1887
Volume 30, Issue 2
  • ISSN: 1354-0793
  • E-ISSN:

Abstract

In the BM-C-33 area, divided into the Raia Manta and Raia Pintada development areas, reservoirs are arranged into three structural highs: Gávea, Seat, and Pão de Açúcar. These reservoirs consist of pre-salt limestones deposited on volcanic sequences and underwent complex diagenetic evolution. Successive post-depositional processes, including silicification, affected original mineral assemblage, modified pore textures, and caused intense fracturing. Based on borehole image logs (BHI), wireline data from four wells, and 2D and 3D seismic data, this study details natural fracture acoustic and resistivity properties. It also discusses the relationship of faults, fractures, and vugs with diagenetic and tectonic processes. The authors used the data to divide the pre-salt section (Cabiúnas and Macabu formations) into three informal stratigraphic units. The analysis of interpreted fractures within these units suggests that major fracturing occurred due to regional tectonic stress, with local aspects like structural positioning interfering. The results of the fracture analysis imply a direct relationship between fracturing and silicification. Additionally, fracture density, vug volume distribution, and the presence of dissolution features like enlarged fractures limited to specific units imply stratigraphic control on fluid percolation. Finally, the study examines structural particularities in BM-C-33 area that potentially impacted intensity and extension of diagenetic alterations.

Loading

Article metrics loading...

/content/journals/10.1144/petgeo2023-134
2024-03-21
2024-07-14
Loading full text...

Full text loading...

References

  1. Adams, J.T. and Dart, C.1998. The appearance of potential sealing faults on borehole images. In: Jones, G., Fisher, Q.J. and Knipe, R.J. (eds) Faulting, Fault Sealing and Fluid Flow in Hydrocarbon Reservoirs. Geological Society, London, Special Publications, 147, 71–86, https://doi.org/10.1144/GSL.SP.1998.147.01.05
    [Google Scholar]
  2. Ahdyar, L.O., Setki, R.P., Mohammad, S.R., Fernández-Ibáñez, F. and Moore, P.J.2019. Integrated carbonate nonmatrix characterization in Banyu Urip field. Proceedings, Indonesian Petroleum Association 43rd Annual Convention and Exhibition, 4–6 September 2019, Jakarta, Indonesia. IPA19-G-35.
    [Google Scholar]
  3. Almeida, J., Heilbron, M. et al.2021. Pre-to-syn tholeiitic magmatism in a transtensive hyperextended continental margin: onshore and offshore magmatism of the Campos Basin, SE Brazil. Journal of South American Earth Sciences, 108, https://doi.org/10.1016/j.jsames.2021.103218
    [Google Scholar]
  4. Almeida Carvalho, A.M., Youri, H., Olinto, G.D.S., Jr., Goulart, C.N. and Collard, N. 2022. Facies and diagenesis distribution in an Aptian pre-salt carbonate reservoir of the Santos Basin, offshore Brazil: a comprehensive quantitative approach. Marine and Petroleum Geology, 141, 105708, https://doi.org/10.1016/j.marpetgeo.2022.105708
    [Google Scholar]
  5. Basso, M., Chinelatto, G.F. et al.2023. Characterization of silicification and dissolution zones by integrating borehole image logs and core samples: a case study of a well from the Brazilian pre-salt. Petroleum Geoscience, 29, petgeo2022-044, https://doi.org/10.1144/petgeo2022-044
    [Google Scholar]
  6. Beglinger, S.E., Wees, J.D.V., Cloetingh, S. and Doust, H. 2012. Tectonic subsidence history and source-rock maturation in the Campos Basin, Brazil. Petroleum Geoscience, 18, 153–172, https://doi.org/10.1144/1354-079310-049
    [Google Scholar]
  7. Bisdom, K., Gauthier, B.D.M., Bertotti, G. and Hardebol, N.J. 2014. Calibrating discrete fracture-network models with a carbonate three-dimensional outcrop fracture network: implications for naturally fractured reservoir modelling. AAPG Bulletin, 98, 1351–1376, https://doi.org/10.1306/02031413060
    [Google Scholar]
  8. Bochi do Amarante, F., Kuchle, J., Jackson, C.A., Scherer, C.M.S. and Pichel, L.M.2023. The cryptic stratigraphic record of the syn-to post-rift transition in the offshore Campos Basin, SE Brazil. Basin Research, 36, https://doi.org/10.1111/bre.12820
    [Google Scholar]
  9. Borghi, L., Arena, M., Favoreto, J. and Santos, J.2022. Defining a new common language: a multi-scale descriptive classification for the pre-salt carbonates of the Barra Velha Formation. Extended abstract presented at the Rio Oil & Gas, 26–29 September 2022, Rio de Janeiro, Brazil.
