1887
Volume 37, Issue 10
  • ISSN: 0263-5046
  • E-ISSN: 1365-2397

Abstract

Abstract

Since the shallow part of the Dutch subsurface is practically always unconsolidated, the elastic waves generated by deeper (~3000 m) seated earthquakes will be subjected to transformation when arriving in these layers. Since, the number of induced seismic events has increased over recent decades, a better understanding of site response of the Dutch subsurface is required. Local site amplification can directly be measured due to the presence of sensors at multiple depth levels in the Groningen borehole network. Amplification factors from 73 local events have been calculated for each borehole location to quantify earthquake site response. Furthermore, horizontal-to-vertical spectral ratios (HVSR) from the ambient seismic field are calculated.

A relationship has been established between the composition of the upper Holocene sediments and the size of the amplitudes of HVSR and earthquake site response. Highest amplitudes are measured where the Holocene sediments are composed of clay, fine sands, silts and peat. We can conclude that HVSR from the ambient seismic field can be used as a first-order proxy to get an indication for wave amplification during a seismic event. This allows a first assessment on wave amplification at sites without sensors at multiple depth levels and without abundant local seismicity.

Loading

Article metrics loading...

/content/journals/10.3997/1365-2397.2019026
2019-10-01
2019-12-10
Loading full text...

Full text loading...

