarbon entrapment and accumulation. Equally, for the younger Upper Cretaceous source rocks, the tectonic inversion of the basin between 33 and 23 Ma along the Boyacá and Soápaga faults interrupted burial and the maturation in most parts of the basin, leaving only local pods of active source rocks where maturation continues today due to the tectonic overburden along the footwall of the Soápaga Fault. The latter is thus the major kitchen, contributing more than 50% of the liquid hydrocarbons trapped mainly in Upper Cretaceous and Paleocene sandstones. Hydrocarbons migrate upwards where biodegradation and water washing occurred in the near-surface, giving rise to the many tar sand occurrences in the Eocene sandstones.

Loading

Article metrics loading...

/content/journals/10.1144/petgeo2023-114
2024-06-27
2024-09-12
Loading full text...

Full text loading...

References

  1. Almendral, A., Robles, W., Parra, M., Mora, A., Ketcham, R. and Raghib, M. 2015. FetKin: coupling kinematic restorations and temperature to predict thrusting, exhumation histories, and thermochronometric ages. AAPG Bulletin, 99, 1557–1573, https://doi.org/10.1306/07071411112
    [Google Scholar]
  2. Bande, A., Horton, B.K., Ramirez-Arias, J.C., Mora, A., Parra, M. and Stockli, D. 2012. Clastic deposition and detrital provenance of evolving sediment source regions in the Frontal Eastern Cordillera, Colombia: implications for the sequence of Andean thrust deformation. Geological Society of America Bulletin, 124, 59–76, https://doi.org/10.1130/B30412.1
    [Google Scholar]
  3. Blanco, V.2012. Modelling and Geochemical Characterization of Organic Facies in the Upper Cretaceous Chipaque Formation, Eastern Cordillera and Llanos Foothills, Colombia. MSc thesis, Newcastle University.
    [Google Scholar]
  4. Caballero, V., Mora, A. et al.2013a. Tectonic controls on sedimentation in an intermontane hinterland basin adjacent to inversion structures: the Nuevo Mundo syncline, Middle Magdalena Valley, Colombia. Geological Society, London, Special Publications, 377, 315–342, https://doi.org/10.1144/SP377.12
    [Google Scholar]
  5. Caballero, V., Parra, M., Mora, A., Lopez-Arias, C., Rojas, L.E., Quintero, I. and Horton, B.K.2013b. Factors controlling selective abandonment and reactivation in thick skin orogens: a case study in the Magdalena Valley, Colombia. Geological Society, London, Special Publications, 377, 343–367, https://doi.org/10.1144/SP377.4
    [Google Scholar]
  6. Carrillo, E., Mora, A. et al.2016. Movement vectors and deformation mechanisms in kinematic restorations: a case study from the Colombian Eastern Cordillera. Interpretation, 4, T31–T48, https://doi.org/10.1190/INT-2015-0049.1
    [Google Scholar]
  7. Cepeda, H. and Pardo, N.2004. Vulcanismo de Paipa. INGEOMINAS, Proyecto exploración y evaluación de los recursos geotérmicos. Reporte interno. Bogotá, 103p.
    [Google Scholar]
  8. Cooper, M.A., Addison, F.T. et al.1995. Basin development and tectonic history of the Llanos Basin, Eastern Cordillera, and Middle Magdalena Valley, Colombia. AAPG Bulletin, 79, 1421–1443, https://doi.org/10.1306/522B4DF7-1727-11D7-8645000102C1865D
    [Google Scholar]
  9. Cortes, M., Garcia, D., Bayona, G. and Blanco, Y.2009. Timing of oil generation in the Eastern flank of the Eastern Cordillera of Colombia based on kinematic models; implications in the Llanos Foothills and Foreland charge. X Simposio Bolivariano de Exploración en Cuencas Subandinas, July 2009, Cartagena, Colombia.
    [Google Scholar]
  10. De Freitas, M., Françolin, J. and Cobbold, P.1997. The structure of the Axial Zone of the Eastern Cordillera, Colombia. VI Simposio Bolivariano de Exploración en Cuencas Subandinas, July 1997, Bogotá, Colombia. Colombian Association of Petroleum Geologists and Geophysicists.
