1887
Volume 38 Number 9
  • ISSN: 0263-5046
  • E-ISSN: 1365-2397
Preview this article:

There is no abstract available.

Loading

Article metrics loading...

/content/journals/10.3997/1365-2397.fb2020065
2020-09-01
2024-04-20
Loading full text...

Full text loading...

References

  1. AlKawi, W., Mukerji, T., Scheirer, A.H., and Graham, S.A.
    [2018]. Combining seismic reservoir characterization workflows with basin modeling in the deepwater Gulf of Mexico Mississippi Canyon area. AAPG Bulletin, 102, 629–652.
    [Google Scholar]
  2. Avseth, P., Flesche, H., and van Wijngaarden, A-J.
    [2003]. AVO classification of lithology and pore fluids constrained by rock physics depth trends. The Leading Edge, 22, 1004–1011.
    [Google Scholar]
  3. Avseth, P., Mukerji, T., and Mavko, G.
    [2005]. Quantitative Seismic Interpretation – Applying Rock Physics Tools to Reduce Interpretation Risk. Cambridge University Press.
    [Google Scholar]
  4. Avseth, P., Dræge, A., van WijngaardenA-J., Johansen, T., and Jørstad, A.
    [2008]. Shale rock physics and implications for AVO analysis: A North Sea demonstration. The Leading Edge, 27, 697–824.
    [Google Scholar]
  5. Avseth, P., and Lehocki, I.
    [2016]. Combining burial history and rock-physics modeling to constrain AV O analysis during exploration. The Leading Edge, 35, 528–534.
    [Google Scholar]
  6. Avseth, P., Lehocki, I., Kjøsnes, Ø., and Sandstad, O.
    [2020a]. Data-Driven Rock Physics Analysis of North Sea Tertiary Reservoir Sands. Geophysical Prospecting, in press.
    [Google Scholar]
  7. Avseth, P., Lehocki, I., Angard, K., Hansen, T., Shelavina, E., and Schjelderup, S.
    [2020b]. A new integrated workflow to generate AVO feasibility maps for prospect de-risking. EAGE Annual Conference and Exhibition, Extended Abstract.
    [Google Scholar]
  8. Baig, I., Faleide, J.E., Jahren, J., and Mondol, N.
    [2016]. Cenozoic exhumation on the southwestern Barents Shelf: Estimates and uncertainties constrained from compaction and thermal maturity analyses. Marine and Petroleum Geology, 73, 105–130.
    [Google Scholar]
  9. Brevik, I., Callejon, A., Kahn, P. , Janak, P. , and Ebrom, D.
    [2011]. Rock physicists step out of the well location, meet geophysicists and geologists to add value in exploration analysis. The Leading Edge, 30, 1382–1391.
    [Google Scholar]
  10. Dræge, A., Duffaut, K., Wiik, T., and Hokstad, K.
    [2014]. Linking rock physics and basin history — Filling gaps between wells in frontier basins. The Leading Edge, 33, 240–246.
    [Google Scholar]
  11. Faleide, J.I., Bjørlykke, K. and Gabrielsen, R.H.
    [2015], Geology of the Norwegian continental shelf. K.Bjørlykke (Ed.), Petroleum Geoscience – From Sedimentary Environments to Rock Physics (2nd edition), Springer-Verlag, 603–637.
    [Google Scholar]
  12. Feuilleaubois, L. O., Maioli, A., and Reiser, C.
    [2017a]. Triassic Regional Rock Physics Study in the Eastern Barents Sea for Prospectivity Analysis. EAGE, Extended Abstract.
    [Google Scholar]
  13. Feuilleaubois, L.O., Charoing, V., Maioli, A, and Reiser, C.
    [2017b]. Utilizing a novel quantitative interpretation workflow to derisk shallow hydrocarbon prospects – a Barents Sea case study. First Break, 35, 85–98.
    [Google Scholar]
  14. Hjelstuen, B.O., Elverhøi, A., and Faleide, J.I.
    [1996]. Cenozoic erosion and sediment yield in the drainage area of the Storfjorden Fan. In Solheim, A.,Riis, F., Elverhoi, A., Faleide, J.I., Jensen, L.N., and Cloetingh, S. (Eds.), Impact of Glaciations on Basin Evolution: Data and Models from the Norwegian Margin and Adjacent Areas. Global Planet. Change, 12:95–117.
    [Google Scholar]
  15. Japsen, P.
    [1999]. Overpressured Cenozoic shale mapped from velocity anomalies relative to a baseline for marine shale, North Sea. Petroleum Geoscience, 5, 321–336.
    [Google Scholar]
  16. Johansen, N.
    [2016]. Regional net erosion estimations and implications for seismic AVO signatures in the western Barents Sea. Unpublished Master Thesis, NTNU, Trondheim, Norway.
    [Google Scholar]
  17. Lehocki, I., Avseth, P. and Mondol, N.
    [2020]. Seismic methods for fluid discrimination in areas with complex geological history-a case example from the Barents Sea. Interpretation, Accepted for publication.
    [Google Scholar]
  18. Mavko, G., Mukerji, T. and Dvorkin, J.
    [2020]. The Rock Physics Handbook, 3rd edition, Cambridge University Press.
    [Google Scholar]
  19. Ramm, M. and Bjørlykke, K.
    [1994]. Porosity/depth trends in reservoir sandstones: assessing the quantitative effects of varying pore-pressure, temperature history and mineralogy, Norwegian Shelf data. Clay Minerals, 29, 475–490.
    [Google Scholar]
  20. Rønholt, G., Korsmo, Ø., Naumann, S., Marinets, S., Brenne, E., and Abbasi, M. F.
    [2015] Complete wavefield imaging for lithology and fluid prediction in the Barents Sea Grunde. SEG Annual Meeting, Expanded Abstracts.
    [Google Scholar]
  21. Sakariassen, R., O’Dowd, N., Naumann, S.
    [2018]. Barents Sea – A First Look at New High Resolution 3D Multicomponent Seismic. GeoExpro, 15 (6), 28–32.
    [Google Scholar]
  22. Walderhaug, O.
    [1996]. Kinetic Modelling of Quartz Cementation and Porosity Loss in Deeply Buried Sandstone Reservoirs. AAPG Bulletin, 80, 731–745.
    [Google Scholar]
  23. Zattin, M., Andreucci, B., de Toffoli, B., Grigo, D., and Tsikalas, F.
    [2016]. Thermochronological constraints to late Cenozoic exhumation of the Barents Sea Shelf. Marine and Petroleum Geology, 73, 97–104.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1365-2397.fb2020065
Loading
/content/journals/10.3997/1365-2397.fb2020065
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error