1887
Volume 31, Issue 2
  • ISSN: 1354-0793
  • E-ISSN:

Abstract

The Lajas Formation (Middle Jurassic) of the Neuquén Basin in Argentina is a renowned unconventional tight gas sandstone reservoir. It has been studied widely from multidiscipline approaches; however, only a few petrophysical studies have been published. The objective of this study is to examine correlations between various porosity measurements obtained through petrographic optical and scanning electron microscopy (SEM), combined with quantitative X-ray diffraction (XRD) mineralogy, and petrophysical laboratory measurements, including nuclear magnetic resonance (NMR at 2 MHz) and gas-filled porosity (GFP). The analysed samples cover a wide compositional spectrum ranging from lithic feldsarenites to feldspathic litharenites, the clay fraction is dominated by chlorite or mixed illite/smectite (I/S) with less than 20% of expandable layers (I/S), and the total porosity ranges from 5 to 13%. Intercrystalline pores, which are associated with clay minerals, are a key component controlling the pore system of the unit. SEM images and a strong correlation between XRD data and the clay-bound water derived from NMR maps are clear evidence of this. The analysed reservoir shows a high variability and complexity in the pore structure related to other textural pores (e.g. non-clay intergranular and intragranular pores), thus reflecting the importance of multidisciplinary and multiscale studies that aim to understand the heterogeneous porosity network of tight sandstone reservoirs.

Loading

Article metrics loading...

/content/journals/10.1144/petgeo2024-055
2025-05-09
2025-06-24
Loading full text...

Full text loading...

References

  1. Arregui, C., Carbone, O. and Leanza, H.A.2011a. Contexto tectosedimentario. In: Leanza, H.A., Arregui, C., Carbone, O., Danieli, J.C. and Vallés, J.M. (eds) Geología y Recursos Naturales de la Provincia de Neuquén: XVIII Congreso Geológico Argentino. Asociación Geológica Argentina, Buenos Aires, 29–36.
    [Google Scholar]
  2. Arregui, C., Carbone, O. and Martínez, R.2011b. El Grupo Cuyo (Jurásico Temprano–Medio) en la Cuenca Neuquina. . In: Leanza, H.A., Arregui, C., Carbone, O., Danieli, J.C. and Vallés, J.M. (eds) Geología y Recursos Naturales de la Provincia de Neuquén: XVIII Congreso Geológico Argentino. Asociación Geológica Argentina, Buenos Aires, 77–89.
    [Google Scholar]
  3. Arregui, M., Montagna, A.O. et al.2019. Paleoenviromental interpretation of the Lajas Formation (Middle Jurassic, Neuquén Basin, Argentina) in subsurface: Fluvio-dominated-delta. Search and Discovery Article #51619, 2019 AAPG International Conference and Exhibition, August 27–30, 2019, Buenos Aires, Argentina.
    [Google Scholar]
  4. Berdini, O., Rodríguez, J.F., Matheos, S.D., Spalletti, L.A. and Villar, H.J.2011. Evaluación de los procesos diagenéticos y modelado bidimensional del sistema petrolero Los Molles-Lajas/Punta Rosada en el yacimiento Río Neuquén, cuenca neuquina, Argentina. In: Actas VIII Congreso De Exploración y Desarrollo de Hidrocarburos, Instituto Argentino del Petróleo y del Gas (IAPG),Buenos Aires, 549–566.
    [Google Scholar]
  5. Billault, V., Beaufort, D., Baronnet, A. and Lacharpagne, J.-C. 2003. A nanopetrographic and textural study of grain-coating chlorites in sandstone reservoirs. Clay Minerals, 38, 315–328, doi: 10.1180/000985503383009810.1180/0009855033830098
    https://doi.org/10.1180/0009855033830098 [Google Scholar]
  6. Bloch, S., Lander, R.H. and Bonnell, L. 2002. Anomalously high porosity and permeability in deeply buried sandstone reservoirs: Origin and predictability. AAPG Bulletin, 86, 301–328, doi: 10.1306/61EEDABC-173E-11D7-8645000102C1865D10.1306/61EEDABC‑173E‑11D7‑8645000102C1865D
    https://doi.org/10.1306/61EEDABC-173E-11D7-8645000102C1865D [Google Scholar]
  7. Brinkworth, W., Vocaturo, G., Loss, M.L., Giunta, D., Mortaloni, E. and Massaferro, J.L.2017. Integración regional de subsuelo orientado a la exploración y desarrollo de Grupo Cuyo, Cuenca Neuquina. In: Muruaga, C.M. and Grosse, P. (eds) Ciencias de la Tierra y Recursos Naturales del NOA. Relatorio del XX Congreso Geológico Argentino, San Miguel de Tucumán. Asociación Geológica Argentina, Buenos Aires, 18–24.