    [Google Scholar]
  10. Bosence, D.1998. Stratigraphic and sedimentological models of rift basins. In: Purser, B.H. and Bosence, D.W.J. (eds) Sedimentation and Tectonics of Rift Basins: Red Sea-Gulf of Aden. Chapman & Hall, London, 9–25.
    [Google Scholar]
  11. Cainelli, C. and Mohriak, W.U. 1999. Some remarks on the evolution of sedimentary basins along the Eastern Brazilian continental margin. Episodes, 22, 206–216, https://doi.org/10.18814/epiiugs/1999/v22i3/008
    [Google Scholar]
  12. Calegari, S.S., Neves, M.A., Guadagnin, F., França, G.S. and Vincentelli, M.G.C. 2016. The Alegre Lineament and its role over the tectonic evolution of the Campos Basin and adjacent continental margin, Southeastern Brazil. Journal of South American Earth Sciences, 69, 226–242, https://doi.org/10.1016/j.sames.2016.04.005
    [Google Scholar]
  13. Carminatti, M., Dias, J.L. and Wolff, B.2009. From turbidites to carbonates: breaking paradigms in deep waters. Paper OTC 20124 presented at the Offshore Technology Conference, 4–7 May 2009, Houston, Texas, USA.
    [Google Scholar]
  14. Cazarin, C.L., Bezerra, F.H.R. et al.2019. The conduit-seal system of hypogene karst in Neoproterozoic carbonates in northeastern Brazil. Marine and Petroleum Geology, 101, 90–107, https://doi.org/10.1016/j.marpetgeo.2018.11.046
    [Google Scholar]
  15. Correa, R., Pereira, C. et al.2019. Integrated Seismic-Log-Core-Test Fracture Characterization and Modelling, Barra Velha Formation, Pre-salt of Santos Basin. AAPG Annual Convention and Exhibition, 19–22 May 2019, San Antonio, Texas.
    [Google Scholar]
  16. Daniels, S.E., Tucker, M.E., Mawson, M.J., Holdsworth, R.E., Long, J.J., Gluyas, J.G. and Jones, R.R. 2020. Nature and origin of collapse breccias in the Zechstein of NE England: local observations with cross-border petroleum exploration and production significance, across the North Sea. Geological Society, London, Special Publications, 494, https://doi.org/10.1144/SP494-2019-140
    [Google Scholar]
  17. Davies, G.R. and Smith, L.B., Jr. 2006. Structurally controlled hydrothermal dolomite reservoir facies: an overview. AAPG Bulletin, 90, 1641–1690, https://doi.org/10.1306/05220605164
    [Google Scholar]
  18. De Ros, L.F.2021. Syngenetic, diagenetic and hydrothermal processes in the pre-salt sag section of Santos and Campos Basins. Second EAGE Conference on Pre-Salt Reservoir, 8–10 September 2021, Rio de Janeiro, Brazil. Online conference, https://doi.org/10.3997/2214-4609.202183007
    [Google Scholar]
  19. Dias, J.L. 2005. Tectônica, estratigrafia e sedimentação no Andar Aptiano da margem leste brasileira. Boletim de Geociencias Petrobras, 13, 15–25.
