1887
Volume 30, Issue 4
  • ISSN: 1354-0793
  • E-ISSN:

Abstract

The main anticlines in the Axial Zone of the Eastern Cordillera are conspicuous geomorphic features that can be detected with remote sensing images and geological mapping. In this work, the anticlines that exhibit conspicuous double-plunging three- or four-way closures that are preferentially located in the region immediately north of Bogotá within the Axial Zone were first documented. The main structural style was then illustrated with balanced cross-sections. After this type of structure had been identified, 19 one-dimensional petroleum systems models were produced in the adjacent synclines to assess the timing of generation and migration of petroleum using optimistic source-rock parameters. Two different scenarios were modelled, one of them having an additional 900 m of deposited Paleogene sediments. Based on these models, maps for the transformation ratio and hydrocarbon expulsion from the main source rock (the Chipaque Formation) were created in order to assess the timing of the main generation and expulsion. This allowed us to document that the main phase of generation occurred between the Late Eocene and the Middle Miocene. Previous studies have supported the idea that the main structures had formed by the Late Oligocene–Early Miocene. Based on this, it was concluded that it would have been possible for gas and light crude oil accumulations to have formed at that time but there was the problem of their preservation. However, the modelling of petroleum generation in the updip sectors of the potential kitchens may suggest an undiscovered potential that has not previously been documented.

Loading

Article metrics loading...

/content/journals/10.1144/petgeo2024-024
2024-11-27
2025-01-15
Loading full text...

Full text loading...

References

  1. Alfaro, C., Bernal, N. and Ramírez, G.2000. Mapa Geotérmico de Colombia: Flujo de Calor. INGEOMINAS, Bogotá.
    [Google Scholar]
  2. Barker, C.E. and Pawlewicz, M.J.1994. Calculation of vitrinite reflectance from thermal histories and peak temperatures: a comparison of methods. American Chemical Society Symposium Series, 570, 216–229.
    [Google Scholar]
  3. Barrera, D., Mora, A. and Tesón, E.2019. Structural analysis of the Bogota Anticline, Colombian Eastern Cordillera: Implications on deformational styles of the Llanos Foothills/Analisis estructural del Anticlinal de Bogota, Cordillera Oriental de Colombia: implicaciones en el estilo de deformacion del Piedemonte Llanero. Boletin de Geologia, 41, 15–31, doi: 10.18273/revbol.v41n3-201900110.18273/revbol.v41n3‑2019001
    https://doi.org/10.18273/revbol.v41n3-2019001 [Google Scholar]
  4. Bayona, G., Cardona, A. et al.2013. Onset of fault reactivation in the Eastern Cordillera of Colombia and proximal Llanos basin; response to Caribbean–South American collision in early Paleogene time. Geological Society, London, Special Publications, 377, 285–314, doi: 10.1144/SP377.510.1144/SP377.5
    https://doi.org/10.1144/SP377.5 [Google Scholar]
  5. Behar, F., Vandenbroucke, M., Tang, Y., Marquis, F. and Espitalie, F.1997. Thermal cracking of kerogen in open and closed systems: determination of kinetic parameters and stoichiometric coefficients for oil and gas generation. Organic Geochemistry, 26, 321–339, doi: 10.1016/S0146-6380(97)00014-410.1016/S0146‑6380(97)00014‑4
    https://doi.org/10.1016/S0146-6380(97)00014-4 [Google Scholar]
  6. Blanco-Velandia, V.O.2012. Modelling and Geochemical Characterization of Organic Facies in the Upper Cretaceous Chipaque Formation, Eastern Cordillera and Llanos Foothills, Colombia. MSc thesis, Newcastle University, Newcastle, UK.
