1887
Volume 30, Issue 3
  • ISSN: 1354-0793
  • E-ISSN:
PDF

Abstract

This paper combines quality-controlled pore pressure measurements and indicators with geophysical well logs from 310 deep wells to evaluate the pore pressure distribution in the overpressured North Alpine Foreland Basin in SE Germany. Previous studies relied chiefly on low-resolution check shots and vertical seismic profiles calibrated to only a few pore pressure measurements. The current study, based on sonic and electrical resistivity logs, indicates that more than one shale normal compaction trend is required to appropriately assess pore pressure from geophysical well logs. Thereby, the necessary adjustments of the derived compaction trends apply to both sonic and resistivity data, which possibly reflect a gradual change in the mineralogical composition with decreasing clay content or progressing cementation from north to south or an increase in horizontal loading-driven compaction towards the North Alpine Thrust Front. The newly derived compaction-based pore pressure distribution is combined with drilling data-based pore pressure evaluations and offers a comprehensive update of previous pore pressure investigations in the North Alpine Foreland Basin. Our study is therefore of key importance for optimized well planning and cost-effective drilling in the course of the recent expansion of deep geothermal energy exploration in the overpressured North Alpine Foreland Basin.

[open-access]

Loading

Article metrics loading...

/content/journals/10.1144/petgeo2024-014
2024-08-30
2024-09-12
Loading full text...

Full text loading...

/deliver/fulltext/pg/30/3/petgeo2024-014.html?itemId=/content/journals/10.1144/petgeo2024-014&mimeType=html&fmt=ahah