    [Google Scholar]
  20. Faria, D.L.P., Reis, A.T. and Souza, O.G., Jr. 2017. Three-dimensional stratigraphic-sedimentological forward modeling of an Aptian carbonate reservoir deposited during the sag stage in the Santos basin, Brazil. Marine and Petroleum, 88, 676–695, https://doi.org/10.1016/j.marpetgeo.2017.09.013
    [Google Scholar]
  21. Farias, F., Szatmari, P., Bahniuk, A. and Barros França, A. 2019. Evaporitic carbonates in the pre-salt of Santos Basin – genesis and tectonic implications. Marine and Petroleum Geology, 105, 251–272, https://doi.org/10.1016/j.marpetgeo.2019.04.020
    [Google Scholar]
  22. Fernández-Ibáñez, F., DeGraff, J.M. and Ibrayev, F. 2018. Integrating borehole image logs with core: a method to enhance subsurface fracture characterization. AAPG (American Association of Petroleum Geologists) Bulletin, 102, 1067–1090, https://doi.org/10.1306/0726171609317002
    [Google Scholar]
  23. Fernández-Ibáñez, F., Jones, G.D., Mimoun, J.G., Bowen, M.G., Simo, J.A., Marcon, V. and Esch, W.L. 2022. Excess permeability in the Brazil pre-salt: nonmatrix types, concepts, diagnostic indicators, and reservoir implications. AAPG (American Association of Petroleum Geologists) Bulletin, 106, 701–738, https://doi.org/10.1306/10042120171
    [Google Scholar]
  24. Fetter, M. 2009. The role of basement tectonic reactivation on the structural evolution of Campos Basin, offshore Brazil: evidence from 3D seismic analysis and section restoration. Marine Petroleum Geology, 26, 873–886, https://doi.org/10.1016/j.marpetgeo.2008.06.005
    [Google Scholar]
  25. Firme, P.A.L.P., Quevedo, R.J., Roehl, D., Pereira, L.C. and Cazarin, C.L. 2021. Mechanical behavior of carbonate reservoirs with single karst cavities. Geomechanics for Energy and the Environment, 25, 100209, https://doi.org/10.1016/j.gete.2020.100209
    [Google Scholar]
  26. García-Carballido, C., Boon, J. and Tso, N.2010. Data management and quality control of dipmeter and borehole image log data. In: Pöppelreiter, M., García-Carballido, C. and Kraaijveld, M. (eds) Dipmeter and Borehole Image Log Technology. AAPG Memoirs, 92, 39–49.
    [Google Scholar]
  27. Gillespie, P.A., Holdsworth, R.E., Long, D., Williams, A. and Gutmanis, J.C. 2021. Introduction: geology of fractured reservoirs. Journal of the Geological Society, 178, https://doi.org/10.1144/jgs2020-197
    [Google Scholar]
  28. Heilbron, M., Pedrosa-Soares, A.C., Campos Neto, M., Silva, L.C., Trouw, R.A.J. and Janasi, V.C.2004. A Província Mantiqueira. In: Mantesso-Neto, V., Bartorelli, A., Carneiro, C.D.R. and Brito Neves, B.B. (eds) O desvendar de um continente: a moderna geologia da América do Sul e o legado da obra de Fernando Flávio Marques de Almeida., Ed. Beca, São Paulo, cap. XIII, 203–234.
    [Google Scholar]
  29. Heilbron, M., Valeriano, C.M., Tassinari, C.C.G., Almeida, J.C.H., Tupinambá, M., Siga, O., Jr. and Trouw, R.A.J.2008. Correlation of Neoproterozoic terranes between the Ribeira Belt, SE Brazil and its African counterpart: comparative tectonic evolution and open questions. In: Pankhurst, R.J., Trow, R.A.J., Brito Neves, B.B. and De Witt, M.J. (eds) West Gondwana: Pre-Cenozoic Correlations across the South Atlantic Region. Geological Society, London, Special Publications, 294, 211–232, https://doi.org/10.1144/SP294.12
    [Google Scholar]
  30. Herlinger, R., Zambonato, E.E. and De Ros, L.F. 2017. Influence of diagenesis on the quality of lower Cretaceous pre-salt lacustrine carbonate reservoirs from northern Campos basin, offshore Brazil. Journal of Sedimentary Research, 87, 1285–1313, https://doi.org/10.2110/jsr.2017.70
    [Google Scholar]
  31. Hunt, D.W., Vieira de Luca, P.H. et al.2019. A very different Barremian–Aptian lacustine pre-salt facies association: biotic self-organisation in BMC-33, outer basin Campos Basin, Brazil. Extended abstract presented at the First EAGE Workshop on Pre-Salt Reservoir: From Exploration to Production, 5–6 December 2019, Rio de Janeiro, Brazil.