    [Google Scholar]
  7. Blanco-Velandia, V., Pacheco-Mendoza, J. et al.2024. Oil families in the eastern cordillera and llanos basin, Colombia: a comprehensive characterization using advanced geochemical technologies. Marine and Petroleum Geology, 167, doi: 10.1016/j.marpetgeo.2024.10695410.1016/j.marpetgeo.2024.106954
    https://doi.org/10.1016/j.marpetgeo.2024.106954 [Google Scholar]
  8. Branquet, Y., Cheilletz, A., Cobbold, P.R., Baby, P., Laumonier, B. and Giuliani, G.2002. Andean deformation and rift inversion, eastern edge of Cordillera Oriental (Guateque–Medina area), Colombia. Journal of South American Earth Sciences, 15, 391–407, doi: 10.1016/S0895-9811(02)00063-910.1016/S0895‑9811(02)00063‑9
    https://doi.org/10.1016/S0895-9811(02)00063-9 [Google Scholar]
  9. Caballero, V., Mora, A. et al.2013. Tectonic controls on sedimentation in an intermontane hinterland basin adjacent to inversion structures: the Nuevo Mundo syncline, Middle Magdalena Valley, Colombia. Geological Society, London, Special Publications, 377, 315–342, doi: 10.1144/SP377.1210.1144/SP377.12
    https://doi.org/10.1144/SP377.12 [Google Scholar]
  10. Carrillo, E., Mora, A. et al.2016. Movement vectors and deformation mechanisms in kinematic restorations: A case study from the Colombian Eastern Cordillera. Interpretation, 4, T31–T48, doi: 10.1190/INT-2015-0049.110.1190/INT‑2015‑0049.1
    https://doi.org/10.1190/INT-2015-0049.1 [Google Scholar]
  11. Chao, P., Manatschal, P. et al.2021. The tectono-stratigraphic and magmatic evolution of conjugate rifted margins: Insights from the NW South China Sea. Journal of Geodynamics, 148, doi: 10.1016/j.jog.2021.10187710.1016/j.jog.2021.101877
    https://doi.org/10.1016/j.jog.2021.101877 [Google Scholar]
  12. Christiansson, P., Faleide, J.I. and Berge, A.M.2000. Crustal structure in the northern North Sea: an integrated geophysical study. Geological Society, London, Special Publications, 167, 15–40, doi: 10.1144/GSL.SP.2000.167.01.0210.1144/GSL.SP.2000.167.01.02
    https://doi.org/10.1144/GSL.SP.2000.167.01.02 [Google Scholar]
  13. Colletta, B., Hebrard, F., Letouzey, J., Werner, P. and Rudkiewicz, J.-L.1990. Tectonic style and crustal structure of the Eastern Cordillera (Colombia) from a balanced cross-section. In:Letouzey, J. (ed.) Petroleum and Tectonics in Mobile Belts. Editions Technip, Paris, 81–100.
    [Google Scholar]
  14. Cooper, M.A., Addison, F.T. et al.1995. Basin development and tectonic history of the Llanos Basin, Eastern Cordillera, and Middle Magdalena Valley, Colombia. AAPG Bulletin, 79, 1421–1443.
    [Google Scholar]
  15. De la Parra, F., Mora, A., Rueda, M. and Quintero, I.2015. Temporal and spatial distribution of tectonic events as deduced from reworked palynomorphs in the eastern northern Andes. AAPG Bulletin, 99, 1455–1472, doi: 10.1306/0224151115310.1306/02241511153
    https://doi.org/10.1306/02241511153 [Google Scholar]
  16. Ding, W., Sun, Z., Mohn, G., Nirrengarten, M., Tugend, J., Manatschal, G. and Li, J.2020. Lateral evolution of the rift-to-drift transition in the South China Sea: Evidence from multi-channel seismic data and IODP Expeditions 367 & 368 drilling results. Earth and Planetary Science Letters, 531, doi: 10.1016/j.epsl.2019.11593210.1016/j.epsl.2019.115932
