1887
Volume 38, Issue 10
  • ISSN: 0263-5046
  • E-ISSN: 1365-2397

Abstract

Abstract

The iconic coherence attribute generally computed on the full-bandwidth seismic data has been used for 25 years to delineate structural and stratigraphic subsurface geometric features. More recently, multispectral coherence has been introduced to not only better define the more prominent features, but also more subtle features that may be poorly imaged by traditional broadband coherence attribute displays. Multispectral coherence generation utilizes the spectrally decomposed seismic data in the form of complex voice components within the seismic bandwidth. There are various methods available for spectral decomposition of seismic data, including the continuous wavelet transform, complex matching pursuit and the maximum entropy methods. In addition, a nonlinear spectral probe algorithm is also available and could be utilized for multispectral coherence generation. With all these methods available with the seismic interpreter, a question that pops up is which of these methods could be utilized for a more effective generation of multispectral coherence attribute. We first discuss multispectral coherence itself and its generation and follow that with a description of the different spectral decomposition methods mentioned above. Next, we generate spectral voice components and spectral probe components on two seismic data volumes from northeast British Columbia, Canada, and put them through multispectral coherence generation. A comparative performance of the different methods is then evaluated in terms of the multispectral coherence displays. Finally, some conclusions are drawn from the complete exercise.

Loading

Article metrics loading...

/content/journals/10.3997/1365-2397.fb2020071
2020-10-01
2020-10-29
Loading full text...

Full text loading...

