1887
Volume 39 Number 8
  • ISSN: 0263-5046
  • E-ISSN: 1365-2397
Preview this article:
Zoom in
Zoomout

Characterization of Seafloor Mineral Deposits Using Multiphysics Datasets Acquired from an AUV, Page 1 of 1

| /docserver/preview/fulltext/fb/39/8/fb2021062-1.gif

There is no abstract available for this article.
Use the preview function to the left.

Loading

Article metrics loading...

/content/journals/10.3997/1365-2397.fb2021062
2021-08-01
2021-09-27
Loading full text...

Full text loading...

References

  1. Bloomer, S., Kowalczyk, P., Williams, J., Wass, A. and Enmoto, K.
    [2014]. Compensation of magnetic data for AUV mapping surveys (presented at the IEEE AUV2014 Conference, Oxford, MS).
    [Google Scholar]
  2. Boschen, R.E., Rowden, A.A., Clark, M.R. and Gardner, J.P.
    [2013]. Mining of deep-sea seafloor massive sulfides: a review of the deposits, their benthic communities, impacts from mining, regulatory frameworks and management strategies.Ocean & coastal management, 84, pp.54–67.
    [Google Scholar]
  3. Constable, S., Kowalczyk, P. and Bloomer, S.
    [2018]. Measuring marine self potential using an autonomous underwater vehicle.Geophys. J. Int., 215, 49–60.
    [Google Scholar]
  4. Denny, A., Saebo, T., Hansen, R., Pedersen, R.
    [2015]. The use of synthetic aperture sonar to survey seafloor massive sulphides deposits.J. Ocean. Tech., 10, 36–53.
    [Google Scholar]
  5. Galley, C.G., Lelievre, P., Haroon, A., Graber, S., Jamieson, J.W., Szitkar, F., Yeo, I., Farquharson, C., Petersen, S. and Evans, R.L.
    [2021]. Magnetic and Gravity Surface Geometry Inverse Modelling of the TAG Active Mound.Earth and Space Science Open Archive ESSOAr.
    [Google Scholar]
  6. Herzig, P. M. and Hannington, M.D.
    [1995]. Polymetallic massive sulfides at the modern seafloor a review.Ore Geology Reviews, 10(2), 95–115.
    [Google Scholar]
  7. Honsho, C., Yamazaki, T., Ura, T., Okino, K., Morozumi, H. and Ueda, S.
    [2016]. Magnetic anomalies associated with abundant production of pyrrhotite in a sulphide deposit in the Okinawa trough, Japan.Geochemistry, Geophysics, Geosystems, 17, 4413–4424, doi:10.1002/2016GC006480
    https://doi.org/10.1002/2016GC006480 [Google Scholar]
  8. Honsho, C., Ura, T. and Kim, K.
    [2013]. Deep-sea magnetic vector anomalies over the Hakurei hydrothermal field and the Bayonnaise knoll caldera, Izu-Ogasawara arc, Japan”.Journal of Geophysical Research: Solid Earth, v. 118, doi:10.1002/jgrb.50382.
    https://doi.org/10.1002/jgrb.50382 [Google Scholar]
  9. Humphris, S.E., Herzig, P.M., Miller, D.J., Alt, J.C., Becker, K., Brown, D., Brügmann, G., Chiba, H., Fouquet, Y., Gemmell, J.B. and Guerin, G.
    [1995] The internal structure of an active sea-floor massive sulphide deposit.Nature, 377(6551), pp.713–716.
    [Google Scholar]
  10. Jamieson, J.W. and Gartman, A.
    [2020]. Defining active, inactive, and extinct seafloor massive sulfide deposits.Marine Policy, 117, p.103926.
    [Google Scholar]
  11. Kowalczyk, P.
    [2008]. Geophysical Prelude to First Exploitation of Submarine Massive Sulphides.First Break, 26(11), 99–106.
    [Google Scholar]
  12. Kowalczyk, P., Bloomer, S. and Kowalczyk, M.
    [2015]. Geophysical methods for the mapping of submarine massive sulphide deposits, Extended Abstract, Offshore Technology Conference, 2015.
    [Google Scholar]
  13. Lipton, I.T.
    [2012]. Mineral Resource Estimate, Solwara 1 project, Bismark Sea, Papua New Guinea. Canadian NI43–101 form F1.
    [Google Scholar]
  14. Murton, B., Lehrmann, B., Dutrieux, A.M., Martins, S., Gil de la Iglesia, A., Stobbs, I., Barriga, F., Bialas, J., Dannowski, A., Vardy, M., North, L., Yeo, I., Lusty, P. and Petersen, S.
    [2019]. Geological fate of seafloor massive sulphides at the TAG hydrothermal field (Mid-Atlantic Ridge),Ore Geology Reviews, 107, 903–925.
    [Google Scholar]
  15. Sato, M. and Mooney, H.
    , [1960]. The electrochemical mechanism of sulphide self potentials,Geophysics, 25, 226–249.
    [Google Scholar]
  16. Szitkar, F., Dyment, J., Choi, Y. and Fouquet, Y.
    [2014a]. What causes low magnetization at basalt-hosted hydrothermal sites? Insights from inactive site Krasnov (MAR 16° 38′ N).Geochemistry, Geophysics, Geosystems, 15(4), pp.1441–1451.
    [Google Scholar]
  17. Szitkar, F., Dyment, J., Fouquet, Y., Honsho, C. and Horen, H.
    [2014b]. The magnetic signature of ultramafic-hosted hydrothermal sites.Geology, 42(8), pp.715–718.
    [Google Scholar]
  18. Van Dover, C.L.
    , [2011] Mining seafloor massive sulphides and biodiversity: what is at risk?.ICES Journal of Marine Science, 68(2), pp.341–348.
    [Google Scholar]
  19. Zierenberg, R.A., Fouquet, Y, Miller, D.J., Bahr, J.M., Baker, PA., Bjerkgård, T, Brunner, C.A., Duckworth, R.C., Gable, R., Gieskes, J. and Goodfellow, W.D.
    [1998] The deep structure of a sea-floor hydrothermal deposit.Nature, 392(6675), pp.485–488.
    [Google Scholar]
  20. Zhu, Z., Shen, J., Tao, C, Deng, X., Wu, T, Nie, Z., Wang, W. and Su, Z.
    [2020]. Autonomous underwater vehicle based marine multi-component self potential method: observation scheme and navigational correction, EGUGeoscientific Instrumentation, Methods and Data systems, https://doi.org/10.5194/gi-2020-24
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1365-2397.fb2021062
Loading
/content/journals/10.3997/1365-2397.fb2021062
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error