References

  1. Agemar, T., Schellschmidt, R. and Schulz, R.2012. Subsurface temperature distribution in Germany. Geothermics, 44, 65–77, https://doi.org/10.1016/j.geothermics.2012.07.002
    [Google Scholar]
  2. Agemar, T., Alten, J., Ganz, B., Kuder, J., Kühne, K., Schumacher, S. and Schulz, R.2014a. The geothermal information system for Germany – GeotIS. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 165, 129–144, https://doi.org/10.1127/1860-1804/2014/0060
    [Google Scholar]
  3. Agemar, T., Weber, J. and Schulz, R.2014b. Deep geothermal energy production in Germany. Energies, 7, 4397–4416, https://doi.org/10.3390/en7074397
    [Google Scholar]
  4. Archie, G.E.1942. The electrical resistivity log as an aid in determining some reservoir characteristics. Transactions of the AIME, 146, 54–62, https://doi.org/10.2118/942054-G
    [Google Scholar]
  5. Arps, J.J.1953. The Effect of Temperature on the Density and Electrical Resistivity of Sodium Chloride Solutions. Journal of Petroleum Technology, 5, 17–20, https://doi.org/10.2118/953327-G
    [Google Scholar]
  6. Asquith, G., Krygowski, D., Henderson, S. and Hurley, N.2004. Basic Well Log Analysis. 2nd edn. AAPG Methods in Exploration Series, 16, https://doi.org/10.1306/Mth16823
    [Google Scholar]
  7. Athy, L.F.1930. Density, porosity and compaction of sedimentary rocks. AAPG Bulletin, 14, 1–24.
    [Google Scholar]
  8. Bachmann, G.H., Müller, M. and Weggen, K.1987. Evolution of the Molasse Basin (Germany, Switzerland). Tectonophysics, 137, 77–92, https://doi.org/10.1016/0040-1951(87)90315-5
    [Google Scholar]
  9. Baran, R., Friedrich, A.M. and Schlunegger, F.2014. The late Miocene to Holocene erosion pattern of the Alpine foreland basin reflects Eurasian slab unloading beneath the western Alps rather than global climate change. Lithosphere, 6, 124–131, https://doi.org/10.1130/L307.1
    [Google Scholar]
  10. Bateman, R.M. and Konen, C.E.1977. Part Ii – Crossplot porosity and water saturation; the log analyst and the programmable pocket calculator. Log Analyst, 18, 3–11.
    [Google Scholar]
  11. Birner, J.2013. Hydrogeological Model of the Malm Aquifer in the South German Molasse Basin. PhD thesis, Freie Universität Berlin, Berlin, Germany.
    [Google Scholar]
  12. Bowers, G.L.1995. Pore pressure estimation from velocity data: Accounting for overpressure mechanisms besides undercompaction. SPE Drilling & Completion, 10, 89–95, https://doi.org/10.2118/27488-PA
    [Google Scholar]
  13. Bowers, G.L.2002. Detecting high overpressure. The Leading Edge, 21, 174–177, https://doi.org/10.1190/1.1452608
    [Google Scholar]
  14. Doppler, G., Heissig, K. and Reichenbacher, B.2005. Formation of Tertiary rocks in the south German Molasse Basin. Newsletters on Stratigraphy, 41, 359–375, https://doi.org/10.1127/0078-0421/2005/0041-0359
    [Google Scholar]
  15. Dorsch, K., Lentsch, D., Niederseer, C. and Götz, A.2021. The deep hydrogeothermal project in Holzkirchen, Molasse Basin, Germany. In: Proceedings of World Geothermal Congress 2020+1, 24–27 October 2021, Reykjavik, Iceland. World Geothermal Congress, 1–13.
    [Google Scholar]
  16. Drews, M.C. and Duschl, F.2022. Overpressure, vertical stress, compaction and horizontal loading along the North Alpine Thrust Front, SE Germany. Marine and Petroleum Geology, 143, https://doi.org/10.1016/j.marpetgeo.2022.105806
    [Google Scholar]
  17. Drews, M.C., Bauer, W., Caracciolo, L. and Stollhofen, H.2018. Disequilibrium compaction overpressure in shales of the Bavarian Foreland Molasse Basin: Results and geographical distribution from velocity-based analyses. Marine and Petroleum Geology, 92, 37–50, https://doi.org/10.1016/j.marpetgeo.2018.02.017
    [Google Scholar]
  18. Drews, M.C., Seithel, R., Savvatis, A., Kohl, T. and Stollhofen, H.2019. A normal-faulting stress regime in the Bavarian Foreland Molasse Basin? New evidence from detailed analysis of leak-off and formation integrity tests in the greater Munich area, SE-Germany. Tectonophysics, 755, 1–9, https://doi.org/10.1016/j.tecto.2019.02.011
    [Google Scholar]
  19. Drews, M.C., Hofstettter, P., Zosseder, K., Shipilin, V. and Stollhofen, H.2020. Predictability and mechanisms of overpressure in the Bavarian Foreland Molasse Basin: an integrated analysis of the Geretsried GEN-1 Deep Geothermal Well. Geothermal Energy, 7, 3, https://doi.org/10.1186/s40517-019-0121-z
    [Google Scholar]
  20. Eaton, B.A.1972. The effect of overburden stress on geopressure prediction from well logs. Journal of Petroleum Technology, 24, 929–934, https://doi.org/10.2118/3719-PA
    [Google Scholar]
  21. Eaton, B.A.1975. The equation for geopressure prediction from well logs. Paper SPE-5544-MS presented at theFall Meeting of the SPE of American Institute of Mining, Metallurgical, and Petroleum Engineers, 28 September–1 October 1975, Dallas, Texas, USA, https://doi.org/10.2118/5544-MS
