Volume 39, Issue 11
  • ISSN: 0263-5046
  • E-ISSN: 1365-2397
Preview this article:
Zoom in

Marine-controlled source electromagnetic sounding across measurement scales: applications in hydrocarbons and beyond, Page 1 of 1

| /docserver/preview/fulltext/fb/39/11/fb2021085-1.gif

There is no abstract available for this article.
Use the preview function to the left.


Article metrics loading...

Loading full text...

Full text loading...


  1. Alvarez, P., Marcy, F., Vrijlandt, M., Skinnemoen, O., MacGregor, L., Nichols, K., Keirstead, R., Bolivar, F., Bouchrara, S., Smith, M., Tseng, H-W and Rappke, J.
    [2018]. Multi-physics characterisation of reservoir prospects in the Hoop area of the Barents Sea, Interpretation, 6(3), SG1–SG17.
    [Google Scholar]
  2. Andreis, D. and MacGregor, L.
    [2011]. Using CSEM to monitor production from a complex 3D gas reservoir: a synthetic case study, The Leading Edge, September 2011, 1070–1079.
    [Google Scholar]
  3. Attias, E., Weitemeyer, K., Holz, S., Naif, S., Minshull, T., Best, A., Haroon, A., Jegen-Kulcsar, M. and Berndt, C.
    , 2018. High resolution resistivity imaging of marine gas hydrate structures by combined inversion of CSEM towed and ocean bottom receiver data, Geophys. J. Int., 214, 1701–1714.
    [Google Scholar]
  4. Attias, E., Thomas, D., Sherman, D., Ismail, K. and Constable, S.
    [2020]. Marine electrical imagine reveals novel freshwater transport mechanism in Hawai’I, Science Advances, 6(1–8) DOI 10.1126/sciadv.abd4866.
    https://doi.org/10.1126/sciadv.abd4866 [Google Scholar]
  5. Ayani, M., Grana, D. and Liu, M.
    [2020]. Stochastic inversion method of time-lapse CSEM data for plume monitoring.Int. J. of Greenhouse Gas Control, 100, 1–15.
    [Google Scholar]
  6. Berre, L., Morten, J.P., Baillie, G. and Nerland, E.
    [2020]. Experience on controlled-source EM performance for exploration in Norway.Interpretation, 8, SQ25–SQ37.
    [Google Scholar]
  7. Constable, S., Kowalczyk, P. and Bloomer, S.
    [2018]. Measuring marine self potential using an autonomous underwater vehicle.Geophys. J. Int., 215, 49–60.
    [Google Scholar]
  8. Constable, S., Kannberg, P. and Weitemeyer, K.
    [2016]. Vulcan: A deep towed CSEM receiver, Geophys. Geochem.Geosys., 17, 1–23.
    [Google Scholar]
  9. Constable, S.
    [2013]. Review paper: instrumentation for marine magne-totelluric and controlled source electromagnetic sounding.Geophysical Propsecting, 61, 505–532.
    [Google Scholar]
  10. Cuevas, N.H. and Alumbaugh, D.
    [2011]. Near source response of a resistive layer to a horizontal or vertical electric dipole excitiation.Geophysics, 76, F353–F371.
    [Google Scholar]
  11. Du, Z. and Key, K.
    [2018]. Case study: North Sea heavy oil reservoir characterization from integrated analysis of towed streamer EM and dual sensor seismic data, The Leading Edge, August 2018, 608–615.
    [Google Scholar]
  12. Ellingsrud, S., Eidesmo, T., Johansen, S., Sinha, M.C., MacGregor, L.M. and Constable, S.
    [2002]. Remote sensing of hydrocarbon layers using sea-bed logging (SBL): Results of a cruise offshore West Africa.The Leading Edge, 21, 972–982.
    [Google Scholar]
  13. Engelmark, F., Mattsson, J., McKay, A. and Du, Z.
    [2014] Towed streamer EM comes of age.First Break, 32, 75–78.
    [Google Scholar]
  14. Evans, R.L., Sinha, M.C., Constable, S.C. and Unsworth, M.J.
    [1994]. On the electrical nature of the axial melt zone at 13uN on the East Pacific Rise. J. geophys. Res., 99, 577–588.
    [Google Scholar]
  15. Fazad, M. and Mondol, N.
    [2021]. Monitoring geological storage of CO2: a new approach.Nature Scientific Reports, https://doi.org/10.1038/s41598-021-85346-8.
    [Google Scholar]
  16. Gehrmann, R., Provenzano, G., Bottner, C., Marin-Moreno, H., Bayrakci, G., Tan, Y., Yilo, N., Djanni, A., Weitemeyer, K., Minshull, T., Bull, J., Karstens, J. and Berndt, C.