    [Google Scholar]
  11. De la Parra, F., Mora, A., Rueda, M. and Quintero, I. 2015. Temporal and spatial distribution of tectonic events as deduced from reworked palynomorphs in the eastern northern Andes. AAPG Bulletin, 99, 1455–1472, https://doi.org/10.1306/02241511153
    [Google Scholar]
  12. Dengo, C.A. and Covey, M.C. 1993. Structure of the Eastern Cordillera of Colombia: implications for trap styles and regional tectonics. AAPG Bulletin, 77, 1315–1337.
    [Google Scholar]
  13. ESSO Colombiana Limited1990. Informe Geológico Final Pozo Corrales-1. Cordillera Oriental (Contrato Paz del Río).
    [Google Scholar]
  14. Etayo, F., Renzoni, G. and Barrero, D.1976. Contornos sucesivos del mar Cretáceo en Colombia. Primer Congreso Colombiano de Geología, Memorias, 217–252.
    [Google Scholar]
  15. García, D.2008. Estudo dos Sistemas Petrolíferos no Setor Central da Bacia dos Llanos Orientales, Colombia. Um Modelo para Explicar as Mudanças na Qualidade do Petróleo. Doctoral dissertation, Universidade Federal do Rio de Janeiro.
    [Google Scholar]
  16. García, D., Vaz dos Santos Neto, E. and Penteado, H.L.2015. Controls on petroleum composition in the Llanos basin, Colombia: implications for exploration. AAPG Bulletin, 99, 1503–1535, https://doi.org/10.1306/10231411111
    [Google Scholar]
  17. Gómez, E., Jordan, T.E., Allmendinger, R.W. and Cardozo, N. 2005a. Development of the Colombian foreland-basin system as a consequence of diachronous exhumation of the northern Andes. Geological Society of America Bulletin, 117, 1272–1292, https://doi.org/10.1130/B25456.1
    [Google Scholar]
  18. Gómez, E., Jordan, T.E., Allmendinger, R.W., Hegarty, K. and Kelley, S. 2005b. Syntectonic Cenozoic sedimentation in the northern middle Magdalena Valley Basin of Colombia and implications for exhumation of the Northern Andes. Geological Society of America Bulletin, 117, 547–569, https://doi.org/10.1130/B25454.1
    [Google Scholar]
  19. Hantschel, T. and Kauerauf, A.I.2009. Fundamentals of Basin and Petroleum System Modelling. Springer, Dordrecht.
    [Google Scholar]
  20. Jordan, T.E. and Allmendinger, R.W. 1986. The Sierras Pampeanas of Argentina; a modern analogue of Rocky Mountain foreland deformation. American Journal of Science, 286, 737–764, https://doi.org/10.2475/ajs.286.10.737
    [Google Scholar]
  21. Kammer, A. 1993. Steeply dipping basement faults and associated structures of the Santander Massif, Eastern Cordillera, Colombian Andes. Geología Colombiana, 18, 47–64.
    [Google Scholar]
  22. Kammer, A. 1996. Estructuras y deformación del borde oriental del Macizo de Floresta. Geología Colombiana, 21, 65–80.
    [Google Scholar]
  23. Kammer, A. and Mora, A. 1999, Structural styles of the folded Bogotá segment, Eastern Cordillera, Colombia. Zentralblatt für Geologie und Paleontologie, 1, 823–837.
    [Google Scholar]
  24. Kammer, A. and Sánchez, J. 2006. Early Jurassic rift structures associated with the Soápaga and Boyacá faults of the Eastern Cordillera, Colombia: sedimentological inferences and regional implications. Journal of South American Earth Sciences, 21, 412–422, https://doi.org/10.1016/j.jsames.2006.07.006
    [Google Scholar]
  25. Kammer, A., Piraquive, A., Gómez, C., Mora, A. and Velásquez, A.2020. Structural styles of the Eastern Cordillera of Colombia. In: Gómez, J. and Mateus-Zabala, D. (eds) The Geology of Colombia, Volume 3 Paleogene – Neogene. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales, 37, 143–183, https://doi.org/10.32685/pub.esp.37.2019.06
    [Google Scholar]
  26. Martinez, J. 2006. Structural evolution of the Llanos foothills, Eastern Cordillera, Colombia. Journal of South American Earth Sciences, 21, 510–520, https://doi.org/10.1016/j.jsames.2006.07.010
    [Google Scholar]
  27. Martinez, J., Patiño, M., Mora, A., Arias Martínez, J.P. and Tesón, E.2022. Chapter 13–structural styles and evolution of the Colombian Eastern foothills Piedemonte triangle zone. In: Zamora, G. and Mora, A. (eds) Andean Structural Styles, A Seismic Atlas. Elsevier, 181–193.