    [Google Scholar]
  8. Canale, N. and Ponce, J.J.2012. Sedimentología de sistemas de lóbulos y canales hiperpícnicos en la Formación Lajas, área de Portada Covunco, Neuquén, Argentina. In: XIII Reunión Argentina de Sedimentología, Salta, Resúmenes. Asociación Argentina de Sedimentología, Buenos Aires, 48.
    [Google Scholar]
  9. Canale, N., Ponce, J.J., Carmona, N. B., Drittanti, D.I., Olivera, D.E., Martínez, M.A. and Bournod, C.N. 2015. Sedimentología e Icnología de deltas fluvio-dominados afectados por descargas hiperpícnicas de la Formación Lajas (Jurásico Medio), Cuenca Neuquina, Argentina. Andean Geology, 42, doi: 10.5027/andgeoV42n1-a0710.5027/andgeoV42n1‑a07
    https://doi.org/10.5027/andgeoV42n1-a07 [Google Scholar]
  10. Canale, N., Ponce, J.J., Carmona, N.B. and Drittanti, D.I. 2016. Ichnology of deltaic mouth-bar systems of the Lajas Formation (Middle Jurassic) in the Sierra de la Vaca Muerta, Neuquén Basin, Argentina. Ameghiniana, 53, 170–183, doi: 10.5710/AMGH.17.09.2015.291310.5710/AMGH.17.09.2015.2913
    https://doi.org/10.5710/AMGH.17.09.2015.2913 [Google Scholar]
  11. Choquette, P.W. and Pray, L.C. 1970. Geologic nomenclature and classification of porosity in sedimentary carbonates. AAPG Bulletin, 54, 207–250, doi: 10.1306/5D25C98B-16C1-11D7-8645000102C1865D10.1306/5D25C98B‑16C1‑11D7‑8645000102C1865D
    https://doi.org/10.1306/5D25C98B-16C1-11D7-8645000102C1865D [Google Scholar]
  12. Cruz, C.E., Boll, A. et al.2002. Hábitat de hidrocarburos y sistemas de carga Los Molles y Vaca Muerta en el sector central de la Cuenca Neuquina, Argentina. In: V Congreso de Exploración y Desarrollo de Hidrocarburos, Mar del Plata, Argentina. Instituto Argentino del Petróleo y del Gas (IAPG),Buenos Aires, 20.
    [Google Scholar]
  13. Digregorio, J.H.1972. Neuquén. In: Leanza, A.F. (ed.) Geología Regional Argentina. Academia Nacional de Ciencias, Córdoba, Argentina, 439–506.
    [Google Scholar]
  14. Domené, E.A., Masiero, D.M.A., Juarez, J., Monti, M., Cipollone, M.E., Vera López, L. and Bernhardt, C.2023. An innovative methodology to measure total and effective porosity on rock samples of source rock. Case study: Vaca Muerta Formation. In: Proceedings of the 2023 Latin America Unconventional Resources Technology Conference. American Association of Petroleum Geologists, Buenos Aires, Argentina.