References

  1. Albarello, D. and Lunedei, E.
    [2013]. Combining horizontal ambient vibration components for H/V spectral ratio estimates.Geophysical Journal International, 194(2), 936–951.
    [Google Scholar]
  2. Arai, H. and Tokimatsu, K.
    [2004]. S-wave velocity profiling by inversion of microtremor H/V spectrum.Bulletin of the Seismological Society of America, 94(1), 53–63.
    [Google Scholar]
  3. Bard, P.-Y.
    [1999]. Microtremor measurements: a tool for site effect estimation.The Effects of Surface Geology on Seismic Motion, 3, 1251–1279.
    [Google Scholar]
  4. Bard, P. Y., Campillo, M., Chavez-Garcia, F. J. and Sanchez-Sesma, F.
    [1988]. Mexico earthquake of September 19, 1985 - a theoretical investigation of large- and small-scale amplification effects in the Mexico City valley.Earthquake Spectra, 4(3), 609–633. https://doi. org/10.1193/1.1585493
    https://doi.org/org/10.1193/1.1585493 [Google Scholar]
  5. Bommer, J. J., Stafford, P. J., Edwards, B., Dost, B., van Dedem, E., Rodriguez-Marek, A. and Ntinalexis, M.
    [2017a]. Framework for a ground-motion model for induced seismic hazard and risk analysis in the {G}roningen gas field, the {N}etherlands. Earthquake Spectra.
    [Google Scholar]
  6. [2017b]. Framework for a Ground-Motion Model for Induced Seismic Hazard and Risk Analysis in the {G}roningen Gas Field, The {N}etherlands.Earthquake Spectra, 33(2), 481–498.
    [Google Scholar]
  7. Bonnefoy-Claudet, S., Cornou, C., Bard, P.-Y., Cotton, F., Moczo, P., Kristek, J. and Donat, F.
    [2006]. H/V ratio: a tool for site effects evaluation. Results from 1-D noise simulations.Geophysical Journal International, 167, 827–837.
    [Google Scholar]
  8. Bonnefoy-Claudet, S., Cornou, C., Bard, P.Y., Cotton, F., Moczo, P., Kris-tek, J. and Fäh, D.
    [2006]. H/V ratio: A tool for site effects evaluation. Results from 1-D noise simulations.Geophysical Journal International, 167(2), 827–837, doi:10.1111/j.1365‑246X.2006.03154.x.
    https://doi.org/10.1111/j.1365-246X.2006.03154.x [Google Scholar]
  9. Bradley, B.A.
    [2012]. Strong ground motion characteristics observed in the 4 September 2010 Darfield, New Zealand earthquake.Soil Dynamics and Earthquake Engineering, 42, 32–46.
    [Google Scholar]
  10. Crowley, H., Pinho, R., van Elk, J. and Uilenreef, J.
    [2018]. Probabilistic damage assessment of buildings due to induced seismicity. Bulletin of Earthquake Engineering, doi:10.1007/s10518‑018‑0462‑1.
    https://doi.org/10.1007/s10518-018-0462-1 [Google Scholar]
  11. Doornenbal, P., Pauw, P., Kloosterman, F. and Hopman, V.
    [2015]. Geophysical well logs for characterizing the shallow subsurface in the province of Groningen.
    [Google Scholar]
  12. Dost, B., Ruigrok, E. and Spetzler, J.
    [2017]. Development of seismicity and probabilistic hazard assessment for the Groningen gas field.Netherlands Journal of Geosciences, 96(5), s235–s245, doi:10.1017/njg.2017.20
    https://doi.org/10.1017/ njg.2017.20 [Google Scholar]
  13. Fäh, D., Kind, F. and Giardini, D.
    [2001]. A theoretical investigation of average H/V ratios.Geophysical Journal International, 145(2), 535–549.
    [Google Scholar]
  14. KNMI.
    KNMI. [1993]. Netherlands Seismic and Acoustic Network. Royal Netherlands Meteorological Institute (KNMI), Other/Seismic Network. (10.21944/E970fd34- 23b9-3411-B366-E4f72877d2c5).
    [Google Scholar]
  15. Kruiver, P.P., van Dedem, E., Romijn, R., de Lange, G., Korff, M., Stafleu, J. and Doornhof, D.
    [2017]. An integrated shear-wave velocity model for the Groningen gas field, The Netherlands.Bulletin of Earthquake Engineering, 15(9), 3555–3580, doi: 10.1007/s10518‑017‑0105‑y.
    https://doi.org/10.1007/s10518-017-0105-y [Google Scholar]
  16. McNamara, D.E. and Buland, R.P.
    [2004]. Ambient noise levels in the continental United States.Bulletin of the Seismological Society of America, 94(4), 1511–1527.
    [Google Scholar]
  17. Meijles, E.
    [2015]. De ondergrond van Groningen: een geologische geschiedenis. Retrieved from http://hdl.handle.net/11370/cb82f1dc-2fce-4fce-b178-9e7343c1e48d.
    [Google Scholar]
  18. Parolai, S., Richwalski, S.M., Milkereit, C. and Bormann, P.
    [2004]. Assessment of the stability of H/V spectral ratios from ambient noise and comparison with earthquake data in the Cologne area (Germany). Tectonophysics, 390(1–4), 57–73, doi: 10.1016/j.tecto.2004.03.024.
    https://doi.org/10.1016/j.tecto.2004.03.024 [Google Scholar]
  19. Perron, V., Gélis, C., Froment, B., Hollender, F., Bard, P. Y., Cultrera, G. and Cushing, E.M.
    [2018]. Can broad-band earthquake site responses be predicted by the ambient noise spectral ratio? Insight from observations at two sedimentary basins.Geophysical Journal International, 215(2), 1442–1454, doi:10.1093/GJI/GGY355.
    https://doi.org/10.1093/GJI/GGY355 [Google Scholar]
  20. Rodriguez-Marek, A., Kruiver, P.P., Meijers, P., Bommer, J.J., Dost, B., van Elk, J. and Doornhof, D.
    [2017]. A regional site response model for the Groningen gas field. Bulletin of the Seismological Society of America.
    [Google Scholar]
  21. Scherbaum, F., Hinzen, K.-G. and Ohrnberger, M.
    [2003]. Determination of shallow shear wave velocity profiles in the Cologne, Germany area using ambient vibrations.Geophysical Journal International, 152(3), 597–612.
    [Google Scholar]
  22. Spica, Z.J., Perton, M., Nakata, N., Liu, X. and Beroza, G.C.
    [2018]. Site characterization at Groningen gas field area through joint surface-borehole H/V analysis. Geophysical Journal International, 212(1), 412–421, doi:10.1093/gji/ggx426.
    https://doi.org/10.1093/gji/ggx426 [Google Scholar]
  23. Wong, T.E., Batjes, D.A.J. and de Jager, J.
    [2007]. Geology of the Netherlands. Royal Academy of Arts and Sciences.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1365-2397.2019026
Loading
/content/journals/10.3997/1365-2397.2019026
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error