    [Google Scholar]
  32. Incerpi, N., Martire, L., Manatschal, G. and Bernasconi, S.M. 2017. Evidence of hydrothermal fluid flow in a hyperextended rifted margin: the case study of the Err nappe (SE Switzerland). Swiss Journal of Geosciences, 110, 439–456, https://doi.org/10.1007/s00015-016-0235-2
    [Google Scholar]
  33. Kattah, S. 2017. Exploration opportunities in the pre-salt area play, deepwater Campos basin, Brazil. Sedimentary Record, 15, 4–8, https://doi.org/10.2110/sedred.2017.1.4
    [Google Scholar]
  34. Kosa, E. and Hunt, D.W. 2005. Growth of syndepositional faults in carbonate strata: Upper Permian Capitan Platform, New Mexico, USA. Journal of Structural Geology, 27, 1069–1094, https://doi.org/10.1016/j.jsg.2005.02.007
    [Google Scholar]
  35. Lapponi, F., Dickson, T. and Hunt, D.2019. Low and high temperature silica diagenesis in a giant pre-salt reservoir: BM-C-33, Campos Basin, Brazil. Paper presented at the First EAGE Workshop on Pre-Salt Reservoir: From Exploration to Production, 5–6 December 2019, Rio de Janeiro, Brazil.
    [Google Scholar]
  36. LimaB.E. and De Ros, L.F. 2019. Deposition, diagenetic and hydrothermal processes in the Aptian Pre-Salt lacustrine carbonate reservoirs of the northern Campos Basin, offshore Brazil. Sedimentary Geology, 383, 55–81, https://doi.org/10.1016/j.sedgeo.2019.01.006
    [Google Scholar]
  37. Lima, B.E., Ribeiro Tedeschi, L., Silva Pestilho, A.L., Ventural Santos, R., Cabral Vazquez, J., Poley Guzzo, J.V. and De Ros, L.F. 2020. Deep-burial hydrothermal alteration of the Pre-Salt carbonate reservoirs from northern Campos Basin, offshore Brazil: evidence from petrography, fluid inclusions, Sr, C and O isotopes. Marine and Petroleum Geology, 113, 104143, https://doi.org/10.1016/j.marpetgeo.2019.104143
    [Google Scholar]
  38. Lofts, J.C. and Bourke, L.T.1999. The recognition of artefacts from acoustic and resistivity borehole imaging device. In: Lovell, M.A., Williamson, G. and Harvey, P.K. (eds) Borehote Imaging: Applications and Case Histories. Geological Society, London, Special Publications, 159, 59–76, https://doi.org/10.1144/GSL.SP.1999.159.01.03
    [Google Scholar]
  39. Loucks, R.G. 1999. Paleocave carbonate reservoirs: origins, burial-depth modifications, spatial complexity, and reservoir implications. AAPG Bulletin, 83, 1795–1834.
    [Google Scholar]
  40. Mazzullo, S.J., Rieke, H.H. and Chilingarian, G. 1996. Carbonate reservoir characterization: a geological-engineering analysis, Part II. Developments in Petroleum Science, 44, 994.
    [Google Scholar]
  41. Menezes de Jesus, C., Martins Compan, A.L. and Surmas, R.2016. Permeability estimation using ultrasonic borehole image logs in dual-porosity carbonate reservoirs. Petrophysics, 57, 620–637.