    [Google Scholar]
  15. Domené, E.A., Masiero, D.M.A., Juarez, J., Monti, M., Cipollone, M.E., Vera López, L. and Bernhardt, C.2024. An innovative methodology to measure total and effective porosity on rock samples of source rock: Case study: Vaca Muerta Formation. In: Proceedings of the 2023 Latin America Unconventional Resources Technology Conference, 4–6 December 2023. Unconventional Resources Technology Conference, 796–806, doi: 10.15530/urtec-2023-397132510.15530/urtec‑2023‑3971325
    https://doi.org/10.15530/urtec-2023-3971325 [Google Scholar]
  16. Ehrenberg, S.N. 1993. Preservation of anomalously high porosity in deeply buried sandstones by grain-coating chlorite: Examples from the Norwegian Continental Shelf. AAPG Bulletin, 77, 1260–1286, doi: 10.1306/BDFF8E5C-1718-11D7-8645000102C1865D10.1306/BDFF8E5C‑1718‑11D7‑8645000102C1865D
    https://doi.org/10.1306/BDFF8E5C-1718-11D7-8645000102C1865D [Google Scholar]
  17. Estebenet, M.C.G., Naipauer, M., Pazos, J.P. and Valencia, V.A. 2021. U–Pb detrital zircon ages in the Lajas Formation at Portada Covunco: Maximum depositional age and provenance implications for the Neuquén Basin, Argentina. Journal of South American Earth Sciences, 110, doi: 10.1016/j.jsames.2021.10332510.1016/j.jsames.2021.103325
    https://doi.org/10.1016/j.jsames.2021.103325 [Google Scholar]
  18. Folk, R.I., Andrews, P.B. and Lewis, D.W. 1970. Detrital sedimentary rock classification and nomenclature for use in New Zealand. New Zealand Journal of Geology and Geophysics, 13, 937–968, doi: 10.1080/00288306.1970.1041821110.1080/00288306.1970.10418211
    https://doi.org/10.1080/00288306.1970.10418211 [Google Scholar]
  19. Franzese, J.R. and Spalletti, L.A. 2001. Late Triassic–early Jurassic continental extension in southwestern Gondwana: Tectonic segmentation and pre-break-up rifting. Journal of South American Earth Sciences, 14, 257–270, doi: 10.1016/S0895-9811(01)00029-310.1016/S0895‑9811(01)00029‑3
    https://doi.org/10.1016/S0895-9811(01)00029-3 [Google Scholar]
  20. Gómez Omil, R., Schmithalter, J., Cangini, A., Albariño, L. and Corsi, A.2002. El Grupo Cuyo en la Dorsal de Huincul: consideraciones estratigráficas, tectónicas y petroleras, Cuenca Neuquina. In: Rocas reservorio de las cuencas productivas de la Argentina. V Congreso de Exploración y Desarrollo de Hidrocarburos. Instituto Argentino del Petróleo y del Gas (IAPG),Buenos Aires, 1–22.
    [Google Scholar]
  21. Gómez Omil, R., Giorgetti, M. and Borghi, P.2017. El Grupo Cuyo en la Cuenca Neuquina (Engolfamiento y Dorsal de Huincul). Modelo sedimentario y sistema petrolero. In: XX Congreso Geológico Argentino. San Miguel de Tucumán. Instituto Argentino del Petróleo y del Gas (IAPG),Buenos Aires59–64.
    [Google Scholar]
  22. Griffiths, J., Worden, R.H., Utley, J.E.P., Brostrøm, C., Martinius, A.W., Lawan, A.Y. and Al-Hajri, A.I. 2021. Origin and distribution of grain-coating and pore-filling chlorite in deltaic sandstones for reservoir quality assessment. Marine and Petroleum Geology, 134, doi: 10.1016/j.marpetgeo.2021.10532610.1016/j.marpetgeo.2021.105326
    https://doi.org/10.1016/j.marpetgeo.2021.105326 [Google Scholar]
  23. Groeber, P. 1946. Observaciones geológicas a lo largo del meridiano 70. 1. Hoja Chos Malal. Revista de la Asociación Geológica Argentina, 1, 177–208.
    [Google Scholar]
  24. Gugliotta, M., Flint, S.S., Hodgson, D.M. and Veiga, G.D. 2015. Stratigraphic record of river-dominated crevasse subdeltas with tidal influence (Lajas Formation, Argentina). Journal of Sedimentary Research, 85, 265–284, doi: 10.2110/jsr.2015.1910.2110/jsr.2015.19
    https://doi.org/10.2110/jsr.2015.19 [Google Scholar]
  25. Gugliotta, M., Flint, S.S., Hodgson, D.M. and Veiga, G.D. 2016a. Recognition criteria, characteristics and implications of the fluvial to marine transition zone in ancient deltaic deposits (Lajas Formation, Argentina). Sedimentology, 63, 1971–2001, doi: 10.1111/sed.1229110.1111/sed.12291
    https://doi.org/10.1111/sed.12291 [Google Scholar]
  26. Gugliotta, M., Kurcinka, C.E., Dalrymple, R.W., Flint, S.S. and Hodgson, D.M. 2016b. Decoupling seasonal fluctuations in fluvial discharge from the tidal signature in ancient deltaic deposits: an example from the Neuquén Basin, Argentina. Journal of the Geological Society, London, 173, 94–107, doi: 10.1144/jgs2015-03010.1144/jgs2015‑030
    https://doi.org/10.1144/jgs2015-030 [Google Scholar]
  27. Gulisano, C. and Hinterwimmer, G. 1986. Facies deltaicas del jurásico medio en el oeste del Neuquén. Boletín de Informaciones Petroleras, 3a Época, 8, 2–31.