    https://doi.org/10.1016/j.epsl.2019.115932 [Google Scholar]
  17. Errat, D., Thomas, G.M. and Wall, G.R.T.1999. The evolution of the Central North Sea Rift. Geological Society, London, Petroleum Geology Conference Series, 5, 63–82, doi: 10.1144/005006310.1144/0050063
    https://doi.org/10.1144/0050063 [Google Scholar]
  18. García, D.F., Vaz dos Santos Neto, E. and Penteado, H.2015. Controls on the petroleum composition in the Llanos Basin, Colombia: implications for exploration. AAPG Bulletin, 99, 1503–1535, doi: 10.1306/1023141111110.1306/10231411111
    https://doi.org/10.1306/10231411111 [Google Scholar]
  19. Guerrero, J., Mejía–Molina, A. and Osorno, J.2020. Biomicrite, marlstone, and shale properties: exploration of nonconventional hydrocarbons in the Cretaceous Colombian back– arc basin. In: Gómez, J. and Pinilla–Pachon, A.O. (eds) The Geology of Colombia, Volume 2: Mesozoic. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales, 36, 299–333, doi: 10.32685/pub.esp.36.2019.0910.32685/pub.esp.36.2019.09
    https://doi.org/10.32685/pub.esp.36.2019.09 [Google Scholar]
  20. Hantschel, T. and Kauerauf, A.I.2009. Fundamentals of Basin and Petroleum Systems Modeling. Springer, Berlin, doi: 10.1007/978-3-540-72318-910.1007/978‑3‑540‑72318‑9
    https://doi.org/10.1007/978-3-540-72318-9 [Google Scholar]
  21. Homza, T. and Wallace, W.1995. Geometric and kinematic models for detachment folds with fixed and variable detachment depths. Journal of Structural Geology, 17, 575–588, doi: 10.1016/0191-8141(94)00077-D10.1016/0191‑8141(94)00077‑D
    https://doi.org/10.1016/0191-8141(94)00077-D [Google Scholar]
  22. Hooghiemstra, H., Wijninga, V.M. and Cleef, A.M.2006. The paleobotanical record of Colombia: implications for biogeography and biodiversity. Annals of the Missouri Botanical Garden, 93, 297–325, doi: 10.3417/0026-6493(2006)93[297:TPROCI]2.0.CO;210.3417/0026‑6493(2006)93[297:TPROCI]2.0.CO;2
    https://doi.org/10.3417/0026-6493(2006)93[297:TPROCI]2.0.CO;2 [Google Scholar]
  23. IDEAM (Instituto de Hidrología, Meteorología y Estudios Ambientales)2014. Distribución de la temperatura media anual (°c). promedio multianual 1981–2010.
    [Google Scholar]
  24. Jimenez, L., Mora, A. et al.2013. Segmentation and growth of foothill thrust-belts adjacent to inverted grabens: the case of the Colombian Llanos foothills. Geological Society, London, Special Publications, 377, 189–220, doi: 10.1144/SP377.1110.1144/SP377.11
    https://doi.org/10.1144/SP377.11 [Google Scholar]
  25. Jordan, T.E. and Allmendinger, R.W.1986. The Sierras Pampeanas of Argentina; a modern analogue of Rocky Mountain foreland deformation. American Journal of Science, 286, 737–764, doi: 10.2475/ajs.286.10.73710.2475/ajs.286.10.737
    https://doi.org/10.2475/ajs.286.10.737 [Google Scholar]
  26. Kammer, A.1996. Estructuras y deformaciones del borde oriental del Macizo de Floresta. Geología Colombiana, 21, 65–80.
    [Google Scholar]
  27. Kammer, A. and Mora, A.1999. Structural style and amount of shortening of the folded Bogotá segment, Eastern Cordillera of Colombia. Zentralblatt fuer Geologie und Paleontologie, Teil I: Geologie, 1999(7–8), 823–838.