    [Google Scholar]
  42. Menezes de Jesus, C., Martins Compan, A.L., Pereira Coelho, J.R., Espinola de Sa Slilveira, A. and Blauth, A.2019. Evaluation of Karst Porosity Morphological Properties through Borehole Image Logs – Correlation with Dynamic Reservoir Properties from a Presalt Oil Field. Offshore Technology Conference Brasil, 29–31 October 2019, Rio de Janeiro, Brazil. OTC-29722-MS.
    [Google Scholar]
  43. Mizusaki, A.M.P., Thomaz-Filho, A., Milani, E.J. and Césero, P.De. 2002. Mesozoic and cenozoic igneous activity and its tectonic control in Northeastern Brazil. Journal of South American Earth Sciences, 15, 183–198, https://doi.org/10.1016/S0895-9811(02)00014-7
    [Google Scholar]
  44. Mohriak, W.U., Nemcok, M. and Enciso, G.2008. South Atlantic divergent margin evolution: rift-border uplift and salt tectonics in the basins of Southeastern Brazil. In: Pankhurst, R.J., Trouw, R.A.J., Brito Neves, B.B. and de Wit, M.J. (eds) West Gondwana Pre-cenozoic Correlations across the South Atlantic Region. Geological Society, London, Special Publications, 294, 365–398, https://doi.org/10.1144/SP294.19
    [Google Scholar]
  45. Muniz, M.C.2013. Tectono-Stratigraphic evolution of the Barremian-Aptian Continental Rift Carbonates in Southern Campos Basin, Brazil. PhD thesis, Royal Holloway University of London.
    [Google Scholar]
  46. Narr, W., Schechter, D.W. and Thompson, L.B.2006. Naturally Fractured Reservoir Characterization. Society of Petroleum Engineers, Ricardson, TX.
    [Google Scholar]
  47. Nelson, R.A.2001. Geological Analysis of Naturally Fractured Reservoirs, 2nd edn. Gulf Publishing Co., Houston, TX.
    [Google Scholar]
  48. Oliveira, V.G., Basso, M., Chinelatto, G.F., Belila, A.M.P. and Vidal, A.C. 2023. The petrophysical characteristics of Macabu formation (Aptian, Campos Basin) continental carbonates: core and special well logs (UBI and NMR) analysis integration. Journal of South American Earth Sciences, 128, https://doi.org/10.1016/j.jsames.2023.104402
    [Google Scholar]
  49. Olivito, J.P.R. and Souza, F.J. 2020. Depositional model of early cretaceous lacustrine carbonate reservoirs of the Coqueiros formation- northern Campos Basin, southeastern Brazil. Marine and Petroleum Geology, 111, 414–439, https://doi.org/10.1016/j.marpetgeo.2019.07.013
    [Google Scholar]
  50. Pedrosa-Soares, A.C. and Wiedemann-Leonardos, C.M.2000. Evolution of the Araçuaí belt and its connection to the Ribeira Belt, Eastern Brazil. In: Cordani, U.G., Milani, E.J., Thomaz Filho, A. and Campos, D.A. (eds) Tectonic Evolution of South America. SBG, São Paulo, 265–285.
    [Google Scholar]
  51. Peron-Pinvidic, G., Manatschal, G. and Osmundsen, P.T. 2013. Structural comparison of archetypal Atlantic rifted margins: a review of observations and concepts. Marine and Petroleum Geology, 43, 21–47, https://doi.org/10.1016/j.marpetgeo.2013.02.002
    [Google Scholar]
  52. Pisani, L., Antonellini, M. et al.2022. Silicification, flow pathways, and deep-seated hypogene dissolution controlled by structural and stratigraphic variability in a carbonate-siliciclastic sequence (Brazil). Marine and Petroleum Geology, 139, https://doi.org/10.1016/j.marpetgeo.2022.105611
    [Google Scholar]
  53. Ramaker, E.R., Goldstein, R.H., Franseen, E.K. and Watney, W.L.2015. What controls porosity in cherty fine-grained carbonate reservoir rocks? Impact of stratigraphy, unconformities, structural setting and hydrothermal fluid flow: Mississippian. In: Kansas, S.E., Agar, S.M. and Geiger, S. (eds) Fundamental Controls on Fluid Flow in Carbonates: Current Workflows to Emerging Technologies. Geological Society, London, Special Publications, 406, 179–208, https://doi.org/10.1144/SP406.2
    [Google Scholar]
  54. Reiss, L.H.1980. The Reservoir Engineering Aspects of Fractured Formations. Institut Français du Petrole, Paris.
    [Google Scholar]
  55. Renne, P.R., Ernesto, M., Pacca, I.G., Coe, R.S., Glen, J.M., Prévot, M. and Perrin, M. 1992. The age of Parana flood volcanism, rifting of Gondwanaland, and the Jurassic-Cretaceous boundary. Reports, 258, 975–978.