    [Google Scholar]
  28. Mitra, S. 2002. Fold-accommodation faults. AAPG Bulletin, 86, 671–693, https://doi.org/10.1306/61eedb7a-173e-11d7-8645000102c1865d
    [Google Scholar]
  29. Monsalve, M., Rojas, N., Velandia, F., Pintor, I. and Martinez, L. 2011. Caracterización geológica del cuerpo volcánico de Iza, Boyacá-Colombia. Boletín de Geología, 33, 117–130, https://revistas.uis.edu.co/index.php/revistaboletindegeologia/article/view/2480
    [Google Scholar]
  30. Mora, A., Parra, M., Strecker, M.R., Kammer, A., Dimaté, C. and Rodriguez, F. 2006. Cenozoic contractional reactivation of Mesozoic extensional structures in the Eastern Cordillera of Colombia. Tectonics, 25, TC2010, https://doi.org/10.1029/2005TC001854
    [Google Scholar]
  31. Mora, A., Parra, M., Strecker, M.R., Sobel, E.R., Hooghiemstra, H., Torres, V. and Vallejo-Jaramillo, J. 2008. Climatic forcing of asymmetric orogenic evolution in the Eastern Cordillera of Colombia. Geological Society of America Bulletin, 120, 930–949, https://doi.org/10.1130/B26186.1
    [Google Scholar]
  32. Mora, A., Gaona, T. et al.2009. The role of inherited extensional fault segmentation and linkage in contractional orogenesis: a reconstruction of Lower Cretaceous inverted rift basins in the Eastern Cordillera of Colombia. Basin Research, 21, 111–137, https://doi.org/10.1111/j.1365-2117.2008.00367.x
    [Google Scholar]
  33. Mora, A., Horton, B. et al.2010. Migration of Cenozoic deformation in the Eastern Cordillera of Colombia interpreted from fission track results and structural relationships: implications for petroleum systems. AAPG Bulletin, 94, 1543–1580, https://doi.org/10.1306/01051009111
    [Google Scholar]
  34. Mora, A., Reyes-Harker, A. et al.2013. Inversion tectonics under increasing rates of shortening and sedimentation: Cenozoic example from the Eastern Cordillera of Colombia. Geological Society, London, Special Publications, 377, 411–442, https://doi.org/10.1144/sp377.6
    [Google Scholar]
  35. Mora, A., Ketcham, R.A., Higuera-Diaz, I.C., Bookhagen, B., Jimenez, L. and Rubiano, J. 2014. Formation of passive-roof duplexes in the Colombian Subandes and Perú. Lithosphere, 6, 1–17, https://doi.org/10.1130/L340
    [Google Scholar]
  36. Mora, A., Casallas, W. et al.2015a. Kinematic restoration of contractional basement structures using thermokinematic models: a key tool for petroleum system modeling. AAPG Bulletin, 99, 1575–1598, https://doi.org/10.1306/04281411108
    [Google Scholar]
  37. Mora, A., Parra, M. et al.2015b. Chapter 20: what drives orogenic asymmetry in the northern Andes?: a case study from the apex of the Northern Andean orocline. AAPG Memoirs, 108, 547–586, https://doi.org/10.1306/13531949M1083652
    [Google Scholar]
  38. Mora, A., García, D. et al.2019. Tectonic evolution of petroleum systems within the onshore Llanos basin. Insights on the presence of Orinoco heavy oil analogues in Colombia and a comparison with other heavy oil provinces worldwide. AAPG Bulletin, 103, 1179–1224, https://doi.org/10.1306/1003181611417236
    [Google Scholar]
