1887
Volume 39 Number 8
  • ISSN: 0263-5046
  • E-ISSN: 1365-2397

Abstract

Abstract

Hell Bourg landslide (Salazie, Reunion Island) is a large, inhabited, slow-moving landslide (>200 Mm3). This landslide covers and remobilizes debris from former volcanic flank collapses. The volume, lithology, structure and evolution through time of these ancient deposits make the Hell Bourg landslide particularly complex. To understand the dynamics and improve the hazard related to its displacements, geodetic, geomorpho-logic, and geologic investigations have been undertaken on this landslide for more than 20 years. Complementary investigations have been required to acquire a precise definition of this large landslide’s subsurface geometry and hydrogeology, necessary for a better understanding of its dynamics. In the present study, we combine different geophysical approaches (airborne electromagnetics, passive and active seismic data) to investigate the internal structure of the landslide. This method delivers accurate 3D images that provide useful additional information about the subsurface of the landslide. The models obtained of the subsurface are consistent with geomorphological and geological observations and allow the derivation of a new conceptual model of the 3D structure of the landslide. Thanks to this approach, new insights into the origin and mechanisms of the Hell Bourg landslide have been gained. This study shows the relevance of the multi-method approach for understanding large complex landslides. The work carried out on the Hell Bourg landslide opens up new avenues of research into large landslide mechanisms in a volcanic tropical environment.

Loading

Article metrics loading...

/content/journals/10.3997/1365-2397.fb2021063
2021-08-01
2021-09-27
Loading full text...

Full text loading...