    [Google Scholar]
  56. Sartorato, A.C.L., Tonietto, S.N. and Pereira, E.2020. Silicification and dissolution features in the brazilian Pre-salt Barra Velha formation: impacts in the reservoir quality and insights for 3D geological modeling. Rio Oil & Gas Expo and Conference 2020, Rio de Janeiro, RJ, Brazil.
    [Google Scholar]
  57. Sibson, R.H. 1996: Structural permeability of fluid-driven fault fracture meshes. Journal of Structural Geology, 18, 1031–1042, https://doi.org/10.1016/0191-8141(96)00032-6
    [Google Scholar]
  58. Singh, H., Perumalla, S., Aillud, G.S., Damiani, S. and Ashraf, M.2014. Natural or Induced Fracture? Methods to Distinguish Using Geomechanics. Extended abstract presented at the Borehole Geology Workshop: Optimising the use of Your Borehole Image Data, 12–15 October 2014, Dubai, UAE.
    [Google Scholar]
  59. Stanton, N., Kusznir, N., Gordon, A. and Schmitt, R. 2019. Architecture and tectono-magmatic evolution of the Campos Rifted Margin: control of OCT structure by basement inheritance. Marine and Petroleum Geology, 100, 43–59, https://doi.org/10.1016/j.marpetgeo.2018.10.043
    [Google Scholar]
  60. Strugale, M. and Cartwright, J. 2022. Tectono-stratigraphic evolution of the rift and post-rift systems in the Northern Campos Basin, offshore Brazil. Basin Research, 34, 1655–1687, https://doi.org/10.1111/BRE.12674
    [Google Scholar]
  61. Tamara, J., McClay, K.R. and Hodgson, N. 2020. Crustal structure of the central sector of the NE Brazilian equatorial margin. Geological Society, London, Special Publications, 476, 163–191, https://doi.org/10.1144/SP476-2019-54
    [Google Scholar]
  62. Tedeschi, M., Novo, T. et al.2016. The Ediacaran Rio Doce magmatic arc revisited (Araçuaí-Ribeira orogenic system, SE Brazil). Journal of South American Earth Sciences, 68, 186–187, https://doi.org/10.1016/j.jsames.2015.11.011
    [Google Scholar]
  63. Terzaghi, R. 1965. Sources of errors in joint surveys. Geotechnique, 15, 287–304, https://doi.org/10.1680/geot.1965.15.3.287
    [Google Scholar]
  64. Tingay, M., Birgit, M., Reinecker, J., Heidbach, O., Wenzel, F. and Fleckenstein, P. 2005. Understanding tectonic stress in the oil patch: the World Stress Map Project. The Leading Edge, 24, 1276–1282, https://doi.org/10.1190/1.2149653
    [Google Scholar]
  65. Tosca, N.J. and Wright, V.P.2014. The formation and diagenesis of Mg-clay minerals in lacustrine carbonate reservoirs. American Association of Petroleum Geologists Annual Convention and Exhibition, Houston, Texas, USA.
    [Google Scholar]
  66. Tritlla, J., Esteban, M., Loma, R., Mattos, A., Sánchez, V., Boix, C. and Levresse, G.2018. Carbonates that are no more: Silicified pre-salt oil reservoirs in Campos Basin (Brazil). Search and Discovery Article #90323, AAPG Annual Convention and Exhibition, 20–23 May 2018, Salt Lake City, Utah, USA.