References

  1. Alaei, B.
    [2012]. Improved fault imaging by integration of frequency decomposition and fault attributes, example from mid Norwegian sea: Proceedings of the 3rd EAGE Fault and Top Seal Conference, C13, doi: 10.3997/2214‑4609.20143024.
    https://doi.org/10.3997/2214-4609.20143024 [Google Scholar]
  2. Bahorich, M. S.
    , and S. L.Farmer . [1995]. 3-D seismic coherency for faults and stratigraphic features: The coherence cube: The Leading Edge, 14, 1053–1058, doi: 10.1190/1.1437077.
    https://doi.org/10.1190/1.1437077 [Google Scholar]
  3. Castagna, J.
    , S.Sun, and R.Siegfried . [2003]. Instantaneous spectral analysis: Detection of low-frequency shadows associated with hydrocarbons: The Leading Edge, 22, 120–127, doi: 10.1190/INT‑2016‑0152.1.
    https://doi.org/10.1190/INT-2016-0152.1 [Google Scholar]
  4. Chopra, S.
    and K. J.Marfurt . [2008]. Gleaning meaningful information from seismic attributes: First Break, 43–53.
    [Google Scholar]
  5. and K. J.Marfurt . [2018]. Multispectral coherence attribute applications, AAPG Explorer, 39(7), 16.
    [Google Scholar]
  6. , and K. J.Marfurt . [2019]. Multispectral, multiazimuth, and multioffset coherence attribute applications: Interpretation, 7, no. 2, SC21–SC32, doi: 10.1190/INT‑2018‑0090.1.
    https://doi.org/10.1190/INT-2018-0090.1 [Google Scholar]
  7. Gao, D.
    [2013]. Wavelet spectral probe for seismic structure interpretation and fracture characterization: A workflow with case studies: Geophysics, 78, no. 5, O57–O67, doi: 10.1190/geo2012‑0427.1.
    https://doi.org/10.1190/geo2012-0427.1 [Google Scholar]
  8. Gersztenkorn, A.
    , and K. J.Marfurt . [1999]. Eigenstructure based coherence computations as an aid to 3-D structural and stratigraphic mapping: Geophysics, 64, 1468–1479, doi: 10.1190/1.1444651.
    https://doi.org/10.1190/1.1444651 [Google Scholar]
  9. Leppard, C.
    , A.Eckersley, and S.Purves . [2010]. Quantifying the temporal and spatial extent of depositional and structural elements in 3D seismic data using spectral decomposition and multiattribute RGB blending: 2010 GCSSEPM, in Seismic imaging of depositional and geomorphic systems, 30th annual GCSSEPM.
    [Google Scholar]
  10. Li, F.
    , and W.Lu . [2014]. Coherence attribute at different spectral scales: Interpretation, 2, no. 1, SA99–SA106, doi: 10.1190/INT‑2013‑0089.1.
    https://doi.org/10.1190/INT-2013-0089.1 [Google Scholar]
  11. , J.Qi, B.Lyu, and K. J.Marfurt . [2018]. Multispectral coherence: Interpretation, 6, no. 1, T61–T69, doi: 10.1190/INT‑2017‑0112.1.
    https://doi.org/10.1190/INT-2017-0112.1 [Google Scholar]
  12. Liu, J.
    , and K. J.Marfurt . [2007]. Instantaneous spectral attributes to detect channels: Geophysics, 72, no. 2, P23–P31, doi: 10.1190/1.2428268.
    https://doi.org/10.1190/1.2428268 [Google Scholar]
  13. Lyu, B.
    , J.Qi, G.Machado, F.Li, and K. J.Marfurt . [2019]. Seismic fault enhancement using spectral decomposition assisted attributes: 89th Annual International Meeting, SEG, Expanded Abstracts, 1938–1942, doi: 10.1190/segam2019‑3215703.1.
    https://doi.org/10.1190/segam2019-3215703.1 [Google Scholar]
  14. Marfurt, K. J.
    [2017]. Interpretational aspects of multispectral coherence: 79th Annual International Conference and Exhibition, EAGE, Extended Abstracts, ThA411, doi: 10.3997/2214‑4609.201700528.
    https://doi.org/10.3997/2214-4609.201700528 [Google Scholar]
  15. , S. L.Farmer, M. S.Bahorich, and R. L.Kirlin . [1998]. 3-D seismic attributes using a semblance-based coherency algorithm: Geophysics, 63, 1150–1165, doi: 10.1190/1.1444415.
    https://doi.org/10.1190/1.1444415 [Google Scholar]
  16. , V.Sudhaker, A.Gersztenkorn, and K. D.Crawford . [1999]. Coherency calculations in the presence of structural dip: Geophysics, 64, 104–111, doi: 10.1190/1.1444508.
    https://doi.org/10.1190/ 1.1444508 [Google Scholar]
  17. Partyka, G. A.
    , J.Gridley, and J.Lopez . [1999]. Interpretational applications of spectral decomposition in reservoir characterization: The Leading Edge, 18, 353–360, doi: 10.1190/1.1438295.
    https://doi.org/10.1190/1.1438295 [Google Scholar]
  18. Peyton, L.
    , R.Bottjer, and G.Partyka . [1998]. Interpretation of incised valleys using new-3D seismic techniques: A case history using spectral decomposition and coherency: The Leading Edge, 17, 1294–1298, doi: 10.1190/1.1438127.
    https://doi.org/10.1190/1.1438127 [Google Scholar]
  19. Puryear, C. I.
    , O. N.Portniaguine, C.M.Cobos, and J. P.Castagna [2012]. Constrained least-squares spectral analysis: Application to seismic data: Geophysics, 77, no. 5, V143–V167, doi: 10.1190/geo2011‑0210.1.
    https://doi.org/10.1190/geo2011-0210.1 [Google Scholar]
  20. Qi, J.
    , B.Lyu, A.Alali, G.Machado, Y.Hu, and K. J.Marfurt . [2019]. Image processing of seismic attributes for automatic fault extraction: Geophysics, 84, no. 1, O25–O37, doi: 10.1190/segam2018‑2997854.1.
    https://doi.org/10.1190/segam2018-2997854.1 [Google Scholar]
  21. Sinha, S.
    , R.Routh, P.Anno, and J.Castagna . [2005]. Spectral decomposition of seismic data with continuous-wavelet transform: Geophysics, 70, no. 6, P19–P25, doi: 10.1190/1.2127113.
    https://doi.org/10.1190/1.2127113 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1365-2397.fb2020071
Loading
/content/journals/10.3997/1365-2397.fb2020071
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error