References

  1. Aki, K. and Richards, P.G.
    [1980]. Quantitative seismology: Theory and methods. The Maple-Vail Book Manufacturing Group USA.
    [Google Scholar]
  2. Arnaud, N.
    [2005]. Les processus de démantèlement des volcans, le cas d’un volcan bouclier en milieu océanique: le Piton des Neiges, Île de la Réunion [Sciences de la Terre, Université de la Réunion]. Retrieved from http://www.theses.fr/2005LARE0011.
    [Google Scholar]
  3. Bard, P.-Y.
    and SESAME-Team. [2004]. Guidelines for the Implementation of the H / V Spectral Ratio Technique on Ambient Vibrations Measurements, Processing and Interpretation. In European Commission–EVG1-CT-2000-00026 SESAME (No. 0956-540X; Vol. 169, pp. 1–62). https://doi.org/10.1111/j.1365-246X.2006.03282.x.
    [Google Scholar]
  4. Baroň, I., Supper, R., Winkler, E., Motschka, K., Ahl, A., Čarman, M. and Kumelj, Š.
    [2013]. Airborne geophysical survey of the catastrophic landslide at Stože, Log pod Mangrtom, as a test of an innovative approach for landslide mapping in steep alpine terrains.Natural Hazards and Earth System Sciences, 13(10), 2543–550. https://doi.org/10.5194/nhess-13-2543-2013.
    [Google Scholar]
  5. Belle, P., Aunay, B., Bernardie, S., Grandjean, G., Ladouche, B., Mazué, R. and Join, J.L.
    [2014]. The application of an innovative inverse model for understanding and predicting landslide movements (Salazie cirque landslides, Reunion Island).Landslides, 11(3), 343–355. https://doi.org/10.1007/s10346-013-0393-5.
    [Google Scholar]
  6. Belle, P., Aunay, B., Lachassagne, P., Ladouche, B. and Join, J.L.
    [2018]. Control of tropical landcover and soil properties on landslides’ aquifer recharge, piezometry and dynamics.Water (Switzerland), 10(10), 12–14. https://doi.org/10.3390/w10101491.
    [Google Scholar]
  7. Bonnefoy-Claudet, S., Baize, S., Bonilla, L. F., Berge-Thierry, C., Pasten, C., Campos, J., Volant, P. and Verdugo, R.
    [2009]. Site effect evaluation in the basin of Santiago de Chile using ambient noise measurements.Geophysical Journal International, 176(3), 925–937. https://doi.org/10.1111/j.1365-246X.2008.04020.x.
    [Google Scholar]
  8. Bonnefoy-Claudet, S., Cornou, C., Bard, P. Y., Cotton, F., Moczo, P., Kristek, J. and Fäh, D.
    [2006]. H/V ratio: A tool for site effects evaluation. Results from 1-D noise simulations.Geophysical Journal International, 167(2), 827–837. https://doi.org/10.1111/j.1365-246X.2006.03154.x.
    [Google Scholar]
  9. Bonnefoy-Claudet, S., Cotton, F. and Bard, P.Y.
    [2006]. The nature of noise wavefield and its applications for site effects studies. A literature review.Earth-Science Reviews, 79(3–4), 205–227. https://doi.org/10.1016/j.earscirev.2006.07.004.
    [Google Scholar]
  10. Chavez-Garcia, F.J., Sanchez, L. and Hatzfeld, D.
    [1996]. Topographic site effects and HVSR. A comparison between observations and theory.Bulletin of the Seismological Society of America, 86([5), 1559–1573.
    [Google Scholar]
  11. Del Gaudio, V., Luo, Y. , Wang, Y. and Wasowski, J.
    [2018]. Using ambient noise to characterise seismic slope response: The case of Qiaozhuang peri-urban hillslopes (Sichuan, China).Engineering Geology, 246, 374–390. https://doi.org/10.1016/j.enggeo.2018.10.008.
    [Google Scholar]
  12. Gallipoli, M.R. and Mucciarelli, M.
    [2009]. Comparison of site classification from VS30, VS10, and HVSR in Italy.Bulletin of the Seismological Society of America, 99(1), 340–351. https://doi.org/10.1785/0120080083.
    [Google Scholar]
  13. Godio, A. and Bottino, G.
    [2001]. Electrical and electromagnetic investigation for landslide characterisation.Physics and Chemistry of the Earth, Part C: Solar, Terrestrial & Planetary Science, 26(9), 705–710. https://doi.org/10.1016/S1464-1917(01)00070-8.
    [Google Scholar]
  14. Grandjean, G., Pennetier, C., Bitri, A., Meric, O. and Malet, J.-P.
    [2006]. Caractérisation de la structure interne et de l’état hydrique de glissements argilo-marneux par tomographie géophysique : l’exemple du glissement-coulée de Super-Sauze (Alpes du Sud, France).Comptes Rendus Geoscience, 338(9), 587–595. https://doi.org/10.1016/j.crte.2006.03.013.
    [Google Scholar]
