1887
Volume 39 Number 6
  • ISSN: 0263-5046
  • E-ISSN: 1365-2397

Abstract

Abstract

The types of geological structures suitable for CO storage are saline aquifers (SA) and depleted hydrocarbon reservoirs (DHR). It is well-known that a direct comparison is often somewhat misleading; the preferences depend on many factors, including availability, logistical and economic concerns. However, advantages and disadvantages in terms of various engineering aspects are often compared.

We summarize the state-of-the-art of knowledge on the use of SAs and DHRs. Physical processes involved, analytical and numerical approaches for capacity and injectivity estimations, containment, wellbore and near-wellbore challenges and logistical options are discussed for both options. Comparisons are made considering engineering design for the onshore and offshore cases together with the preliminary economics.

Loading

Article metrics loading...

/content/journals/10.3997/1365-2397.fb2021047
2021-06-01
2021-06-20
Loading full text...

Full text loading...

References

  1. Alcalde, J., Flude, S., Wilkinson, M., Johnson, G., Edlmann, K., Bond, Cl., Scott, V., Gilfillan, S., Ogaya, X. and Haszeldine, R.S.
    [2018]. Estimating geological CO2 storage security to deliver on climate mitigation. Nature Communications, 9, 10.1038/s41467‑018‑04423‑1.
    https://doi.org/10.1038/s41467-018-04423-1 [Google Scholar]
  2. Alkan, H., Cinar, Y. and Ülker, E.B.
    [2010]. Impact of Capillary Pressure, Salinity and In situ Conditions on CO2 Injection into Saline Aquifers.Transport in Porous Media, 84, 799-620819.
    [Google Scholar]
  3. Allinson, W.G., Cinar, Y., Neal, P.R., Kaldi, J. and Paterson, L.
    [2014]. CO2 Storage Capacity — Combining Geology, Engineering and Economics.SPE Economics & Management, 6(01), 15–7.
    [Google Scholar]
  4. Andre, L., Peysson, Y. and Azaroual, M.
    [2014]. Well injectivity during CO2 storage operations in deep saline aquifers – Part 2: Numerical simulations of drying, salt deposit mechanisms and role of capillary forces.International Journal of Greenhouse Gas Control, 22, 301–312, ISSN 1750-5836, https://doi.org/10.1016/j.ijggc.2013.10.030.
    [Google Scholar]
  5. Azizi, E. and Cinar, Y.
    [2013]. A New Mathematical Model for Predicting CO2 Injectivity.Energy Procedia, 37, 3250–3258. 10.1016/j.egypro.2013.06.212.
    https://doi.org/10.1016/j.egypro.2013.06.212 [Google Scholar]
  6. Bacci, G., Durucan, S. and Korre, A.
    [2013]. Experimental and numerical study of the effects of halite scaling on injectivity and seal performance during CO2 injection in saline aquifers.Energy Procedia, 3275–3282.
    [Google Scholar]
  7. Bachu, S., Bonijoly, D., Bradshaw, J., Burruss, R., Holloway, S., Christensen, N.P. and Mathiassen, O.M.
    [2007]. CO2 storage capacity estimation: methodology and gaps. International Journal of Greenhouse Gas Control, 1, 430–443.
    [Google Scholar]
  8. Bachu, S.
    [2015]. Review of CO2 storage efficiency in deep saline aquifers. International Journal of Greenhouse Gas Control, 40, 188–202. 10.1016/j.ijggc.2015.01.007.
    https://doi.org/10.1016/j.ijggc.2015.01.007 [Google Scholar]
  9. CO2RE Global CCS Institute
    CO2RE Global CCS Institute [2017]. Principles for Best Practice Geomechanics for CCS Injection Operations and its Application to the CarbonNet Projecthttps://www.globalccsinstitute.com/.
    [Google Scholar]
  10. CO2RE Global CCS Institute
    CO2RE Global CCS Institute [2020]. https://www.globalccsinstitute.com/.
  11. Farajzadeh, R., Eftekhari, A., Dafnomilis, G., Lake, L.W. and Bruining, J.
    [2020]. On the sustainability of CO2 storage through CO2 – Enhanced oil recovery.Applied Energy.261. 114467. 10.1016/j.apenergy.2019.114467.
    https://doi.org/10.1016/j.apenergy.2019.114467 [Google Scholar]
  12. Hansen, O., Gilding, D., Nazarian, B., Osdal, B., Ringrose, P., Kristoffersen, J-B. and Eiken, O.
    [2013]. Snøhvit: The History of Injecting and Storing 1 Mt CO2 in the Fluvial Tubåen Fm.Energy Procedia, 37, 3565–3573. 10.1016/j.egypro.2013.06.249.
    https://doi.org/10.1016/j.egypro.2013.06.249 [Google Scholar]