    , 2021. Porosity and free gas estimates from CSEM data at the Scanner Pockmark in the North Sea.Int. J. of Greenhouse Gas Control, 109, 1–15.
    [Google Scholar]
  17. Goswami, B., Weitemeyer, K., Bunz, S., Minshull, T., Westbrook, G., Ker, S. and Sinha, M.
    [2017]. Variations in pockmark composition at the Vestnesa Ridge: Insights from marine CSEM and seismic data.Geophys., Geochem., Geosys., 18, 1111–1125.
    [Google Scholar]
  18. Johansen, S., Panzer, M., Mittet, R., Amundsen, H., Lim, A., Vik, E., Landro, M. and Arntsen, B.
    [2019]. Deep electrical imaging of the ultraslow spreading Mohns Ridge.Nature, 567, 379.
    [Google Scholar]
  19. Helwig, S., Wood, W. and Gloux, B.
    [2019]. Vertical-vertical controlled source electromagnetic instrumentation and acquisition.Geophys. Prosp., 67, 1582–159.
    [Google Scholar]
  20. Lin, L., Abubaker, A. and Habashy, T.M.
    [2012]. Joint inversion of controlled-source electromagnetic and production data for reservoir monitoring.Geophysics, 77, ID9–ID22.
    [Google Scholar]
  21. MacGregor, L., Kowalczyk, P., Galley, C., Weitemeyer, K., Bloomer, S., Phillips, N. and Poctor, A.
    [2021]. Chracterization of seafloor mineral deposits using multiphysics datasets acquired from an AUV.First Break, 39, 1–7.
    [Google Scholar]
  22. MacGregor, L. and Tomlinson, J.
    [2014]. Marine Controlled Source Electromagnetic methods in the hydrocarbon industry: a tutorial on method and practice.Interpretation, 2, AH13–SH32.
    [Google Scholar]
  23. MacGregor, L.M., Sinha, M.C. and Constable, S.
    [2001]. Electrical resistivity structure of the Valu Fa Ridge, Lau Basin, from marine controlled source electromagnetic sounding, Geophys. J. Int., 146, 217–236.
    [Google Scholar]
  24. Micallef, A., Person, M., Haroon, A., Weymer, B., Jegen, M., Schwalenberg, K., Faghih, Z., Duan, S., Cohen, D., Mountjoy, J., Woelz, S., Gable, C., Avares, T. and Tiwari, A
    , 2020b. 3D characterisation and quantification of an offshore freshened groundwater system in the Canterbury Bight.Nature Communications, https://doi.org/10.1038/s41467-020-14770-7.
    [Google Scholar]
  25. Nguyen, A.K., Hanssen, P., Mittet, R., Jensen, H., Fogelin, L., Skaro, M., Rosenquist, M. and Van der Sman, P.
    [2017]. The next generation electromagnetic acquisition system, Expanded Abstract, 79th EAGE annual conference and exhibition, Paris, 2017.
    [Google Scholar]
  26. Park, J., Sauvin, G., Voge, M. and Vanneste, M.
    [2016]. 2.5D inversion and joint interpretation of marine EM data at Sleipner CO2 storage, EAGE Near Surface Geoscience Conference 2016, extended abstract.
    [Google Scholar]
  27. Park, J., Vanneste, M., Bohloli, B., Viken, I. and Bjornara, T.I.
    [2014]. In situ resistivity of CO2 plume at Sleipner from CSEM and gravity data, Extended Abstract, 1st applied shallow marine geophysics conference, Athens, 2014.
    [Google Scholar]
  28. Price, A., Twarz, C. and Gabrielsen, P.
    [2019]. Building confidence in CSEM for exploration – Benchmarking, SEG expanded abstract, 89th SEG annual meeting, San Antonio, 10.1190/segam2019‑3214720.1.
    https://doi.org/10.1190/segam2019-3214720.1 [Google Scholar]
  29. Subagjo, I., Dupuy, B., Park, J., Romdhane, A., Querendez, E. and Stovas, A.
    [2018]. Joint rock physics inversions of seismic and electromagnetic data for CO2 monitoring at Sleipner, EAGE Near Surface Geoscience conference 2018, extended abstract.
    [Google Scholar]
  30. Tharimela, R., Augustin, A., Ketzer, M., Cupertino, J., Miller, D., Viana, A. and Senger, K.
    [2019]. 3D CSEM imaging of gas hydrates, Insights from the Pelotas Basin offshore Brazil.Interpretation, 7, SH111–SH131.
    [Google Scholar]
  31. Young, P.D. and Cox, C.S.
    [1981]. Electromagnetic active source sounding near the East Pacific Rise.Geophys. Res. Letts., 8, 1043–1046.
    [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error