    [Google Scholar]
  28. Gulisano, C., Gutiérrez Pleimling, A. and Digregorio, R.1984. Esquema estratigráfico de la secuencia jurásica del oeste de la provincia del Neuquén. In: Actas del IX Congreso Geológico Argentino, 1. Asociación Geológica Argentina, Buenos Aires, 236–259.
    [Google Scholar]
  29. Heald, M.T. and Anderegg, R.C. 1960. Differential cementation in the Tuscarora sandstone [Virginia-West Virginia]. Journal of Sedimentary Research, 30, 568–577, doi: 10.1306/74D70AA1-2B21-11D7-8648000102C1865D10.1306/74D70AA1‑2B21‑11D7‑8648000102C1865D
    https://doi.org/10.1306/74D70AA1-2B21-11D7-8648000102C1865D [Google Scholar]
  30. Holditch, S. 2006. Tight gas sands. Journal of Petroleum Technology, 58, doi: 10.2118/103356-JPT10.2118/103356‑JPT
    https://doi.org/10.2118/103356-JPT [Google Scholar]
  31. Howell, J.A., Schwarz, E., Spalletti, L.A. and Veiga, G.D.2005. The Neuquén Basin: an overview. Geological Society, London, Special Publications, 252, 1–14, doi: 10.1144/GSL.SP.2005.252.01.0110.1144/GSL.SP.2005.252.01.01
    https://doi.org/10.1144/GSL.SP.2005.252.01.01 [Google Scholar]
  32. Kausik, R., Fellah, K., Rylander, E., Singer, P.M., Lewis, R.E. and Sinclair, S.M.2016. NMR relaxometry in shale and implications for logging. Petrophysics, 57, 339–350.
    [Google Scholar]
  33. Kurcinka, C., Dalrymple, R.W. and Gugliotta, M. 2018. Facies and architecture of river-dominated to tide-influenced mouth bars in the lower Lajas Formation (Jurassic), Argentina. AAPG Bulletin, 102, 885–912, doi: 10.1306/060917161891715510.1306/0609171618917155
    https://doi.org/10.1306/0609171618917155 [Google Scholar]
  34. Lai, J., Wang, G. et al.2018. A review on pore structure characterization in tight sandstones. Earth-Science Reviews, 177, 436–457, doi: 10.1016/j.earscirev.2017.12.00310.1016/j.earscirev.2017.12.003
    https://doi.org/10.1016/j.earscirev.2017.12.003 [Google Scholar]
  35. Leanza, H.A. 2009. Las principales discordancias del Mesozoico de la Cuenca Neuquina según observaciones de superficie. Revista del Museo Argentino de Ciencias Naturales, 11, 145–184, doi: 10.22179/REVMACN.11.25710.22179/REVMACN.11.257
    https://doi.org/10.22179/REVMACN.11.257 [Google Scholar]
  36. Leanza, H.A., Hugo, C.A., Herrero, J.C., Donnari, E.I. and Pucci, J.C.1997. Picún Leufú. Programa Nacional de Cartas Geológicas de la República Argentina 1:250000. Hoja Geológica 3969-III. Provincias de Neuquén y Río Negro. Buenos Aires. Servicio Geológico Minero Argentino. Instituto de Geología y Recursos Minerales, Buenos Aires.
    [Google Scholar]
  37. Leanza, H.A., Hugo, C., Repol, D., González, R., Danieli, J.C. and Lizuaín, A.2001. Hoja Geológica 3969-I, Zapala. Provincia del Neuquén. Servicio Geológico Minero Argentino, Instituto de Geología y Recursos Minerales Boletín, 275.
    [Google Scholar]
  38. Legarreta, L. and Gulisano, C. 1989. Análisis estratigráfico secuencial de la Cuenca Neuquina (Triásico superior-Terciario inferior). Cuencas Sedimentarias Argentinas, 6, 221–243.