  13. Höller, S. and Viebahn, P.
    [2011]. Assessment of CO2 storage capacity in geological formations of Germany and Northern Europe, Energy Procedia, 4, 4897–4904, ISSN 1876-6102, https://doi.org/10.1016/j.egypro.2011.02.458.
    [Google Scholar]
  14. HolmW.L. and O’BrienL.J.
    [1971]. Carbon Dioxide Test at the Mead Strawn Field, J. Petr. Tech., April 1971, p431–442.
    [Google Scholar]
  15. Hoteit, H., Fahs, M. and Soltanian, M.R.
    [2019]. Assessment of CO2 Injectivity During Sequestration in Depleted Gas Reservoirs.Geosciences, 9, 199. https://doi.org/10.3390/geosciences9050199.
    [Google Scholar]
  16. Ide, S.T., Jessen, K. and Orr, F.M.
    [2007]. Storage of CO2 in saline aquifers: Effects of gravity, viscous, and capillary forces on amount and timing of trapping.International Journal of Greenhouse Gas Control, 1(4), 481–491, ISSN 1750-5836, https://doi.org/10.1016/S1750-5836(07)00091-6.
    [Google Scholar]
  17. IEA
    IEA [2013]. Methods to Assess Geological CO2 Storage Capacity: Status and Best Practice, IEA, Parishttps://www.iea.org/reports/methods-to-as-sess-geological-co2-storage-capacity-status-and-best-practice.
    [Google Scholar]
  18. Iglauer, S., Sarmadivaleh, M., Al-Yaseri, A. and Lebedev, M.
    [2014]. Permeability evolution in sandstone due to injection of CO2-saturated brine or supercritical CO2 at reservoir conditions.Energy Procedia, 63, 3051–3059. 10.1016/j.egypro.2014.11.328.
    https://doi.org/10.1016/j.egypro.2014.11.328 [Google Scholar]
  19. Kelkar, S., Carey, B., Dempsey, D. and Lewis, K.
    [2014]. Integrity of Pre-existing Wellbores in Geological Sequestration of CO2 – Assessment Using a Coupled Geomechanics-fluid Flow Model.Energy Procedia, 63, 5737–5748. 10.1016/j.egypro.2014.11.606.
    https://doi.org/10.1016/j.egypro.2014.11.606 [Google Scholar]
  20. Kopp, A., Class, H. and Helmig, R.
    [2009a]. Investigations on CO2 storage capacity in saline aquifers Part 1. Dimensional analysis of flow processes and reservoir characteristics.International Journal of Greenhouse Gas Control, 3(3), 263–276.
    [Google Scholar]
  21. [2009b]. Investigations on CO2 storage capacity in saline aquifers Part 2. Estimation of storage capacity coefficients.International Journal of Greenhouse Gas Control, 3 (3), 277–287
    [Google Scholar]
  22. Kowollik, P., Khamnaeva, S., Vodopic, F., Kleczar, M. and Alkan, H.
    [2020]. Thermodynamic pathways of CO2 storage in depleted gas reservoirs1st Geoscience and Engineering in Energy Transition Conference, GET 2020, 2020. 202021078.
    [Google Scholar]
  23. Lai, Yen-Ting & Shen, Chien-Hao & Tseng, Chi-Chung & Fan, Chen-Hui & Hsieh, Bieng-Zih
    . [2015]. Estimation of Carbon Dioxide Storage Capacity for Depleted Gas Reservoirs.Energy Procedia, 76, 470–476. 10.1016/j.egypro.2015.07.887.
    https://doi.org/10.1016/j.egypro.2015.07.887 [Google Scholar]
  24. Lake, L.W., Lotfollahi, M. and Bryant, S.L.
    [2019]. CO2 Enhanced Oil Recovery Experience and its Messages for CO2 Storage Science of Carbon Storage in Deep Saline Formations. DOI: https://doi.org/10.1016/B978-0-12-812752-0.00002-22019 Elsevier.
    [Google Scholar]
  25. Li, X., Xu, R., Wei, L. and Jiang, P.
    [2015]. Modeling of wellbore dynamics of a CO2 injector during transient well shut-in and start-up operations.International Journal of Greenhouse Gas Control, 42, 602–614, ISSN 1750-5836, https://doi.org/10.1016/j.ijggc.2015.09.016.
    [Google Scholar]
  26. Liao, C., Liao, X., Zhao, X., Ding, H., Liu, X., Liu, Y., Chen, J. and Lu, N.
    [2014]. Comparison of different methods for determining key parameters affecting CO2 storage capacity in oil reservoirs.International Journal of Greenhouse Gas Control, 28, 25–34, ISSN 1750–5836, https://doi.org/10.1016/j.ijggc.2014.06.010.
    [Google Scholar]
  27. Mac Dowell, N., Fennell, P.S., Shah, N. and Maitland, G.C.
    [2017]. The role of CO2 capture and utilization in mitigating climate change.Nature Climate Change, 7(4), 243–249, 2017. doi:10.1038/nclimate3231.
    https://doi.org/10.1038/nclimate3231 [Google Scholar]
  28. Maloney, D.R. and Marcos, B.