    [Google Scholar]
  28. Kammer, A., Piraquive, A., Gómez, C., Mora, A. and Velásquez, A.2020. Structural styles of the Eastern Cordillera of Colombia. In: Gómez, J. and Mateus–Zabala, D. (eds) The Geology of Colombia, Volume 3: Paleogene – Neogene. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales, 37, 143–183, doi: 10.32685/pub.esp.37.2019.0610.32685/pub.esp.37.2019.06
    https://doi.org/10.32685/pub.esp.37.2019.06 [Google Scholar]
  29. Ketcham, R.A., Mora, A. and Parra, M.2018. Deciphering exhumation and burial history with multi–sample down–well thermochronometric inverse modelling. Basin Research, 30, 48–64, doi: 10.1111/bre.1220710.1111/bre.12207
    https://doi.org/10.1111/bre.12207 [Google Scholar]
  30. Martinez, J., Patiño, M., Mora, A., Arias Martínez, J.P. and Tesón, E.2022.Structural styles and evolution of the Colombian Eastern foothills Piedemonte triangle zone. In: Zamora, G. and Mora, A. (eds) Andean Structural Styles. Elsevier, Amsterdam, 181–193, doi: 10.1016/B978-0-323-85175-6.00013-410.1016/B978‑0‑323‑85175‑6.00013‑4
    https://doi.org/10.1016/B978-0-323-85175-6.00013-4 [Google Scholar]
  31. Martinez, J.A.2006. Structural evolution of the Llanos foothills, eastern Cordillera, Colombia. Journal of South American Earth Sciences, 21, 510–520, doi: 10.1016/j.jsames.2006.07.01010.1016/j.jsames.2006.07.010
    https://doi.org/10.1016/j.jsames.2006.07.010 [Google Scholar]
  32. McKenzie, D.1978. Some remarks on the development of sedimentary basins. Earth and Planetary Science Letters, 40, 25–32, doi: 10.1016/0012-821X(78)90071-710.1016/0012‑821X(78)90071‑7
    https://doi.org/10.1016/0012-821X(78)90071-7 [Google Scholar]
  33. McLaughlin, D.H. and Arce, M.1972. Geology of the Zipaquirá Area (Zone IV), Cordillera Oriental, Colombia. Informe Preliminar. INGEOMINAS, Bogotá.
    [Google Scholar]
  34. Mello, M.R., Peres, W., Rostirolla, S.P., Pedrosa, O.A.Jr, Piquet, A., Becker, S. and Yilmaz, P.O.2021. The Santos Basin pre-salt super giant petroleum system: an incredible journey from failure to success. AAPG Memoirs, 124, 1–34, doi: 10.1306/13722313MSB.1.185310.1306/13722313MSB.1.1853
    https://doi.org/10.1306/13722313MSB.1.1853 [Google Scholar]
  35. Mitra, S.1990. Fault-propagation folds: geometry, kinematic evolution, and hydrocarbon traps. AAPG Bulletin, 74, 921–945.
    [Google Scholar]
  36. Mitra, S.2002. Structural models of faulted detachment folds. AAPG Bulletin, 86, 1673–1694, doi: 10.1306/61EEDD3C-173E-11D7-8645000102C1865D10.1306/61EEDD3C‑173E‑11D7‑8645000102C1865D
    https://doi.org/10.1306/61EEDD3C-173E-11D7-8645000102C1865D [Google Scholar]
  37. Mitra, S.2003. A unified kinematic model for the evolution of detachment folds. Journal of Structural Geology, 25, 1659–1673, doi: 10.1016/S0191-8141(02)00198-010.1016/S0191‑8141(02)00198‑0
    https://doi.org/10.1016/S0191-8141(02)00198-0 [Google Scholar]
  38. Mitra, S. and Mount, V.S.1998. Foreland basement-involved structures. AAPG Bulletin, 82, 70–109, doi: 10.1306/1D9BC39F-172D-11D7-8645000102C1865D10.1306/1D9BC39F‑172D‑11D7‑8645000102C1865D
    https://doi.org/10.1306/1D9BC39F-172D-11D7-8645000102C1865D [Google Scholar]
  39. Mora, A. and Kammer, A.1999. Comparación de los Estilos Estructurales en la Sección entre Bogotá y los Farallones de Medina, Cordillera Oriental de Colombia. Geología Colombiana, 24, 55–83, https://revistas.unal.edu.co/index.php/geocol/article/view/31482
    [Google Scholar]
  40. Mora, A., Parra, M., Strecker, M.R., Sobel, E.R., Hooghiemstra, H., Torres, V. and Jaramillo, J.V.2008. Climatic forcing of asymmetric orogenic evolution in the Eastern Cordillera of Colombia. Geological Society of America Bulletin, 120, 930–949, doi: 10.1130/B26186.110.1130/B26186.1
    https://doi.org/10.1130/B26186.1 [Google Scholar]
  41. Mora, A., Gaona, T. et al.2009. The role of inherited extensional fault segmentation and linkage in contractional orogenesis: a reconstruction of Lower Cretaceous inverted rift basins in the Eastern Cordillera of Colombia. Basin Research, 21, 111–137, doi: 10.1111/j.1365-2117.2008.00367.x10.1111/j.1365‑2117.2008.00367.x