    [Google Scholar]
  39. Legarreta, L. and Uliana, M.A. 1996. The Jurassic succession in west-central Argentina: stratal patterns, sequences and paleogeographic evolution. Palaeogeography, Palaeoclimatology, Palaeoecology, 120, 303–330, doi: 10.1016/0031-0182(95)00042-910.1016/0031‑0182(95)00042‑9
    https://doi.org/10.1016/0031-0182(95)00042-9 [Google Scholar]
  40. Licitra, D.T., Montagna, A.O., Gutiérrez, F., Martínez Cal, V. and Porras, J.C.2012. Caracterización petrofísica de la formación Lajas en el yacimiento Lajas Tight Gas, a partir de la definición de tipos de rocas y unidades hidráulicas de flujo. Área Aguada Toledo-Sierra Barrosa, Cuenca Neuquina. Petrotecnia, 2012, Febrero, 48–71.
    [Google Scholar]
  41. Loucks, R.G., Reed, R.M., Ruppel, S.C. and Hammes, U. 2012. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bulletin, 96, 1071–1098, doi: 10.1306/0817111106110.1306/08171111061
    https://doi.org/10.1306/08171111061 [Google Scholar]
  42. Malone, M., Saavedra, C., Vergani, G., Ferrero, J.C., Limeres, M. and Schiuma, M.2002. Los reservorios del Grupo Cuyo Superior. In: Rocas Reservorio de las Cuencas Productivas de la Argentina: Simposio del V Congreso de Exploración y Desarrollo de Hidrocarburos, Mar del Plata. Instituto Argentino del Petróleo y del Gas (IAPG),Buenos Aires, 788.
    [Google Scholar]
  43. Maretto, H., Martínez Lampe, J. et al.2005. Condiciones de entrampamiento en el sector sur del engolfamiento neuquino. In: Kozlowski, E., Vergani, G. and Boll, A. (eds) Las Trampas de Hidrocarburos en las Cuencas Productivas de Argentina. Simposio 6° Congreso de Exploración y Desarrollo de Hidrocarburos. Instituto Argentino del Petróleo y del Gas (IAPG),Buenos Aires, 261–270.
    [Google Scholar]
  44. Masiero, D., Comerio, M. et al.2023. An integrated petrophysical analysis based on NMR, organic geochemistry and mineralogy. The Vaca Muerta source rock-unconventional play at different thermal maturities. E3S Web of Conferences,367,01012, doi: 10.1051/e3sconf/20233670101210.1051/e3sconf/202336701012
    https://doi.org/10.1051/e3sconf/202336701012 [Google Scholar]
  45. McBride, E.F. 1963. A classification of common sandstones. Journal of Sedimentary Research, 33, 664–669.
    [Google Scholar]
  46. McIlroy, D., Flint, S., Howell, J.A. and Timms, N. 2005. Sedimentology of the tide-dominated Jurassic Lajas Formation, Neuquén Basin, Argentina. Geological Society, London, Special Publications, 252, 83–107, doi: 10.1144/GSL.SP.2005.252.01.0510.1144/GSL.SP.2005.252.01.05
    https://doi.org/10.1144/GSL.SP.2005.252.01.05 [Google Scholar]
  47. Montagna, A., Santiago, E., Coppo, R. and Elizabeth, R.2017. Algunas consideraciones sobre las heterogeneidades litológicas, granulométricas y petrofísicas de la Fm Lajas y su relación con perfiles eléctricos de pozo. In: Muruaga, C.M. and Grosse, P. (eds) Ciencias de la Tierra y Recursos Naturales del NOA. Relatorio del XX Congreso Geológico Argentino, San Miguel de Tucumán. Asociación Geológica Argentina, Buenos Aires, 83–90.
    [Google Scholar]
  48. Moore, D.M. and Reynolds, R.C., Jr1997. X-Ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, Oxford, UK.
    [Google Scholar]
  49. Morad, S., Al-Ramadan, K., Ketzer, M. and De Ros, L. 2010. The impact of diagenesis on the heterogeneity of sandstone reservoirs: a review of the role of depositional fades and sequence stratigraphy. AAPG Bulletin, 94, 1267–1309, doi: 10.1306/0421100917810.1306/04211009178
    https://doi.org/10.1306/04211009178 [Google Scholar]
  50. Mosquera, A., Silvestro, J., Ramos, V.A. and Alarcón, M.2011. La estructura de la Dorsal de Huincul. In: Geología y recursos naturales de la provincia del Neuquén : relatorio del XVIII Congreso Geológico. Asociación Geológica Argentina, Buenos Aires, 385–397.
