1887
Volume 37, Issue 9
  • ISSN: 0263-5046
  • E-ISSN: 1365-2397

Abstract

Abstract

Whether we build a subsurface parameter model or deliver a subsurface image, our industry has been sadly lacking in attempting to assign ‘error bars’ to any of the products created. It transpires that this is an extremely difficult task to undertake in a quantitative manner. Assuming that we have an acceptable migration algorithm that honours the physics of the problem, then there are certain minimum acceptance criteria, which tell us that at least the derived model explains the observed data to within some acceptance threshold. Namely: image gathers that are ‘flat’ following migration with the obtained model, and which also match available well data — but these criteria do not tell us how accurate or precise the model or image is. Bayesian analysis of tomographic model error offers one approach to quantifying image positioning uncertainty, and here we give an overview of the elements involved in this procedure.

Loading

Article metrics loading...

/content/journals/10.3997/1365-2397.2019022
2019-09-01
2024-04-20
Loading full text...

Full text loading...

References

  1. Al-Chalabi, M.
    [1997]. Parameter nonuniqueness in velocity versus depth functions. Geophysics, 62 (3), 970–979.
    [Google Scholar]
  2. Ashton, C.P., Bacon, B., Deplante, C., Sinclair, T. and Redekop, G.
    [1994]. 3D seismic survey design. Oilfield Review, 19–32.
    [Google Scholar]
  3. Bachrach, R.
    , [2010]. Applications of deterministic and stochastic rock physics modelling to anisotropic velocity model building. 80th Annual International Meeting, SEG, Expanded Abstracts, 2436–2440.
    [Google Scholar]
  4. BayesT.
    [1763]. An Essay towards solving a Problem in the Doctrine of Chances. Phil. Trans., 53, 370–418. doi:10.1098/rstl.1763.0053.
    https://doi.org/10.1098/rstl.1763.0053 [Google Scholar]
  5. Bell, A.,. Russo, L., Martin, T. and van der Burg, D.
    , [2017]. Model uncertainty analysis for de-risking seismic image accuracy. 79th EAGE Conference and Exhibition, WS06.
    [Google Scholar]
  6. Berryman, J.G.
    [1997]. Resolution for Lanczos and Paige-Saunders inverses in tomography, SEP, report 77, 1–185.
    [Google Scholar]
  7. [2001]. Computing tomographic resolution matrices using Arnoldi’s iterative inversion algorith, SEP, report 82, 1–176.
    [Google Scholar]
  8. Bui-Thanh, T., Ghattas, O., Martin, J. and Stadler, G.
    [2013]. A computational framework for infinite-dimensional Bayesian inverse problems, part I: the linearized case, with application to global seismic inversion. SIAM Journal on Scientific Computing, 35(6), A2494–A2523.
    [Google Scholar]
  9. Chen, J. and Schuster, G.T.
    [1999]. Resolution limits of migrated images. Geophysics, 64 (4), 1046–1053.
    [Google Scholar]
  10. Chiţu, D.A., Al-Ali, M.N. and Verschuur, D.J.
    [2008]. Assessing estimated velocity-depth models: Finding error bars in tomographic inversion. Geophysics, 73 (5), supp. VE223–VE233.
    [Google Scholar]
  11. Cognot, R., Thore, P. and Haas, A.
    [1995]. Seismic depth estimation. In: Harlan, W.S. (Ed.), Spring Symp. Geophys. Soc. Tulsa, SEG, 18–26.
    [Google Scholar]
  12. Duijndam, A.J.W.
    [1988a]. Bayesian estimation in seismic inversion. Part I: Principles. Geophysical Prospecting, 36, 878–898.
    [Google Scholar]
  13. Duijndam, A., J.W.
    [1988b]. Bayesian estimation in seismic inversion. Part 11: Uncertainty analysis. Geophysical Prospecting, 36, 899–918.
    [Google Scholar]
  14. Etgen, J.T.
    [2008]. Applications of the model resolution matrix. 78th SEG Annual Meeting, Expanded Abstracts, 3702–3703.
    [Google Scholar]
  15. Jackson, D.D.
    [1972]. Interpretation of inaccurate, insufficient, and inconsistent data. Geophysical Journal of the Royal Astronomical Society, 28, 97–109.