    https://doi.org/10.1111/j.1365-2117.2008.00367.x [Google Scholar]
  42. Mora, A., Horton, B.K. et al.2010. Migration of Cenozoic deformation in the Eastern Cordillera of Colombia interpreted from fission track results and structural relationships: implications for petroleum systems. AAPG Bulletin, 94, 1543–1580, doi: 10.1306/0105100911110.1306/01051009111
    https://doi.org/10.1306/01051009111 [Google Scholar]
  43. Mora, A., Blanco, V. et al.2013a. On the lag time between internal strain and basement involved thrust induced exhumation: the case of the Colombian Eastern Cordillera. Journal of Structural Geology, 52, 96–118, doi: 10.1016/j.jsg.2013.04.00110.1016/j.jsg.2013.04.001
    https://doi.org/10.1016/j.jsg.2013.04.001 [Google Scholar]
  44. Mora, A., Reyes-Harker, A., Rodriguez, G., Tesón, E., Ramirez-Arias, J.C., Parra, M. and Ibañez, M.2013b. Inversion tectonics under increasing rates of shortening and sedimentation: Cenozoic example from the Eastern Cordillera of Colombia. Geological Society, London, Special Publications, 377, 411–442, doi: 10.1144/SP377.610.1144/SP377.6
    https://doi.org/10.1144/SP377.6 [Google Scholar]
  45. Mora, A., Ketcham, R.A., Higuera-Díaz, I.C., Bookhagen, B., Jimenez, L. and Rubiano, J.2014. Formation of passive-roof duplexes in the Colombian Subandes and Perú. Lithosphere, 6, 456–472, doi: 10.1130/l340.110.1130/l340.1
    https://doi.org/10.1130/l340.1 [Google Scholar]
  46. Mora, A., Casallas, W. et al.2015. Kinematic restoration of contractional basement structures using thermokinematic models: A key tool for petroleum system modeling. AAPG Bulletin, 99, 1575–1598, doi: 10.1306/0428141110810.1306/04281411108
    https://doi.org/10.1306/04281411108 [Google Scholar]
  47. Mora, A., García-Bautista, D.F. et al.2019. Tectonic evolution of petroleum systems within the onshore Llanos Basin: Insights on the presence of Orinoco heavy oil analogues in Colombia and a comparison with other heavy oil provinces worldwide. AAPG Bulletin, 103, 1178–1224, doi: 10.1306/100318161141723610.1306/1003181611417236
    https://doi.org/10.1306/1003181611417236 [Google Scholar]
  48. Moreno, N., Silva, A. et al.2013. Interaction between thin- and thick-skinned tectonics in the foothill areas of an inverted graben. The Middle Magdalena Foothill belt. Geological Society, London, Special Publications, 377, 221–255, doi: 10.1144/SP377.1810.1144/SP377.18
    https://doi.org/10.1144/SP377.18 [Google Scholar]
  49. Nabavi, S.T. and Fossen, H.2021. Fold geometry and folding – a review. Earth-Science Reviews, 222, doi: 10.1016/j.earscirev.2021.10381210.1016/j.earscirev.2021.103812
    https://doi.org/10.1016/j.earscirev.2021.103812 [Google Scholar]
  50. Ohm, S.E., Karlsen, D.A. and Austin, T.J.F.2008. Geochemically driven exploration models in uplifted areas: examples from the Norwegian Barents Sea. AAPG Bulletin, 92, 1191–1223, doi: 10.1306/0618080802810.1306/06180808028
    https://doi.org/10.1306/06180808028 [Google Scholar]
  51. Pacheco-Mendoza, J.Y., Tesón-Del Hoyo, E., García-González, M., Mora, A. and Ketcham, R.2024. Timing of hydrocarbon charge in the Axial Zone of the Eastern Cordillera of Colombia. Petroleum Geology, 30, doi: 10.1144/petgeo2023-11410.1144/petgeo2023‑114
    https://doi.org/10.1144/petgeo2023-114 [Google Scholar]
  52. Parra, M., Mora, A. et al.2009. Orogenic wedge advance in the northern Andes: Evidence from the Oligocene–Miocene sedimentary record of the Medina Basin, Eastern Cordillera, Colombia. Geological Society of America Bulletin, 121, 780–800, doi: 10.1130/B26257.110.1130/B26257.1
    https://doi.org/10.1130/B26257.1 [Google Scholar]
  53. Parra, M., Mora, A., Jaramillo, C., Torres, V., Zeilinger, G. and Strecker, M.R.2010. Tectonic controls on Cenozoic foreland basin development in the north-eastern Andes, Colombia. Basin Research, 22, 874–903, doi: 10.1111/j.1365-2117.2009.00459.x10.1111/j.1365‑2117.2009.00459.x
    https://doi.org/10.1111/j.1365-2117.2009.00459.x [Google Scholar]