    [Google Scholar]
  51. Naipauer, M. and Ramos, V.A.2016. Changes in source areas at Neuquén Basin: Mesozoic evolution and tectonic setting based on U–Pb ages on zircons. In: Folguera, A., Naipauer, M., Sagripanti, L.C., Ghiglione, M., Orts, D.L. and Giambiagi, L. (eds) Growth of the Southern Andes. Springer International, Cham, Switzerland, 33–61.
    [Google Scholar]
  52. Pángaro, F., Pereira, M., Raggio, F., Pioli, O., Silvestro, J.L., Zubiri, M. and Gozalvez, G.2006. Tectonic inversion of the Huincul High, Neuquen Basin, Argentina: An endangered species. Stratigraphic evidences of its disappearance. In: IX Simposio Bolivariano Exploración Petrolera en las Cuencas Subandinas 2006. Asociación Colombiana de Geólogos y Geofísicos del Petróleo, Cartagena, Colombia, cp-111.
    [Google Scholar]
  53. Pángaro, F., Pereira, D. and Micucci, E. 2009. El sinrift de la dorsal de Huincul, Cuenca Neuquina: evolucióny control sobre la estratigrafía y estructura del área. Revista de la Asociación Geológica Argentina, 65, 265–277.
    [Google Scholar]
  54. Peng, J., Liu, J., Wang, Y. and Liu, J. 2009. Origin and controlling factors of chlorite coatings – an example from the reservoir of T3x Group of the Baojie area, Sichuan Basin, China. Petroleum Science, 6, 376–382, doi: 10.1007/s12182-009-0057-110.1007/s12182‑009‑0057‑1
    https://doi.org/10.1007/s12182-009-0057-1 [Google Scholar]
  55. Pittman, E.D. and Lumsden, D.N. 1968. Relationship between chlorite coatings on quartz grains and porosity, Spiro Sand, Oklahoma. Journal of Sedimentary Research, 38, 668–670, doi: 10.1306/74D71A28-2B21-11D7-8648000102C1865D10.1306/74D71A28‑2B21‑11D7‑8648000102C1865D
    https://doi.org/10.1306/74D71A28-2B21-11D7-8648000102C1865D [Google Scholar]
  56. Ponce, J.J., Canale, N., Carmona, N.B., Bournod, C.N., Martínez, M.A. and Olivera, D.E.2012. Sedimentología e icnología en sucesiones hiperpícnicas de la Formación Lajas, área de Portada Covunco, Neuquén, Argentina. In: XIII Reunión Argentina de Sedimentología, Salta, Resúmenes. Asociación Argentina de Sedimentología, Buenos Aires, 175–176.
    [Google Scholar]
  57. Rainoldi, A.L., Beaufort, D. et al.2022. Diagenesis of the sandstones of a tight-gas reservoir: the Lajas Formation in the Huincul High, Neuquén Basin. In: Foix, N. (ed.) Actas del XXI Congreso Geológico Argentino, Asociación Geológica Argentina, Buenos Aires, 344–345.
    [Google Scholar]
  58. Rietveld, H.M. 1969. A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography, 2, 65–71, doi: 10.1107/S002188986900655810.1107/S0021889869006558
    https://doi.org/10.1107/S0021889869006558 [Google Scholar]
  59. Rodriguez, E., Monti, M., Arregui, M. and Omar, A.2019. Environmental, facial and diagenetic variations in deltaic tight sand; Lajas Formation, Cca Neuquina, Argentina. Presented at theAAPG International Conference & Exhibition, August 27–30, 2019, Buenos Aires, Argentina.