  39. Occidental de Colombia, Inc. 1997. Final Well Report. Tamauka-1.
    [Google Scholar]
  40. Parra, M., Mora, A. et al.2009a. Orogenic wedge advance in the northern Andes: evidence from the Oligocene-Miocene sedimentary record of the Medina Basin, Eastern Cordillera, Colombia. Geological Society of America Bulletin, 121, 780–800, https://doi.org/10.1130/B26257.1
    [Google Scholar]
  41. Parra, M., Mora, A., Sobel, E.R., Strecker, M. and González, R. 2009b. Episodic orogenic-front migration in the northern Andes: constraints from low-temperature thermochronology in the Eastern Cordillera, Colombia. Tectonics, 28, TC4004, https://doi.org/10.1029/2008TC002423
    [Google Scholar]
  42. Parra, M., Mora, A., Jaramillo, C., Torres, V., Zeilinger, G. and Strecker, M.R. 2010. Tectonic controls on Cenozoic foreland basin development in the North-Eastern Andes, Colombia. Basin Research, 22, 874–903, https://doi.org/10.1111/j.1365.2117.2009.00459.x
    [Google Scholar]
  43. Parra, M., Mora, A., Lopez, C., Rojas, L.E. and Horton, B.K. 2012. Detecting earliest shortening and deformation advance in thrust-belt hinterlands: example from the Colombian Andes. Geology, 40, 175–178, https://doi.org/10.1130/G32519.1
    [Google Scholar]
  44. Pindell Erikson, J.1994. The Mesozoic margin of northern South America. In: Salfity, J. (ed.) Cretaceous Tectonics of the Andes. Vieweg, Wiesbaden, 1–60.
    [Google Scholar]
  45. Radelli, L.1967. Géologie des Andes Colombiennes. Thèse, Université de Grenoble.
    [Google Scholar]
  46. Ramírez-Arias-Arias, J., MoraA. et al.2012. The asymmetric evolution of the Colombian Eastern Cordillera. Tectonic inheritance or climatic forcing? New evidence from thermochronology and sedimentology. Journal of South American Earth Sciences, 39, 112–137, https://doi.org/10.1016/j.jsames.2012.04.008
    [Google Scholar]
  47. Rangel, A., Osorno, J.F., Ramírez, J.C., De Bedout, J., González, J.L. and Pabón, J.M. 2017. Geochemical assessment of the Colombian oils based on bulk petroleum properties and biomarker parameters. Marine and Petroleum Geology, 86, 1291–1309, https://doi.org/10.1016/j.marpetgeo.2017.07.010
    [Google Scholar]
  48. Reyes-Harker, A., Ruiz, C.F. et al.2015. Cenozoic paleogeography of the Andean foreland and retroarc hinterland of Colombia. AAPG Bulletin, 99, 1407–1453, https://doi.org/10.1306/06181411110
    [Google Scholar]
  49. Sánchez, J., Horton, B.K., Tesón, E., Mora, A., Ketcham, R.A. and Stockli, D.F. 2012. Kinematic evolution of Andean fold-thrust structures along the boundary between the Eastern Cordillera and Middle Magdalena Valley basin, Colombia. Tectonics, 31, TC3008, https://doi.org/10.1029/2011TC003089
    [Google Scholar]
  50. Sánchez, N., Mora, A. et al.2015. Petroleum system modeling in the eastern cordillera using geochemistry and timing of thrusting and deformation. AAPG Bulletin, 99, 1537–1556, https://doi.org/10.1306/04161511107
    [Google Scholar]
  51. Sánchez, N., Pacheco, J., Guzman-Vega, M.A., Mora, A. and Horton, B. 2021. Timing of hydrocarbon entrapment in the eastern foothills of the Eastern Cordillera of Colombia. Interpretation, 9, T145–T159, https://doi.org/10.1190/INT-2020-0058.1
    [Google Scholar]
  52. Sarmiento, L.F.2001. Mesozoic Rifting and Cenozoic Basin Inversion History of the Eastern Cordillera, Colombian Andes. Inferences from Tectonic Models. PhD thesis, Vrije University.
