1887
Volume 38, Issue 10
  • ISSN: 0263-5046
  • E-ISSN: 1365-2397
Preview this article:

There is no abstract available.

Loading

Article metrics loading...

/content/journals/10.3997/1365-2397.fb2020075
2020-10-01
2024-04-25
Loading full text...

Full text loading...

References

  1. Baird, A.F.
    [2020]. Modelling the response of helically wound DAS cables to microseismic arrivals, First EAGE Workshop on Fibre Optic Sensing, 2020. 1–5.
    [Google Scholar]
  2. Bakulin, A., Golikov, P., Smith, R., Erickson, K., Silvestrov, I. and Al-Ali, M.
    [2017] Smart DAS upholes for simultaneous land near-surface characterization and subsurface imaging, The Leading Edge, 36, 1001–1008.
    [Google Scholar]
  3. Bakulin, A. and Calvert, R.
    [2006]. The virtual source method: theory and case study, Geophysics, 71, SI139–SI150.
    [Google Scholar]
  4. Chadwick, R.A., Noy, D., Arts, R. and Eiken, O.
    [2009]. Latest time-lapse seismic data from Sleipner yield new insights into CO2 plume development, Energy Procedia, 1, 2103–2110.
    [Google Scholar]
  5. Correa, J., Pevzner, R., Bona, A., Tertyshnikov, K., Freifeld, B., Robertson, M. and Daley, T.
    [2019]. 3D vertical seismic profile acquired with distributed acoustic sensing on tubing installation: A case study from the CO2CRC Otway Project, Interpretation, 7, SA11–SA19.
    [Google Scholar]
  6. Holm, A., Jennejohn, D. and Blodgett, L.
    [2012]. Geothermal energy and greenhouse gas emissions, Washington DC: Geothermal Energy Association.
    [Google Scholar]
  7. Humphries, M., Marin Vidal, J.A. and de Dios, J.C.
    [2016]. VSP monitoring for CO2 migration tracking in fractured rock massifs, 78th EAGE Conference and Exhibition, Extended Abstracts, 2016. 1–5.
    [Google Scholar]
  8. Karrenbach, M., Cole, S., Ridge, A., Boone, K., Kahn, D., Rich, J., Silver, K. and Langton, D.
    [2019]. Fiber-optic distributed acoustic sensing of microseismicity, strain and temperature during hydraulic fracturing, Geophysics, 84, D11–D23.
    [Google Scholar]
  9. Mondanos, M. and Coleman, T.
    [2019]. Application of distributed fibre-optic sensing to geothermal, First Break, 37, 51–56.
    [Google Scholar]
  10. Naldrett, G., Parker, T., Shatalin, S., Mondanos, M. and Farhadiroushan, M.
    [2020]. High-resolution Carina distributed acoustic fibre-optic sensor for permanent reservoir monitoring and extending the reach into subsea fields, First Break, 38, 71–76.
    [Google Scholar]
  11. Noorlandt, R., Drijkoningen, G., Dam, J. and Jenneskens, R.
    [2015]. A seismic vertical vibrator driven by linear synchronous motors.Geophysics, 80, EN57–EN67.
    [Google Scholar]
  12. Obermann, A., Sánchez-Pastor, P., Duran, A., Diehl, T., Hjörleifsdóttir, V. and Wiemer, S.
    [2020]. COSEISMIQ: First results of high-resolution imaging of the shallow crust and relocation of induced seismicity in the Hengill area, Iceland, 22nd EGU General Assembly, 4–8 May, 2020. id.12923.
    [Google Scholar]
  13. Parker, T., Shatalin, S. and Farhadiroushan, M.
    [2014]. Distributed Acoustic Sensing – A new tool for seismic applications, First Break, 32, 61–69.
    [Google Scholar]
  14. Place, J. and Malehmir, A.
    [2016]. Using supervirtual first arrivals in controlled-source hardrock seismic imaging - well worth the effort, Geophysical J. International, 206, 716–730.
    [Google Scholar]
  15. Pruess, K.
    [2006]. Enhanced Geothermal Systems (EGS) using CO2 as Working Fluid — A Novel Approach for Generating Renewable Energy with Simultaneous Sequestration of Carbon.Geothermics, 35, 351–367.
    [Google Scholar]
  16. Richter, P., Parker, T., Woerpel, C., Wu, Y., Rufino, R. and Farhadiroushan, M.
    [2019]. Hydraulic fracture monitoring and optimization in unconventional completions using a high-resolution engineered fibre-optic Distributed Acoustic Sensor, First Break, 37, 63–68.
    [Google Scholar]
  17. Salimi, H. and Wolf, K-H.
    [2012]. Integration of Heat-Energy Recovery and Carbon Sequestration.International Journal of Greenhouse Gas Control,6, 56–68.
    [Google Scholar]
  18. Snæbjörnsdóttir, S.Ó., Oelkers, E.H., Mesfin, K., Aradóttir, E.S., Dideriksen, K., Gunnarsson, I., Gunnlaugsson, E., Matter, J.M., Stute, M. and Gislason, S.R.
    [2017]. The chemistry and saturation states of subsurface fluids during the in situ mineralisation of CO2 and H2S at the CarbFix site in SW-Iceland, Int. J. Greenhouse Gas Control, 58, 87–102.
    [Google Scholar]
  19. Snæbjörnsdóttir, S.Ó., Tómasdóttir, S., Sigfusson, B., Aradóttir, E.S., Gunnarsson, G., Niemi, A., Basirat, F., Dessirier, B., Gislason, S.R., Oelkers, E.H. and Franzson, H.
    [2018]. The geology and hydrology of the CarbFix2 site, SW-Iceland, Energy Procedia, 146, 146–157.
    [Google Scholar]
  20. Yucetas, I., Ergiçay, N. and Akın, S.
    [2018]. Carbon Dioxide Injection Field Pilot in Umurlu Geothermal Field, Turkey.GRC Transactions, 42.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1365-2397.fb2020075
Loading
/content/journals/10.3997/1365-2397.fb2020075
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error