    [2009]. Experimental investigation of cooling effects resulting from injecting high-pressure liquid or supercritical CO2 into a low-pressure gas reservoir.Petrophysics, 50,335–34.
    [Google Scholar]
  29. Mathieson, A., Midgley, J., Wright, I., Saoul, N. and Ringrosec, P.
    [2011]. In Salah CO2 Storage JIP: CO2 sequestration monitoring and verification technologies applied at Krechba, Algeria.Energy Procedia4, 3596–3603.
    [Google Scholar]
  30. Olden, P., Pickup, G., Jin, M., Mackay, E., Hamilton, S.A., Somerville, J. and Todd, A.
    [2012]. Use of rock mechanics laboratory data in geomechanical modelling to increase confidence in CO2 geological storage.International Journal of Greenhouse Gas Control, 11, 304–315.
    [Google Scholar]
  31. Oldenburg, C.
    [2006]. Joule-Thomson cooling due to CO2 injection into natural gas reservoirs.Lawrence Berkeley National Laboratory.48.10.1016/j.enconman.2007.01.010.
    https://doi.org/48.10.1016/j.enconman.2007.01.010 [Google Scholar]
  32. Orlic, B.
    [2009]. Some geomechanical aspects of geological CO2 sequestration.KSCE Journal of Civil Engineering, 13, 225–232. 10.1007/s12205‑009‑0225‑2.
    https://doi.org/10.1007/s12205-009-0225-2 [Google Scholar]
  33. Orlic, B., Heege, J. and Wassing, B.
    [2011]. Assessing the integrity of fault- and top seals at CO2 storage sites, Energy Procedia, 4, 2011. 4798–4805, ISSN 1876-6102, https://doi.org/10.1016/j.egypro.2011.02.445.
    [Google Scholar]
  34. Pan, P., Wu, Z.-H. and Feng, X.-T.
    [2016]. A review of geomechanical modelling in CO2 geological storage.Journal of Rock Mechanics and Geotechnical Engineering, 8, 10.1016/j.jrmge.2016.10.002.
    https://doi.org/10.1016/j.jrmge.2016.10.002 [Google Scholar]
  35. Pruess, K. and Müller, N.
    [2009]. Formation dry-out from CO2 injection into saline aquifers: 2. Analytical model for salt precipitation.Water Resour. Res.45, W03403
    [Google Scholar]
  36. Raza, A., Gholami, R., Rezaee, R., Rasouli, V., Bhatti, A. and Bing, C.
    [2018]. Suitability of depleted gas reservoirs for geological CO2 storage: A simulation study. Greenhouse Gases:Science and Technology, 8, 10.1002/ghg.1802.
    https://doi.org/10.1002/ghg.1802 [Google Scholar]
  37. Roy, P., Morris, J., Walsh, S., Iyer, J. and Carroll, S.
    [2018]. Effect of thermal stress on wellbore integrity during CO2 injection. International Journal of Greenhouse Gas Control, 77, 14–26. 10.1016/j.ijggc.2018.07.012.
    https://doi.org/10.1016/j.ijggc.2018.07.012 [Google Scholar]
  38. Sacconi, A. and Mahgerefteh, H.
    [2020]. Modelling start-up injection of CO2 into highly-depleted gas fields, Energy, 191, 2020. 116530, ISSN 0360-5442, https://doi.org/10.1016/j.ener-gy.2019.116530.
    [Google Scholar]
  39. SPE
    SPE [2017]. CO2 storage classification.https://www.spe.org/en/industry/CO2-storage-resources-management-system/.
    [Google Scholar]
  40. Thoutam, P., Gomari, R.S., Antonin, C., Faizan, A. and Meez, I.
    [2019]. Study on CO2 Hydrate Formation Kinetics in Saline Water in the Presence of Low Concentrations of CH4.ACS Omega. 2019. 10.1021/acsomega.9b02157.
    https://doi.org/10.1021/acsomega.9b02157 [Google Scholar]
  41. US-DOE-NETL
    US-DOE-NETL [2013]. Site Screening, Selection and Characterization for Storage of CO2 in Deep Geologic Formations.
    [Google Scholar]
  42. Vangkilde-Pedersen, T.
    (coordinator) [2009]. EU GeoCapacity – Assessing European Capacity for Geological Storage of Carbon Dioxide, GEUS, Denmark, www.geocapacity.eu.
    https://doi.org/www.geocapacity.eu [Google Scholar]
  43. Verdon, J. and Stork, A.
    [2016]. Carbon capture and storage, geomechanics and induced seismic activity. Journal of Rock Mechanics and Geotechnical Engineering, 8, 10.1016/j.jrmge.2016.06.004.
    https://doi.org/10.1016/j.jrmge.2016.06.004 [Google Scholar]
  44. Zhang, Y., Hu, C. and Song, Y.
    [2013]. Joule-Thomson Effect on Heat Transfer in CO2 Injection Wellbore, Advanced Materials Research Vols.734–737 (2013) pp 1411–1414.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1365-2397.fb2021047
Loading
/content/journals/10.3997/1365-2397.fb2021047
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error