    [Google Scholar]
  53. Sarmiento, L.F., Van Wess, J.D. and Cloething, S. 2006. Mesozoic transtensional basin history of the Eastern Cordillera, Colombian Andes: inferences from tectonic models. Journal of South American Earth Sciences, 21, 383–411, https://doi.org/10.1016/j.jsames.2006.07.003
    [Google Scholar]
  54. Saylor, J.E., Horton, B.K., Stockli, D.F., Mora, A. and Corredor, J. 2012a. Structural and thermochronological evidence for Paleogene basement-involved shortening in the axial Eastern Cordillera, Colombia. Journal of South American Earth Sciences, 39, 202–215, https://doi.org/10.1016/j.jsames.2012.04.009
    [Google Scholar]
  55. Saylor, J.E., Stockli, D.F., Horton, B.K., Nie, J. and Mora, A. 2012b. Discriminating rapid exhumation from syndepositional volcanism using detrital zircon double dating: implications for the tectonic history of the Eastern Cordillera, Colombia. Geological Society of America Bulletin, 124, 762–779, https://doi.org/10.1130/B30534.1
    [Google Scholar]
  56. Silva, A., Mora, A. et al.2013. Basin compartmentalization and drainage evolution during rift positive inversion: evidence from multiple techniques in the Eastern Cordillera of Colombia. Geological Society, London, Special Publications, 377, 369–409, https://doi.org/10.1144/SP377.15
    [Google Scholar]
  57. Siravo, G., Faccenna, C., Gérault, M., Becker, T.W., Fellin, M.G., Herman, F. and Molin, P. 2019. Slab flattening and the rise of the Eastern Cordillera, Colombia. Earth and Planetary Science Letters, 512, 100–110, https://doi.org/10.1016/j.epsl.2019.02.002
    [Google Scholar]
  58. Spikings, R., Cochrane, R., Villagomez, D., Van der Lelij, R., Vallejo, C., WinklerW. and Beate, B. 2015. The geological history of northwestern South America: from Pangaea to the early collision of the Caribbean Large Igneous Province (290–75 Ma). Gondwana Research, 27, 95–139, https://doi.org/10.1016/j.gr.2014.06.004
    [Google Scholar]
  59. Sweeney, J.J. and Burnham, A.K. 1990. Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. AAPG Bulletin, 74, 1559–1570.
    [Google Scholar]
  60. Teixell, A., Ruiz, J.C., Teson, E. and Mora, A.2015. The structure of an inverted back-arc rift: insights from a transect across the Eastern Cordillera of Colombia near Bogotá. AAPG Memoirs, 108, 499–516, https://doi.org/10.1306/13531947M1083650
    [Google Scholar]
  61. Tesón, E., Mora, A. et al.2013. Relationship of Mesozoic graben development, stress, shortening magnitude, and structural style in the Eastern Cordillera of the Colombian Andes. Geological Society, London, Special Publications, 377, 257–283, https://doi.org/10.1144/SP377.10
    [Google Scholar]
  62. Toussaint, J.F. 1995. Hipótesis sobre el marco geodinámico de Colombia durante el Mesozóico temprano, Contribution to IGCP 322 Jurassic events in South America. Geología Colombiana, 20, 150–155.
    [Google Scholar]
  63. Ulloa, C., Rodríguez, E. and Rodríguez, G.I.2003. Geología de la Plancha 172: Paz del Río, Escala 1:100.000. Memoria Explicativa, Ingeominas, Bogotá.
  64. Vandenbroucke, M., Behar, F. and Rudkiewicz, J.L.1999. Kinetic modeling of petroleum formation and cracking: implications from the high pressure/high temperature Elgin Field (UK, North Sea). Organic Geochemistry, 30, 1105–1125, https://doi.org/10.1016/S0146-6380(99)00089-3
    [Google Scholar]
  65. Wenger, L.M., Davis, C.L. and Isaksen, G.H. 2002. Multiple controls on petroleum biodegradation and impact on oil quality. SPE Reservoir Evaluation and Engineering, 5, 375–383, https://doi.org/10.2118/80168-PA
    [Google Scholar]
/content/journals/10.1144/petgeo2023-114
Loading
/content/journals/10.1144/petgeo2023-114
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error