  15. Guillier, B., Cornou, C., Kristek, J., Moczo, P., Bonnefoy-Claudet, S., Bard, P. and Fah, D.
    [2006]. Simulation of seismic ambient vibrations: does the H/V provide quantitative information in 2D-3D structures?185. Genoble, France.
    [Google Scholar]
  16. Jongmans, D., Bièvre, G., Renalier, F., Schwartz, S., Beaurez, N. and Orengo, Y.
    [2009]. Geophysical investigation of a large landslide in glaciolacustrine clays in the Trièves area (French Alps).Engineering Geology, 109(1–2), 45–56. https://doi.org/10.1016/j.enggeo.2008.10.005.
    [Google Scholar]
  17. Jongmans, D. and Garambois, S.
    [2007]. Geophysical investigation of landslides : a review.Bulletin Societé Géologique de France, 178(2), 101–112.
    [Google Scholar]
  18. Kramer, S. L.
    [1996]. (BOOK) Geotechnical Earthquake Engineering. InPrentice-Hall, Inc., 6, 653. https://doi.org/10.1016/j.nedt.2011.11.013.
    [Google Scholar]
  19. Lacroix, P., Handwerger, A.L. and Bièvre, G.
    [2020]. Life and death of slow-moving landslides.Nature Reviews Earth & Environment, 17. https://doi.org/10.1038/s43017-020-0072-8.
    [Google Scholar]
  20. Martelet, G., Reninger, P.A., Perrin, J. and Deparis, J.
    [2014]. Acquisition géophysique héliportée de l’île de La Réunion (No. RP-63818-FR). Retrieved from BRGM website: https://infoterre.brgm.fr/rapports/RP-63818-FR.pdf
    [Google Scholar]
  21. Nakamura, Y.
    [1989]. A Method for Dynamic Characteristics Estimation of Subsurface using Microtremor on The Ground Surface.Quarterly Report of the Railway Technical Research Institute, 30(1), 25–33. https://doi.org/10.1149/1.2069306.
    [Google Scholar]
  22. Nakazato, H. and Konishi, N.
    [2005]. Subsurface structure exploration of wide landslide area by Aerial electromagnetic exploration.Landslides, 2(2), 165–169. https://doi.org/10.1007/s10346-005-0056-2.
    [Google Scholar]
  23. Oehler, J.-F., Labazuy, P. and Lénat, J.-F.
    [2004]. Recurrence of major flank landslides during the last 2-Ma-history of Reunion Island.Bulletin of Volcanology, 66(7), 585–598. https://doi.org/10.1007/s00445-004-0341-2.
    [Google Scholar]
  24. Oehler, J.-F., Lénat, J.-F. and Labazuy, P.
    [2008]. Growth and collapse of the Reunion Island volcanoes.Bulletin of Volcanology, 70(6), 717–742. https://doi.org/10.1007/s00445-007-0163-0.
    [Google Scholar]
  25. Pasquet, S., Bodet, L., Dhemaied, A., Mouhri, A., Vitale, Q., Rejiba, F., Flipo, N. and Guérin, R.
    [2015]. Detecting different water table levels in a shallow aquifer with combined P-, surface and SH-wave surveys: Insights from VP/VS or Poisson’s ratios.Journal of Applied Geophysics, 113, 38–50. https://doi.org/10.1016/j.jappgeo.2014.12.005.
    [Google Scholar]
  26. Pazzi, V. , Morelli, S. and Fanti, R.
    [2019]. A Review of the Advantages and Limitations of Geophysical Investigations in Landslide Studies.International Journal of Geophysics, 2019, 1–27. https://doi.org/10.1155/2019/2983087.
    [Google Scholar]
  27. Pazzi, V., Tanteri, L., Bicocchi, G., D’Ambrosio, M., Caselli, A. and Fanti, R.
    [2017]. H/V measurements as an effective tool for the reliable detection of landslide slip surfaces: Case studies of Castagnola (La Spezia, Italy) and Roccalbegna (Grosseto, Italy).Physics and Chemistry of the Earth, Parts A/B/C, 98, 136–153. https://doi.org/10.1016/j.pce.2016.10.014.
    [Google Scholar]
  28. Pilz, M., Parolai, S., Bindi, D., Saponaro, A. and Abdybachaev, U.
    [2014]. Combining Seismic Noise Techniques for Landslide Characterization.Pure and Applied Geophysics, 171(8), 1729–1745. https://doi.org/10.1007/s00024-013-0733-3.
    [Google Scholar]
  29. Rault, C., Thiery, Y., Aunay, B., Reninger, P.A., Chaput, M., Michon, L., Dewez, T.J.B. and Samyn, K.
    (in review). Landslide processes involved in volcano dismantling from past to present mechanisms: the cirque of Salazie, a remarkable open-air laboratory.
    [Google Scholar]
  30. Renalier, F., Jongmans, D., Campillo, M. and Bard, P.-Y.
    [2010]. Shear wave velocity imaging of the Avignonet landslide (France) using ambient noise cross correlation.Journal of Geophysical Research, 115(F3), F03032. https://doi.org/10.1029/2009JF001538.
    [Google Scholar]