    [Google Scholar]
  22. Flechtner, F. and Aubele, K.2019. A brief stock take of the deep geothermal projects in Bavaria, Germany. Paper SGP-TR-214 presented at the44th Workshop on Geothermal Reservoir Engineering, 11–13 February 2019, Stanford, California, USA.
    [Google Scholar]
  23. Flemings, P.B.2021. A Concise Guide to Geopressure – Origin, Prediction, and Applications. Cambridge University Press, Cambridge, UK, https://doi.org/10.1017/9781107326309
    [Google Scholar]
  24. Gardner, G.H.F., Gardner, L.W. and Gregory, A.R.1974. Formation velocity and density – the diagnostic basics for stratigraphic traps. Geophysics, 39, 770–780, https://doi.org/10.1190/1.1440465
    [Google Scholar]
  25. Gier, S.1998. Burial diagenetic processes and clay mineral formation in the Molasse Zone of Upper Austria. Clays and Clay Minerals, 46, 658–669, https://doi.org/10.1346/CCMN.1998.0460606
    [Google Scholar]
  26. Gier, S.2000. Clay mineral and organic diagenesis of the Lower Oligocene Schöneck Fishshale, western Austrian Molasse Basin. Clay Minerals, 35, 709–717, https://doi.org/10.1180/000985500547151
    [Google Scholar]
  27. Gier, S., Ottner, F. and Johns, W.D.1998. Layer-charge heterogeneity in smectites of I–S phases in pelitic sediments from the Molasse Basin, Austria. Clays and Clay Minerals, 46, 670–678, https://doi.org/10.1346/CCMN.1998.0460607
    [Google Scholar]
  28. Glover, P.W.J.2016. Archie's law – a reappraisal. Solid Earth, 7, 1157–1169, https://doi.org/10.5194/se-7-1157-2016
    [Google Scholar]
  29. Großmann, J., Hofmann, N. et al.2024. Abgeschlossene Arbeiten zur Digitalisierung geophysikalischer Grundlagendaten in Bayern. Geologica Bavarica, 127, 3–111.
    [Google Scholar]
  30. Haugland, M.S. and Tichelaar, B.W.2008. Cation exchange capacity effects on resistivity-based pore pressure predictions. Paper SPWLA-2008-DDDD presented at theSPWLA 49th Annual Logging Symposium, 25–28 May 2008, Austin, Texas, USA.
    [Google Scholar]
  31. Heidinger, M., Eichinger, F. et al.2019. 81Kr/85Kr-Dating of thermal groundwaters in the Upper Jurassic (Molasse Basin). Grundwasser, 24, 287–294, https://doi.org/10.1007/s00767-019-00431-0
    [Google Scholar]
  32. Heppard, P.D., Cander, H.S. and Eggertson, E.B.1998. Abnormal pressure and the occurrence of hydrocarbons in offshore eastern Trinidad, West Indies. AAPG Memoirs, 70, 215–246, https://doi.org/10.1306/M70615C13
    [Google Scholar]
  33. Hoesni, M.J.2004. Origins of Overpressure in the Malay Basin and its Influence on Petroleum Systems. PhD thesis, Durham University, Durham, UK.
    [Google Scholar]
  34. Hottmann, C.E. and Johnson, R.K.1965. Estimation of formation pressures from log-derived shale properties. Journal of Petroleum Technology, 17, 717–722, https://doi.org/10.2118/1110-pa
    [Google Scholar]
  35. Hubbert, M.K. and Rubey, W.W.1959. Role of fluid pressure in mechanics of overthrust faulting. Bulletin of the Geological Society of America, 70, 115–166, https://doi.org/10.1130/0016-7606(1959)70[115:ROFPIM]2.0.CO;2
    [Google Scholar]
  36. Issler, D.R.1992. A new approach to shale compaction and stratigraphic restoration, Beaufort–Mackenzie Basin and Mackenzie Corridor, northern Canada. AAPG Bulletin, 76, 1170–1189, https://doi.org/10.1306/BDFF8998-1718-11D7-8645000102C1865D
    [Google Scholar]
  37. Jin, J., Aigner, T., Luterbacher, H.P., Bachmann, G.H. and Müller, M.1995. Sequence stratigraphy and depositional history in the south-eastern German Molasse Basin. Marine and Petroleum Geology, 12, 929–936, https://doi.org/10.1016/0264-8172(95)98856-Z
    [Google Scholar]
  38. Katahara, K.2017. Dependence of shale velocity on clay-mineral content and temperature. SEG Technical Program Expanded Abstracts, 2017, 3660–3664, https://doi.org/10.1190/segam2017-16975444.1
    [Google Scholar]
  39. Kuhlemann, J. and Kempf, O.2002. Post-Eocene evolution of the North Alpine Foreland Basin and its response to Alpine tectonics. Sedimentary Geology, 152, 45–78, https://doi.org/10.1016/S0037-0738(01)00285-8
    [Google Scholar]
  40. Lackner, D., Lentsch, D. and Dorsch, K.2018. Germany's deepest hydro-geothermal doublet, drilling challenges and conclusions for the design of future wells. Geothermal Resources Council Transactions, 47, 349–359.
    [Google Scholar]
  41. Lemcke, K.1973. Zur nachpermischen Geschichte des nördlichen Alpenvorlands. Geologica Bavarica, 69, 5–48.
    [Google Scholar]
  42. Lemcke, K.1976. Übertiefe Grundwässer im süddeutschen Alpenvorland. Bulletin der Vereinigung Schweiz. Petroleum-Geologen und -Ingenieure, 42, 9–18.
    [Google Scholar]