  54. Perez, G. and Salazar, A.1978. Estratigrafía y facies del Grupo Guadalupe. Geología Colombiana, 10, 7–113.
    [Google Scholar]
  55. Poblet, J. and McClay, K.1996. Geometry and kinematics of single-layer detachment folds. AAPG Bulletin, 80, 1085–1109.
    [Google Scholar]
  56. Ramírez-Arias, J.C., Mora, A., Rubiano, J., Duddy, I., Parra, M., Moreno, N. and Casallas, W.2012. The asymmetric evolution of the Colombian Eastern Cordillera. Tectonic inheritance or climatic forcing? New evidence from thermochronology and sedimentology. Journal of South American Earth Sciences, 39, 112–137, doi: 10.1016/j.jsames.2012.04.00810.1016/j.jsames.2012.04.008
    https://doi.org/10.1016/j.jsames.2012.04.008 [Google Scholar]
  57. Ramon, J.C., Dzou, L.I., Hughes, W.B. and Holba, A.G.2001. Evolution of the Cretaceous organic facies in Colombia; implications for oil composition. Journal of South American Earth Sciences, 14, 31–50, doi: 10.1016/S0895-9811(01)00010-410.1016/S0895‑9811(01)00010‑4
    https://doi.org/10.1016/S0895-9811(01)00010-4 [Google Scholar]
  58. Rangel, A., Parra, P. and Niño, C.2000. The La Luna Formation: chemostratigraphy and organic facies in the Middle Magdalena Basin. Organic Geochemistry, 31, 1267–1284, doi: 10.1016/S0146-6380(00)00127-310.1016/S0146‑6380(00)00127‑3
    https://doi.org/10.1016/S0146-6380(00)00127-3 [Google Scholar]
  59. Rattey, R.P. and Hayward, B.1993. Sequence stratigraphy of a failed rift system: the Middle Jurassic to Early Cretaceous basin evolution of the Central and Northern North Sea. Geological Society, London, Petroleum Geology Conference Series, 4, 215–249, doi: 10.1144/004021510.1144/0040215
    https://doi.org/10.1144/0040215 [Google Scholar]
  60. Reyes, M., Kley, J. et al.2024. Age and tectonic setting of Mesozoic extension constrained by the first volcanic events in the Eastern Cordillera and Middle Magdalena Valley, Colombia. International Journal of Earth Sciences, 113, 1337–1363, doi: 10.1007/s00531-024-02441-710.1007/s00531‑024‑02441‑7
    https://doi.org/10.1007/s00531-024-02441-7 [Google Scholar]
  61. Reyes-Harker, A., Ruiz-Valdivieso, C.F. et al.2015. Cenozoic paleogeography of the Andean foreland and retroarc hinterland of Colombia. AAPG Bulletin, 99, 1407–1453, doi: 10.1306/0618141111010.1306/06181411110
    https://doi.org/10.1306/06181411110 [Google Scholar]
  62. Rossello, E.A. and Di Primio, R.2022. Hydrocarbon distribution along the Soapaga thrust (Eastern Cordillera, Colombia) based on new strategic geochemistry samples. Acta Geochimica, 41, 335–350, doi: 10.1007/s11631-021-00498-810.1007/s11631‑021‑00498‑8
    https://doi.org/10.1007/s11631-021-00498-8 [Google Scholar]
  63. Sánchez, J., Horton, B.K., Tesón, E., Mora, A., Ketcham, R.A. and Stockli, D.F.2012. Kinematic evolution of Andean fold-thrust structures along the boundary between the Eastern Cordillera and Middle Magdalena Valley basin, Colombia. Tectonics, 31, TC3008, doi: 10.1029/2011TC00308910.1029/2011TC003089
    https://doi.org/10.1029/2011TC003089 [Google Scholar]
