Volume 39 Number 8
  • ISSN: 0263-5046
  • E-ISSN: 1365-2397
Preview this article:
Zoom in

Characterization of Seafloor Mineral Deposits Using Multiphysics Datasets Acquired from an AUV, Page 1 of 1

| /docserver/preview/fulltext/fb/39/8/fb2021062-1.gif

There is no abstract available for this article.
Use the preview function to the left.


Article metrics loading...

Loading full text...

Full text loading...


  1. Bloomer, S., Kowalczyk, P., Williams, J., Wass, A. and Enmoto, K.
    [2014]. Compensation of magnetic data for AUV mapping surveys (presented at the IEEE AUV2014 Conference, Oxford, MS).
    [Google Scholar]
  2. Boschen, R.E., Rowden, A.A., Clark, M.R. and Gardner, J.P.
    [2013]. Mining of deep-sea seafloor massive sulfides: a review of the deposits, their benthic communities, impacts from mining, regulatory frameworks and management strategies.Ocean & coastal management, 84, pp.54–67.
    [Google Scholar]
  3. Constable, S., Kowalczyk, P. and Bloomer, S.
    [2018]. Measuring marine self potential using an autonomous underwater vehicle.Geophys. J. Int., 215, 49–60.
    [Google Scholar]
  4. Denny, A., Saebo, T., Hansen, R., Pedersen, R.
    [2015]. The use of synthetic aperture sonar to survey seafloor massive sulphides deposits.J. Ocean. Tech., 10, 36–53.
    [Google Scholar]
  5. Galley, C.G., Lelievre, P., Haroon, A., Graber, S., Jamieson, J.W., Szitkar, F., Yeo, I., Farquharson, C., Petersen, S. and Evans, R.L.
    [2021]. Magnetic and Gravity Surface Geometry Inverse Modelling of the TAG Active Mound.Earth and Space Science Open Archive ESSOAr.
    [Google Scholar]
  6. Herzig, P. M. and Hannington, M.D.
    [1995]. Polymetallic massive sulfides at the modern seafloor a review.Ore Geology Reviews, 10(2), 95–115.
    [Google Scholar]
  7. Honsho, C., Yamazaki, T., Ura, T., Okino, K., Morozumi, H. and Ueda, S.
    [2016]. Magnetic anomalies associated with abundant production of pyrrhotite in a sulphide deposit in the Okinawa trough, Japan.Geochemistry, Geophysics, Geosystems, 17, 4413–4424, doi:10.1002/2016GC006480
    https://doi.org/10.1002/2016GC006480 [Google Scholar]
  8. Honsho, C., Ura, T. and Kim, K.
    [2013]. Deep-sea magnetic vector anomalies over the Hakurei hydrothermal field and the Bayonnaise knoll caldera, Izu-Ogasawara arc, Japan”.Journal of Geophysical Research: Solid Earth, v. 118, doi:10.1002/jgrb.50382.
    https://doi.org/10.1002/jgrb.50382 [Google Scholar]
  9. Humphris, S.E., Herzig, P.M., Miller, D.J., Alt, J.C., Becker, K., Brown, D., Brügmann, G., Chiba, H., Fouquet, Y., Gemmell, J.B. and Guerin, G.
    [1995] The internal structure of an active sea-floor massive sulphide deposit.Nature, 377(6551), pp.713–716.
    [Google Scholar]
  10. Jamieson, J.W. and Gartman, A.
    [2020]. Defining active, inactive, and extinct seafloor massive sulfide deposits.Marine Policy, 117, p.103926.
    [Google Scholar]
  11. Kowalczyk, P.
    [2008]. Geophysical Prelude to First Exploitation of Submarine Massive Sulphides.First Break, 26(11), 99–106.
    [Google Scholar]
  12. Kowalczyk, P., Bloomer, S. and Kowalczyk, M.
    [2015]. Geophysical methods for the mapping of submarine massive sulphide deposits, Extended Abstract, Offshore Technology Conference, 2015.
    [Google Scholar]
  13. Lipton, I.T.
    [2012]. Mineral Resource Estimate, Solwara 1 project, Bismark Sea, Papua New Guinea. Canadian NI43–101 form F1.
    [Google Scholar]
  14. Murton, B., Lehrmann, B., Dutrieux, A.M., Martins, S., Gil de la Iglesia, A., Stobbs, I., Barriga, F., Bialas, J., Dannowski, A., Vardy, M., North, L., Yeo, I., Lusty, P. and Petersen, S.
    [2019]. Geological fate of seafloor massive sulphides at the TAG hydrothermal field (Mid-Atlantic Ridge),Ore Geology Reviews, 107, 903–925.
    [Google Scholar]
  15. Sato, M. and Mooney, H.
    , [1960]. The electrochemical mechanism of sulphide self potentials,Geophysics, 25, 226–249.
    [Google Scholar]
  16. Szitkar, F., Dyment, J., Choi, Y. and Fouquet, Y.
    [2014a]. What causes low magnetization at basalt-hosted hydrothermal sites? Insights from inactive site Krasnov (MAR 16° 38′ N).Geochemistry, Geophysics, Geosystems, 15(4), pp.1441–1451.
    [Google Scholar]
  17. Szitkar, F., Dyment, J., Fouquet, Y., Honsho, C. and Horen, H.
    [2014b]. The magnetic signature of ultramafic-hosted hydrothermal sites.Geology, 42(8), pp.715–718.
    [Google Scholar]
  18. Van Dover, C.L.
    , [2011] Mining seafloor massive sulphides and biodiversity: what is at risk?.ICES Journal of Marine Science, 68(2), pp.341–348.
    [Google Scholar]
  19. Zierenberg, R.A., Fouquet, Y, Miller, D.J., Bahr, J.M., Baker, PA., Bjerkgård, T, Brunner, C.A., Duckworth, R.C., Gable, R., Gieskes, J. and Goodfellow, W.D.
    [1998] The deep structure of a sea-floor hydrothermal deposit.Nature, 392(6675), pp.485–488.
    [Google Scholar]
  20. Zhu, Z., Shen, J., Tao, C, Deng, X., Wu, T, Nie, Z., Wang, W. and Su, Z.
    [2020]. Autonomous underwater vehicle based marine multi-component self potential method: observation scheme and navigational correction, EGUGeoscientific Instrumentation, Methods and Data systems, https://doi.org/10.5194/gi-2020-24
    [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error