    [Google Scholar]
  67. Tritlla, J., Esteban, M. et al.2019.Where have most of the carbonates gone? Silicified Aptian pre-salt microbial (?) carbonates in South Atlantic basins (Brazil and Angola). Paper T-28 presented at the 16th International Meeting of Carbonate Sedimentologists, Bathurst Meeting, 9–11 July 2019, Mallorca, Spain.
    [Google Scholar]
  68. Ukar, E., Baqués, V., Laubach, S. and Marrett, R. 2020. The nature and origins of decametre-scale porosity in Ordovician carbonate rocks, Halahatang oilfield, Tarim Basin, China. Journal of the Geological Society, London, 177, 1074–1091, https://doi.org/10.1144/jgs2019-156
    [Google Scholar]
  69. Vieira de Luca, P.H., Matias, H. et al.2017. Breaking barriers and paradigms in presalt exploration: the Pão de Açúcar discovery (offshore Brazil). AAPG Memoirs, 113, 177–194, https://doi.org/10.1306/13572007M1133686
    [Google Scholar]
  70. Vieira de Luca, P.H., Waldum, A. et al.2019. Porosity characterization of complex silicified carbonates reservoirs of BM-C-33. Paper presented at the First EAGE Workshop on Pre-Salt Reservoir: From Exploration to Production, 5–6 December 2019, Rio de Janeiro, Brazil.
    [Google Scholar]
  71. Watton, T.J., Cannon, S., Brown, R.J., Jerram, D.A. and Waichel, B.L.2014. Using Formation Micro-Imaging, Wireline Logs and Onshore Analogues to Distinguish Volcanic Lithofacies in Boreholes: Examples from Palaeogene Successions in the Faroe–Shetland Basin, NE Atlantic. 680 Hydrocarbon Exploration to Exploitation West of Shetlands. The Geological Society, London, 173–192, https://doi.org/10.1144/SP397.7
    [Google Scholar]
  72. Wennberg, O.P., McQueen, G. et al.2021. Open fractures in presalt silicified carbonate reservoirs in block BM-C-33, the Outer Campos Basin, offshore Brazil. Petroleum Geoscience, 27, https://doi.org/10.1144/petgeo2020-125
    [Google Scholar]
  73. Wennberg, O.P., De Oliveira Ramalho, F., Virgolino Mafia, M., Lapponi, F., Chandler, A.S., Gomis Cartesio, L.E. and Hunt, D. 2023. The characteristics of natural open fractures in acoustic borehole image logs from the pre-salt Barra Velha formation, Santos Basin, Brazil. Journal of Structural Geology, 167, https://doi.org/10.1016/j.jsg.2023.104794
    [Google Scholar]
  74. Winter, W.R., Jahnert, R.J. and França, A.B. 2007. Bacia de Campos. Boletim de Geociências da Petrobras, 15, 511–529.
    [Google Scholar]
  75. Wright, V.P. and Barnett, A.J.2015. An abiotic model for the development of textures in some South Atlantic early Cretaceous lacustrine carbonates. In: Bosence, D.W.J., Gibbons, K.A., Le Heron, D.P., Morgan, W.A., Pritchard, T. and Vining, B.A. (eds) Microbial Carbonates in Space and Time: Implications for Global Exploration and Production. Geological Society, London, Special Publications, 418, 209–219, https://doi.org/10.1144/SP418.3
    [Google Scholar]
  76. Yuan, R., Zhang, L. et al.2020. Utilizing borehole electrical image and conventional logs to characterize petrology of mixed volcanic and sedimentary rocks in Jiamuhe Formation at JL2 Wellfield, Zhongguai Uplift, Junggar Basin, NW China. Arabian Journal of Geosciences, 13, 1209, https://doi.org/10.1007/s12517-020-06129-5
    [Google Scholar]
  77. Zheng, Z., Kemeny, J. and Cook, N.G.W. 1989, Analysis of borehole breakouts. Journal Geophysical Research, 94, 7171–7182, https://doi.org/10.1029/JB094iB06p07171
    [Google Scholar]
/content/journals/10.1144/petgeo2023-134
Loading
/content/journals/10.1144/petgeo2023-134
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error