  64. Sánchez, N., Mora, A. et al.2015. Petroleum system modeling in the Eastern Cordillera of Colombia using geochemistry and timing of thrusting and deformation. AAPG Bulletin, 99, 1537–1556, doi: 10.1306/0416151110710.1306/04161511107
    https://doi.org/10.1306/04161511107 [Google Scholar]
  65. Sánchez, N., Pacheco, J., Guzman-Vega, M.A., Mora, A. and Horton, B.2021. Timing of hydrocarbon entrapment in the eastern foothills of the Eastern Cordillera of Colombia. Interpretation, 9, T145–T159, doi: 10.1190/INT-2020-0058.110.1190/INT‑2020‑0058.1
    https://doi.org/10.1190/INT-2020-0058.1 [Google Scholar]
  66. Sarmiento-Rojas, L.F.2001. Mesozoic Rifting and Cenozoic Basin Inversion History of the Eastern Cordillera, Colombian Andes. Inferences from Tectonic Models. PhD thesis, Vrije Universiteit, Amsterdam, The Netherlands.
    [Google Scholar]
  67. Sarmiento-Rojas, L.F., Van Wess, J. and Cloetingh, S.2006. Mesozoic transtensional basin history of the Eastern Cordillera. Journal of South American Earth Sciences, 21, 383–411, doi: 10.1016/j.jsames.2006.07.00310.1016/j.jsames.2006.07.003
    https://doi.org/10.1016/j.jsames.2006.07.003 [Google Scholar]
  68. Saylor, J.E., Horton, B.K., Nie, J., Corredor, J.A. and Mora, A.2011. Evaluating foreland basin partitioning in the northern Andes using Cenozoic fill of the Floresta basin, Eastern Cordillera, Colombia. Basin Research, 23, 377–402, doi: 10.1111/j.1365-2117.2010.00493.x10.1111/j.1365‑2117.2010.00493.x
    https://doi.org/10.1111/j.1365-2117.2010.00493.x [Google Scholar]
  69. Saylor, J.E., Horton, B.K., Stockli, D.F., Mora, A. and Corredor, J.2012a. Structural and thermochronological evidence for Paleogene basement-involved shortening in the axial Eastern Cordillera, Colombia. Journal of South American Earth Sciences, 39, 202–215, doi: 10.1016/j.jsames.2012.04.00910.1016/j.jsames.2012.04.009
    https://doi.org/10.1016/j.jsames.2012.04.009 [Google Scholar]
  70. Saylor, J.E., Stockli, D.F., Horton, B.K., Nie, J. and Mora, A.2012b. Discriminating rapid exhumation from syndepositional volcanism using detrital zircon double dating: Implications for the tectonic history of the Eastern Cordillera, Colombia. Geological Society of America Bulletin, 124, 762–779, doi: 10.1130/B30534.110.1130/B30534.1
    https://doi.org/10.1130/B30534.1 [Google Scholar]
  71. Silva, A., Mora, A. et al.2013. Basin compartmentalization and drainage evolution during rift positive inversion: evidence from multiple techniques in the Eastern Cordillera of Colombia. Geological Society, London, Special Publications, 377, 369–409, doi: 10.1144/SP377.1510.1144/SP377.15
    https://doi.org/10.1144/SP377.15 [Google Scholar]
  72. Suppe, J.1983. Geometry and kinematics of fault-bend folding. American Journal of Science, 283, 684–721, doi: 10.2475/ajs.283.7.68410.2475/ajs.283.7.684
    https://doi.org/10.2475/ajs.283.7.684 [Google Scholar]
  73. Suppe, J. and Medwedeff, D.A.1990. Geometry and kinematics of fault-propagation folding. Eclogae Geologicae Helvetiae, 83, 409–454.