  31. Reninger, P.A., Martelet, G., Deparis, J., Perrin, J. and Chen, Y.
    [2011]. Singular value decomposition as a denoising tool for airborne time domain electromagnetic data.Journal of Applied Geophysics, 75(2), 264–276. https://doi.org/10.1016/j.jappgeo.2011.06.034.
    [Google Scholar]
  32. Reninger, P.A., Martelet, G., Perrin, J. and Dumont, M.
    [2020]. Processing methodology for regional AEM surveys and local implications.Exploration Geophysics, 51(1), 143–154. https://doi.org/10.1080/08123985.2019.1680249.
    [Google Scholar]
  33. Samyn, K., Travelletti, J., Bitri, A., Grandjean, G. and Malet, J.-P.
    [2012]. Characterization of a landslide geometry using 3D seismic refraction traveltime tomography: The La Valette landslide case history.Journal of Applied Geophysics, 86, 120–132. https://doi.org/10.1016/j.jappgeo.2012.07.014
    [Google Scholar]
  34. Schuster, G.T. and Quintus-Bosz, A.
    [1993]. Wave path eikonal travel time inversion:Theory.Geophysics, 58(9), 1314–1323. https://doi.org/doi:10.1190/1.1443514.
    [Google Scholar]
  35. Siebert, L.
    [2002]. Landslides resulting from structural failure of volcanoes. In Catastrophic landslides: effects, occurrence, and mechanisms (Geological Society of America, 15, 209–235).
    [Google Scholar]
  36. Sridhar, M., Markandeyulu, A. and Chaturvedi, A.K.
    [2017]. Mapping subtrappean sediments and delineating structure with the aid of heliborne time domain electromagnetics: Case study from Kaladgi Basin, Karnataka.Journal of Applied Geophysics, 136, 9–18. https://doi.org/10.1016/j.jappgeo.2016.10.024.
    [Google Scholar]
  37. Supper, R., Baron, I., Ottowitz, D., Motschka, K., Gruber, S., Winkler, E., Jochum, B. and Romer, A.
    [2013]. Airborne geophysical mapping as an innovative methodology for landslide investigation: evaluation of results from the Gschliefgraben landslide, Austria.Natural Hazards and Earth System Sciences, 13(12), 3313–3328.
    [Google Scholar]
  38. Thiery, Y., Reninger, P. A., Lacquement, F., Raingeard, A., Lombard, M. and Nachbaur, A.
    [2017]. Analysis of Slope Sensitivity to Landslides by a Transdisciplinary Approach in the Framework of Future Development: The Case of La Trinité in Martinique (French West Indies).Geosciences, 7(4), 135. https://doi.org/10.3390/geosciences7040135.
    [Google Scholar]
  39. Thiery, Y., Reninger, P.-A. and Nachbaur, A.
    [2021]. Airborne Electromagnetics to Improve Landslide Knowledge in Tropical Volcanic Environments.Applied Sciences, 11(8), 3390. https://doi.org/10.3390/app11083390.
    [Google Scholar]
  40. Uhlemann, S., Hagedorn, S., Dashwood, B., Maurer, H., Gunn, D., Dijkstra, T. and Chambers, J.
    [2016]. Landslide characterization using P- and S-wave seismic refraction tomography — The importance of elastic moduli.Journal of Applied Geophysics, 134, 64–76. https://doi.org/10.1016/j.jappgeo.2016.08.014.
    [Google Scholar]
  41. Viezzoli, A., Christiansen, A.V., Auken, E. and Sørensen, K.
    [2008]. Quasi-3D modeling of airborne TEM data by spatially constrained inversion.Geophysics, 73(3), F105–F113. https://doi.org/10.1190/1.2895521.
    [Google Scholar]
  42. Vittecoq, B., Reninger, P.-A., Lacquement, F., Martelet, G. and Violette, S.
    [2019]. Hydrogeological conceptual model of andesitic watersheds revealed by high-resolution heliborne geophysics.Hydrology and Earth System Sciences, 23(5), 2321–2338. https://doi.org/10.5194/hess-23-2321-2019
    [Google Scholar]
  43. Wathelet, M., Chatelain, J.-L., Cornou, C., Giulio, G.D., Guillier, B., Ohrnberger, M. and Savvaidis, A.
    [2004]. Geopsy: A User-Friendly Open-Source Tool Set for Ambient Vibration Processing.Seismological Research Letters, 91(3), 1878–1889. https://doi.org/10.1785/0220190360.
    [Google Scholar]
  44. Yamanaka, H., Takemura, M., Ishida, H. and Niwa, M.
    [1994]. Characteristics of long-period microtremors and their applicability in exploration of deep sedimentary layers.Bulletin - Seismological Society of America, 84(6), 1831–1841.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1365-2397.fb2021063
Loading
/content/journals/10.3997/1365-2397.fb2021063
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error