Volume 38 Number 7
  • ISSN: 0263-5046
  • E-ISSN: 1365-2397
Preview this article:
Zoom in

Adding Hyperknowledge-enabled data lineage to a machine learning workflow management system for oil and gas, Page 1 of 1

| /docserver/preview/fulltext/fb/38/7/fb2020055-1.gif

There is no abstract available for this article.
Use the preview function to the left.


Article metrics loading...

Loading full text...

Full text loading...


  1. Azevedo, L., Souza, R., Thiago, R., Soares, E., Moreno, M.
    [2020]. Experiencing ProvLake to manage the data lineage of AI workflows.Meeting in Innovation in Information Systems (EISI), Abstracts.
    [Google Scholar]
  2. Chevitarese, D.S., Szwarcman, D., Brazil, E.V., Zadrozny, B.
    [2018]. Efficient classification of seismic textures.2018 International Joint Conference on Neural Networks (IJCNN), 1–8.
    [Google Scholar]
  3. Davidson, S.B., Freire, J.
    [2008]. Provenance and scientific workflows: Challenges and opportunities.SIGMOD, 1345–1350.
    [Google Scholar]
  4. Fielding, R.T. and Taylor, R.N.
    [2000]. Architectural styles and the design of network-based software architectures. 7, University of California, Irvine.
    [Google Scholar]
  5. Gil, Y., Pierce, S.A., Babaie, H., Banerjee, A., Borne, K., Bust, G., Cheatham, M., Ebert-Upho, I., Gomes, C., Hill, M., Horel, J., Hsu, L., Kinter, J., Knoblock, C., Krum, D., Kumar, V., Lermusiaux, P., Liu, Y. , North, C., Pankratius, V. , Peters, S., Plale, B., Pope, A., Ravela, S., Re-strepo, J., Ridley, A., Samet, H., Shekhar, S.
    [2018]. Intelligent systems for geosciences: an essential research agenda. Communications of the ACM.
    [Google Scholar]
  6. Liu, J., Pacitti, E., Valduriez, P., Mattoso, M.
    [2015]. A survey of data-intensive scientific workflow management.Journal of Grid Computing, 13(4), 457–493.
    [Google Scholar]
  7. Mattoso, M., Werner, C., Travassos, G., Braganholo, V., Ogasawara, E., de Oliveira, D., Cruz, S., Martinho, W., Murta, L.
    [2010]. Towards supporting the life cycle of large-scale scientific experiments.International Journal of Business Process Integration and Management, 5, 79–92.
    [Google Scholar]
  8. Moreno, M.F., Brandão, R., Cerqueira, R.
    [2017]. Extending hypermedia conceptual models to support hyperknowledge specifications.International Journal of Semantic Computing, 11(01), 43–64.
    [Google Scholar]
  9. Moreno, M.F., Brandão, R., Ferreira, J.J., Fucs, A., Cerqueira, R.
    [2016]. Towards a conceptual model for cognitive-intensive practices.IEEE International Symposium on Multimedia (ISM), 148–151.
    [Google Scholar]
  10. Moreno, M.F., Lourenco, V., Fiorini, S., Costa, P., Brandão, R., Civitarese, D., Cerqueira, R.
    [2020]. Managing machine learning workflow components.14th International Conference on Semantic Computing (ICSC), 25–30.
    [Google Scholar]
  11. Moreno, M.F., Santos, R., Santos, W., R. Cerqueira, R.
    [2018]. Kes: The knowledge explorer system.International Semantic Web Conference (P&D/Industry/BlueSky), Abstracts.
    [Google Scholar]
  12. Randen, T., Monsen, E., Signer, C., Abrahamsen, A., Hansen, J.O., S ter, T., Schlaf, J.
    [2000]. Three-dimensional texture attributes for seismic data analysis.SEG Technical Program, Expanded Abstracts, 668–671.
    [Google Scholar]
  13. Souza, R., Azevedo, L., Lourenco, V., Soares, E., Thiago, R., Brandão, R., Civitarese, D., Brazil, E., Moreno, M., Valduriez, P., Mattoso, M., Cerqueira, R., Netto, M.A.S.
    [2019a]. Provenance data in the machine learning lifecycle in computational science and engineering.IEEE/ACM Workflows in Support of Large-Scale Science (WORKS), 1–10.
    [Google Scholar]
  14. Souza, R., Azevedo, L., Thiago, R., Soares, E., Nery, M., Netto, M., Brazil, E.V., Cerqueira, R., Valduriez, R, Mattoso, M.
    [2019b], Efficient runtime capture of multiworkflow data using provenance.IEEE International Conference on e-Science (eScience), 1–10.
    [Google Scholar]
  15. Souza, R., Brazil, E.V., Azevedo, L., Ferreira, R., Chevitarese, D., Soares, E., Thiago, R., Nery, M., Torres, V, Cerqueira, R.
    [2019c]. Managing data trace-ability in the data lifecycle for deep learning applied to seismic data.American Association of Petroleum Geologists Annual Convention and Exhibition, Abstracts.
    [Google Scholar]
  16. Thiago, R., Souza, R., Azevedo, L., Soares, E., Santos, R., Santos, W., De Bayser, M., Cardoso, M., Moreno, M., Cerqueira, R.
    [2020]. Managing data lineage of O&G machine learning models: The sweet spot for shale use case.EAGE Digitalization Conference and Exhibition, Extended Abstracts.
    [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error