    [Google Scholar]
  74. Teixell, A., Ruiz, J.-C., Teson, E. and Mora, A.2015. The structure of an inverted back-arc rift: Insights from a transect across the Eastern Cordillera of Colombia near Bogota. AAPG Memoirs, 108, 499–515, doi: 10.1306/13531947M108365010.1306/13531947M1083650
    https://doi.org/10.1306/13531947M1083650 [Google Scholar]
  75. Terraza, R., Montoya, D., Reyes, G., Moreno, G. and Fúquen, J.2008. Geología del Cinturón Esmeraldífero Oriental Planchas 210, 228 y 229. Memoria explicativa. INGEOMINAS, Bogotá.
    [Google Scholar]
  76. Terraza, R., Moreno, G., Buitrago, J., Pérez, A. and Montoya, D.2010. Geología de la plancha 210 – Guateque. Memoria explicativa. INGEOMINAS, Bogotá.
    [Google Scholar]
  77. Tesón, E., Mora, A. et al.2013. Interrelationships among Mesozoic graben distribution, stress, amount of shortening and structural style in the Eastern Cordillera of Colombia. Geological Society, London, Special Publications, 377, 257–283, doi: 10.1144/SP377.1010.1144/SP377.10
    https://doi.org/10.1144/SP377.10 [Google Scholar]
  78. Vargas, C., Alfaro, J., Briceño, C., Alvarado, L. and Quintero, W.2009. Mapa Geotérmico De Colombia – 2009. Presented at the10th Simposio Bolivariano Exploracion Petrolera en las Cuencas Subandinas, 26–29 July 2009, Cartagena, Colombia.
    [Google Scholar]
  79. Vestrum, R. and Cameron, G.2022. Seismic imaging in fold-and-thrust belts. In: Zamora, G. and Mora, A. (eds) Andean Structural Styles. A Seismic Atlas. Elsevier, Amsterdam, 29–41, doi: 10.1016/B978-0-323-85175-6.00002-X10.1016/B978‑0‑323‑85175‑6.00002‑X
    https://doi.org/10.1016/B978-0-323-85175-6.00002-X [Google Scholar]
  80. Villamil, T.1998. Chronology, relative sea-level history and a new sequence stratigraphic model for basinal Cretaceous facies of Colombia. SEPM Special Publication, 58, 161–121, doi: 10.2110/pec.98.58.016110.2110/pec.98.58.0161
    https://doi.org/10.2110/pec.98.58.0161 [Google Scholar]
  81. Villamil, T. and Arango, C.1998. Integrated stratigraphy of latest Cenomanian and early Turonian facies of Colombia. SEPM Special Publications, 58, 129–159, doi: 10.2110/pec.98.58.012910.2110/pec.98.58.0129
    https://doi.org/10.2110/pec.98.58.0129 [Google Scholar]
  82. Woodward, N.B.1997. Low-amplitude evolution of break-thrust folding. Journal of Structural Geology, 19, 293–301, doi: 10.1016/S0191-8141(96)00102-210.1016/S0191‑8141(96)00102‑2
    https://doi.org/10.1016/S0191-8141(96)00102-2 [Google Scholar]
  83. Wygrala, B.P.1989. Integrated Study of an Oil Field in the Southern Po Basin Northern Italy. PhD thesis, University of Cologne, Cologne, Germany.
    [Google Scholar]
  84. Zhang, C., Sun, Z. et al.2021. Syn-rift magmatic characteristics and evolution at a sediment-rich margin: Insights from high-resolution seismic data from the South China Sea. Gondwana Research, 91, 81–96, doi: 10.1016/j.gr.2020.11.01210.1016/j.gr.2020.11.012
    https://doi.org/10.1016/j.gr.2020.11.012 [Google Scholar]
/content/journals/10.1144/petgeo2024-024
Loading
/content/journals/10.1144/petgeo2024-024
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error