    [Google Scholar]
  60. Rossi, V.M. and Steel, R.J. 2016. The role of tidal, wave and river currents in the evolution of mixed-energy deltas: Example from the Lajas Formation (Argentina). Sedimentology, 63, 824–864, doi: 10.1111/sed.1224010.1111/sed.12240
    https://doi.org/10.1111/sed.12240 [Google Scholar]
  61. Schindelin, J., Arganda-Carreras, I. et al.2012. Fiji: an open-source platform for biological-image analysis. Nature Methods, 9, 676–682, doi: 10.1038/nmeth.201910.1038/nmeth.2019
    https://doi.org/10.1038/nmeth.2019 [Google Scholar]
  62. Schmitt, M., Fernandes, C.P., Neto, J.A.B.C., Wolf, F.G. and Santos, V.S.S. 2013. Characterization of pore systems in seal rocks using nitrogen gas adsorption combined with mercury injection capillary pressure techniques. Marine and Petroleum Geology, 39, 138–149, doi: 10.1016/j.marpetgeo.2012.09.00110.1016/j.marpetgeo.2012.09.001
    https://doi.org/10.1016/j.marpetgeo.2012.09.001 [Google Scholar]
  63. Silletta, E.V., Vila, G.S. et al.2022. Organic matter detection in shale reservoirs using a novel pulse sequence for T1–T2 relaxation maps at 2 MHz. Fuel, 312, doi: 10.1016/j.fuel.2021.12286310.1016/j.fuel.2021.122863
    https://doi.org/10.1016/j.fuel.2021.122863 [Google Scholar]
  64. Silvestro, J. and Zubiri, M. 2008. Convergencia oblicua: modelo estructural alternativo para la Dorsal Neuquina (39°S)-Neuquén. Revista de la Asociación Geológica Argentina, 63, 49–64.
    [Google Scholar]
  65. Spalletti, L., Veiga, G. and Schwarz, E.2010. Facies and stratigraphic sequences of the Mesozoic Neuquén Basin (western Argentina): continental to deep marine settings. In: del Papa, C.A. and Astini, R. (eds) Field Excursion Guidebook for the 18th International Sedimentological Congress: International Association of Sedimentologists, Mendoza, Argentina. International Association of Sedimentologists, Gent, Belgium, 1–79.
    [Google Scholar]
  66. Spencer, C.W. 1985. Geologic aspects of tight gas reservoirs in the Rocky Mountain Region. Journal of Petroleum Technology, 37, 1308–1314, doi: 10.2118/11647-PA10.2118/11647‑PA
    https://doi.org/10.2118/11647-PA [Google Scholar]
  67. Spencer, C.W. 1989. Review of characteristics of low-permeability gas reservoirs in Western United States. AAPG Bulletin, 73, 613–629.
    [Google Scholar]
  68. Stipanicic, P.N., Rodrigo, F., Baulies, O.L. and Martínez, C. 1968. Las formaciones presenonianas en el denominado Macizo Nordpatagónico y regiones adyacentes. Revista de la Asociación Geológica Argentina, 23, 67–98.
    [Google Scholar]
  69. Tunik, M., Folguera, A., Naipauer, M., Pimentel, M. and Ramos, V.A. 2010. Early uplift and orogenic deformation in the Neuquén Basin: Constraints on the Andean uplift from U–Pb and Hf isotopic data of detrital zircons. Tectonophysics, 489, 258–273, doi: 10.1016/j.tecto.2010.04.01710.1016/j.tecto.2010.04.017
    https://doi.org/10.1016/j.tecto.2010.04.017 [Google Scholar]
  70. Veiga, G.D. 2002a. Evolución paleogeográfica y paleoambiental de los depósitos continentales del Jurásico Medio en el sector austral de la Cuenca Neuquina, República Argentina. Revista de la Asociación Argentina de Sedimentología, 9, 83–108.
    [Google Scholar]
  71. Veiga, R.2002b. Migración de hidrocarburos y sistemas petroleros cuyanos en el ámbito central de la cuenca Neuquina, Argentina. In: Actas Argentina, V Congreso de Exploración y Desarrollo de Hidrocarburos. Instituto Argentino del Petróleo y del Gas (IAPG),Buenos Aires, 1–20.
    [Google Scholar]
  72. Veiga, R., Verzi, H. and Maretto, H. 2001. Modelado bidimensional en el ámbito central de la Cuenca Neuquina (Argentina). Boletín de Informaciones Petroleras, 67, 50–63.