    [Google Scholar]
  16. Jones, I.F.
    [2010]. An introduction to velocity model building. EAGE, The Netherlands.
    [Google Scholar]
  17. , [2018]. Velocities, Imaging, and Waveform Inversion (The evolution of characterizing the Earth’s subsurface). EET 13, EAGE, The Netherlands.
    [Google Scholar]
  18. Letki, L.P. Ben-Hadj-Ali, H. Desegaulx, P.
    [2013]. Quantifying Uncertainty in Final Seismic Depth Image Using Structural Uncertainty Analysis - Case Study Offshore Nigeria. 75th EAGE Conference & Exhibition, Extended Abstracts.
    [Google Scholar]
  19. Lo, T.W. and Inderwiesen, P.
    [1994]. Fundamentals of Seismic Tomography. SEG, USA.
    [Google Scholar]
  20. LuoZ., BrittanJ., FanD., Mecham, B., FarmerP. and Martin, G.
    [2014]. Imaging complexity in the earth. Case studies with optimized ray tomography. The Leading Edge, 33 (9), 1016–1022.
    [Google Scholar]
  21. Menke, W.
    [1989]. Geophysical Data Analysis: Discrete Inverse Theory, Revised Edition. International Geophysics Series, 45. Academic Press.
    [Google Scholar]
  22. Osypov, K., Nichols, D., Woodward, M., ZdravevaO. and Yarman, C.E.
    , [2008]. Uncertainty and resolution analysis for anisotropic tomography using iterative eigendecomposition, 78th SEG Annual Meeting, Expanded Abstracts.
    [Google Scholar]
  23. Osypov, K., O’Briain, M., Whitfield, P., Nichols, D., Douillard, A., Sexton, P., Jousselin, P.
    [2011]. Quantifying Structural Uncertainty in Anisotropic Model Building and Depth Imaging - Hild Case Study. 73rd EAGE Conference & Exhibition, Extended Abstracts.
    [Google Scholar]
  24. Osypov, K., Yang, Y., Fournier, A., Ivanova, N., Bachrach, R., Yarman, C.E., You, Y., Nichols, D., Woodward, M.
    , [2013]. Model-uncertainty quantification in seismic tomography: method and Applications. Geophysical Prospecting, 61, 1114–1134
    [Google Scholar]
  25. Raffle, J., Earnshaw, T., Fruehn, J.K., Greenwood, S., Singh, J., Hagen, C., Jones, I.F., Felicio, R., Sassen, D., Luo, Z., Forsund, S.I., Ackers, M. and Aamodt, L.
    , [2017]. Risk reduction on the Ivory prospect via geologically constrained non-parametric inversion and Bayesian uncertainty estimation on a fault-bounded reservoir. 79th EAGE Conference & Exhibition, Extended Abstracts.
    [Google Scholar]
  26. Schuster, G.T.
    , [2017]. Seismic Inversion. Investigations in Geophysics #20. SEG, USA.
    [Google Scholar]
  27. Stork, C.
    [1992]. Reflection tomography in the postmigrated domain. Geophysics, 57, (5), 680–692.
    [Google Scholar]
  28. Tarantola, A.
    , [2005]. Inverse Problem Theory and Model Parameter Estimation. SIAM.
    [Google Scholar]
  29. Thore, P. and Haas, A.
    [1996]. A practical formulation of migration error due to velocity uncertainties. 58th EAGE Conference & Exhibition, Extended Abstracts, X016.
    [Google Scholar]
  30. Thore, P. and Juliard, C.
    [1999]. Fresnel zone effect on seismic velocity resolution. Geophysics, 64 (2), 593–603.
    [Google Scholar]
  31. Thore, P., Shtuka, A., Lecour, M., Ait-Ettajer, T. and Cognot, R.
    [2002]. Structural uncertainties: Determination, management, and applications. Geophysics, 67, (3), 840–852.
    [Google Scholar]
  32. Vlassopoulou, A., Felicio, R., Hagen, C., Jones, I.F., Ackers, M.A., Schjelderup, S.
    [2019]. Bayesian uncertainty estimation in the presence of tomographic model error. 81st EAGE Conference & Exhibition, Extended Abstracts
    [Google Scholar]
  33. Vlassopoulou, A.
    , [2017]. Estimation of position uncertainty in subsurface images. MSc thesis, University of Leeds, UK.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1365-2397.2019022
Loading
/content/journals/10.3997/1365-2397.2019022
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error