  43. Lohr, J.1969. Die seismischen Geschwindigkeiten der jüngeren Molasse im ostschweizerischen und deutschen Alpenvorland. Geophysical Prospecting, 17, 111–125, https://doi.org/10.1111/j.1365-2478.1969.tb02075.x
    [Google Scholar]
  44. Lüschen, E., Borrini, D., Gebrande, H., Lammerer, B., Millahn, K., Neubauer, F. and Nicolich, R.2006. TRANSALP - Deep crustal Vibroseis and explosive seismic profiling in the Eastern Alps. Tectonophysics, 414, 9–38, https://doi.org/10.1016/j.tecto.2005.10.014
    [Google Scholar]
  45. Mouchet, J.-P. and Mitchell, A.1989. Abnormal pressures while drilling: Origins, predictions, detection evaluation. Editions Technip, Paris, France.
    [Google Scholar]
  46. Müller, M., Nieberding, F. and Wanninger, A.1988. Tectonic style and pressure distribution at the northern margin of the Alps between Lake Constance and the River Inn. Geologische Rundschau, 77, 787–796, https://doi.org/10.1007/BF01830185
    [Google Scholar]
  47. Müller, M. and Nieberding, F.1996. Principles of abnormal pressures related to tectonic developments and their implication for drilling activities (Bavarian Alps, Germany). In: Wessely, G. and Liebl., W. (eds) Oil and Gas in Alpidic Thrusbelts and Basins of Central and Eastern Europe. EAGE Special Publication, 119–126.
    [Google Scholar]
  48. Osborne, M.J. and Swarbrick, R.E.1997. Mechanisms for generating overpressure in sedimentary basins: a reevaluation. AAPG Bulletin, 81, 1023–1041, https://doi.org/10.1306/522B49C9-1727-11D7-8645000102C1865D
    [Google Scholar]
  49. Raiga-Clemenceau, J., Martin, J.P. and Nicoletis, S.1986. The concept of acoustic formation factor for more accurate porosity determination from sonic transit time data. Paper SPWLA-1986-G presented at theSPWLA 27th Annual Logging Symposium, 9–13 June 1986, Houston, Texas, USA.
    [Google Scholar]
  50. Reinecker, J., Tingay, M., Müller, B. and Heidbach, O.2010. Present-day stress orientation in the Molasse Basin. Tectonophysics, 482, 129–138, https://doi.org/10.1016/j.tecto.2009.07.021
    [Google Scholar]
  51. Rizzi, P.W.1973. Hochdruckzonenfrüherkennung in Mitteleuropa. Erdoel-Erdgas-Zeitschrift, 89, 249–256.
    [Google Scholar]
  52. Sachsenhofer, R.F.2001. Syn- and post-collisional heat flow in the Cenozoic Eastern Alps. International Journal of Earth Sciences, 90, 579–592, https://doi.org/10.1007/s005310000179
    [Google Scholar]
  53. Sachsenhofer, R.F., Leitner, B. et al.2010. Deposition, erosion and hydrocarbon source potential of the Oligocene Eggerding Formation (Molasse Basin, Austria). Austrian Journal of Earth Sciences, 103, 76–99.
    [Google Scholar]
  54. Schrader, F.1988. Das regionale Gefüge der Drucklösungsdeformation an Geröllen im westlichen Molassebecken. Geologische Rundschau, 77, 347–369, https://doi.org/10.1007/BF01832385
    [Google Scholar]
  55. Scott, D.R. and Thomsen, L.A.1993. A global algorithm for pore pressure prediction. Paper SPE-25674-MS presented at theMiddle East Oil Show, 3–6 April 1993, Bahrain, https://doi.org/10.2118/25674-MS
    [Google Scholar]
  56. Shatyrbayeva, I., Bohnsack, D., Duschl, F. and Drews, M.C.2023. Comparison and integration of pore pressure measurements and indicators from drilling data in a deep geothermal energy play in SE Germany. Geoenergy, 1, https://doi.org/10.1144/geoenergy2023-038
    [Google Scholar]
  57. Terzaghi, K.1943. Theoretical Soil Mechanics. John Wiley & Sons, Inc., New York, https://doi.org/10.1002/9780470172766
    [Google Scholar]
  58. Toumelin, E., Devarajan, S., Torres-Verdín, C. and Thomas, E.C.2006. Pore-scale analysis of the Waxman–Smits shaly sand conductivity model. Paper SPWLA-2006-M presented at the SPWLA 47th Annual Logging Symposium, 4–7 June 2006, Vera Cruz, Mexico.
    [Google Scholar]
  59. Waples, D.W. and Couples, G.D.1998. Some thoughts on porosity reduction – rock mechanics, overpressure and fluid flow. Geological Society, London, Special Publications, 141, 73–81, https://doi.org/10.1144/GSL.SP.1998.141.01.04
    [Google Scholar]
  60. Waxman, M.H. and Smits, L.J.M.1968. Electrical conductivities in oil-bearing shaly sands. SPE Reprint Series, 8, 107–122, https://doi.org/10.2118/1863-A
    [Google Scholar]
  61. Zhang, J.2011. Pore pressure prediction from well logs: methods, modifications, and new approaches. Earth-Science Reviews, 108, 50–63, https://doi.org/10.1016/j.earscirev.2011.06.001
    [Google Scholar]
  62. Zweigel, J.1998. Eustatic versus tectonic control on foreland basin fill: sequence stratigraphy, subsidence analysis, stratigraphic modelling, and reservoir modelling applied to the German Molasse basin. Contributions to Sedimentary Geology, 20.
    [Google Scholar]
/content/journals/10.1144/petgeo2024-014
Loading
/content/journals/10.1144/petgeo2024-014
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error