    [Google Scholar]
  73. Veiga, R.D., Vergani, G.D., Brissón, I.E., Macellari, C.E. and Leanza, H.A. 2020. The Neuquén Super Basin. AAPG Bulletin, 104, 2521–2555, doi: 10.1306/0909202002310.1306/09092020023
    https://doi.org/10.1306/09092020023 [Google Scholar]
  74. Vergani, G.D., Tankard, A.J., Belotti, H.J. and Welsink, H.J.1995. Tectonic evolution and paleogeography of the Neuquén Basin, Argentina. AAPG Memoirs, 62, 383–402, doi: 10.1306/M62593C1910.1306/M62593C19
    https://doi.org/10.1306/M62593C19 [Google Scholar]
  75. Vergani, G.D., Arregui, C. and Carbone, O.2011. Sistemas petroleros y tipos de entrampamiento en la Cuenca Neuquina. In: Leanza, H.A., Arregui, C., Carbone, O., Danieli, J.C. and Vallés, J.M. (eds) Geología y Recursos Naturales de la Provincia de Neuquén: XVIII Congreso Geológico Argentino. Asociación Geológica Argentina, Buenos Aires, 645–656.
    [Google Scholar]
  76. Vocaturo, G., Brinkworth, W., Loss, M.L., Mortaloni, E., Giunta, D. and Massaferro, J.L.2018. Basin scale study of a tight gas reservoir: Paleoenviromental evolution of a shallow marine system in the Early–Middle Jurassic, Neuquén Basin, Argentina. Search and Discovery Article #11123, AAPG 2018 Annual Convention and Exhibition, 20–23 May, 2018, Salt Lake City, Utah, USA.
    [Google Scholar]
  77. Weaver, C.E.1931. Paleontology of the Jurassic and Cretaceous of West Central Argentina. University of Washington Press, Seattle, WA.
    [Google Scholar]
  78. Wentworth, C.K. 1922. A scale of grade and class terms for clastic sediments. The Journal of Geology, 30, 377–392, doi: 10.1086/62291010.1086/622910
    https://doi.org/10.1086/622910 [Google Scholar]
  79. Worden, R.H., Griffiths, J. et al.2020. Chlorite in sandstones. Earth-Science Reviews, 204, doi: 10.1016/j.earscirev.2020.10310510.1016/j.earscirev.2020.103105
    https://doi.org/10.1016/j.earscirev.2020.103105 [Google Scholar]
  80. Xiao, D., Lu, S., Yang, J., Zhang, L. and Li, B. 2017. Classifying multiscale pores and investigating their relationship with porosity and permeability in tight sandstone gas reservoirs. Energy Fuel, 31, 9188–9200, doi: 10.1021/acs.energyfuels.7b0148710.1021/acs.energyfuels.7b01487
    https://doi.org/10.1021/acs.energyfuels.7b01487 [Google Scholar]
  81. Yrigoyen, M.R.1991. Hydrocarbon resources of Argentina. Petrotecnia, 13, Special Issue, 38–54.
    [Google Scholar]
  82. Zavala, C.1993. Estratigrafía y análisis de facies de la Formación Lajas (Jurásico medio) en el sector suroccidental de la Cuenca Neuquina. Provincia del Neuquén. República Argentina. Doctoral thesis, Universidad Nacional del Sur, Bahía Blanca, Argentina.
    [Google Scholar]
  83. Zavala, C. 1996a. Sequence stratigraphy in continental to marine transitions. An example from the Middle Jurassic Cuyo Group, south Neuquén Basin, Argentina. GeoResearch Forum, 1, 285–294.
    [Google Scholar]
  84. Zavala, C. 1996b. High-resolution sequence stratigraphy in the Middle Jurassic Cuyo Group, South Neuquén Basin, Argentina. GeoResearch Forum, 1–2, 295–304.
    [Google Scholar]
  85. Zavala, C.2002. El contacto entre los grupos Cuyo y Lotena (jurásico) en la Sierra de la Vaca Muerta. Cuenca Neuquina, Argentina. In: Cabaleri, N., Cingolani, C.A., Linares, E., López de Luchi, M.G., Ostera, H.A. and Panarello, H.O. (eds) Actas del XV Congreso Geológico Argentino, El Calafate, 1. Asociación Geológica Argentina, Buenos Aires, 711–715.
    [Google Scholar]
  86. Zavala, C. and Freije, H.2002. Cuñas clásticas jurásicas vinculadas a la Dorsal de Huíncul. Un ejemplo del área de Picún Leufú. Cuenca Neuquina, Argentina. In: Rocas reservorio de las cuencas productivas de la Argentina. V Congreso de Exploración y Desarrollo de Hidrocarburos. Instituto Argentino del Petróleo y del Gas (IAPG),Buenos Aires, 14.
    [Google Scholar]
/content/journals/10.1144/petgeo2024-055
Loading
/content/journals/10.1144/petgeo2024-055
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error