1887
Volume 40 Number 1
  • ISSN: 0263-5046
  • E-ISSN: 1365-2397

Abstract

Abstract

Evaluation of hydraulic fracturing relies on indirect inference from measurements that are distorted by distance and noise of various kinds, so reservoir monitoring technology that places the measurement as close to the completion as possible is important. Crosswell tomography is just such a technology, placing source and sensor in the plane of the feature to be analysed, and is an excellent technology for making in situ estimates of subsurface properties in simple geologic settings when source-receiver separation is small and when noise levels are low. Since these conditions are not typical in-field scale surveys of unconventional shales, this study overcomes these deficits by incorporating vertically transverse isotropy in raytracing and applying a strong source effort to increase signal-to-noise. The survey used Schlumberger’s Ztrac source and multicomponent geophones to both generate and record compressional and shear wave energy, matching baseline and repeat surveys within a few days of hydraulic fracturing to detect subtle timelapse changes prior to flowback and fluid diffusion. The result is a unique characterization of fracture creation due to hydraulic fracturing, highlighting an out of zone response and subsequent impact on the bounding limestone layers.

Loading

Article metrics loading...

/content/journals/10.3997/1365-2397.fb2022005
2022-01-01
2022-01-26
Loading full text...

Full text loading...

References

  1. Ajo-Franklin, J. et al.
    , [2007]. Applying compactness constraints to differential traveltime tomography, Geophysics, vol. 72(4).
    [Google Scholar]
  2. Alkhalifah, T.
    [1997]. Velocity analysis using nonhyperbolic moveout in transversely isotropic media, Geophysics, vol. 62(6).
    [Google Scholar]
  3. Alford, R.M.
    [1986]. Shear Data in the Presence of Azimuthal Anisotropy, SEG Technical Program Extended Abstracts, https://doi.org/10.1190/1.1440605.
    [Google Scholar]
  4. Aster, R., Borchers, B. and Thurber, C.
    [2019]. Parameter Estimation and Inverse Problems, Third Edition: Elsevier, ISBN: 978-0-12-804651-7.
    [Google Scholar]
  5. Berryman, James G.
    , [1991]. Lecture Notes: Nonlinear Inversion and Tomography: Borehole Seismic Tomography, available at http://sepwww.stanford.edu/sep/berryman/NOTES/lecture_notes.html.
    [Google Scholar]
  6. Bowers, C.
    [2014]. Analyzing Fracture Stimulation of Middle Devonian Strata in Clearfield County Pennsylvania Using a 3D Geomechanical Fault Model and Microseismic: Masters Thesis, West Virginia University, UMI 1573296.
    [Google Scholar]
  7. Byun, B.
    [1984]. Seismic Parameters for Transversely Isotropic Media, Geophysics, vol. 49(11).
    [Google Scholar]
  8. Byun, B. et al.
    , [1989]. Anisotropic Velocity Analysis for Lithology Discrimination, Geophysics, vol. 54(12).
    [Google Scholar]
  9. Casasanta, L. et al.
    , [2008]. 3D Anisotropic Ray Tracing by Ray Path Optimization, SEG Technical Program Extended Abstracts, https://doi.org/10.1190/1.3059315.
    [Google Scholar]
  10. Ciezobka, J., Courtier, J. and Wicker, J.
    [2018]. Hydraulic Fracturing Test Site (HFTS) – Project Overview and Summary of Results, URTeC Conference2018, https://doi.org/10.15530/urtec-2018-2937168.
    [Google Scholar]
  11. Hansen, P.C.
    [2010]. Discrete Inverse Problems: Insights and Algorithms: Society for Industrial and Applied Mathematics, https://doi.org/10.1137/1.9780898718836.
    [Google Scholar]
  12. Kumar, D. et al.
    , [2004]. Traveltime Calculation and Prestack Depth Migration in Tilted Transversely Isotropic Media, Geophysics, vol. 69(1).
    [Google Scholar]
  13. Mavko, G., Mukerji, T. and Dvorkin, J.
    [2009]. The Rock Physics Handbook, Second Edition: Cambridge University Press.
    [Google Scholar]
  14. Moser, T.J.
    [1991]. Shortest Path Calculation of Seismic Rays, Geophysics, vol. 56(1).
    [Google Scholar]
  15. Nalonnil, A. et al.
    , [2013]. Next Generation Borehole Seismic: Dual-Wavefield Vibrator System, International Petroleum Technology Conference, IPTC 16780.
    [Google Scholar]
  16. Peterson, J.
    [2001]. Pre-inversion Corrections and Analysis of Radar Tomographic Data, Journal of Environmental and Engineering Geophysics, vol. 6(1).
    [Google Scholar]
  17. Rampton, D. and Hammack, R.
    [2018], Fracture detection using repeat crosswell seismic in a Marcellus Reservoir, SEG Technical Program Expanded Abstracts, https://doi.org/10.1190/segam2018-2997734.1.
    [Google Scholar]
  18. Warpinski, N.R., Branagan, P.T., Peterson, R.E. and Wolhart, S.L.
    [1998]. An Interpretation of M-Site Hydraulic Fracture Diagnostic Results, paper presented at the SPE Rocky Mountain Regional/Low-Permeability Reservoirs Symposium, Denver, Colorado, April 1998. doi: https://doi.org/10.2118/39950-MS.
    [Google Scholar]
  19. Roberts, E.
    [2013]. Structure Segmentation and Transfer Faults in the Marcellus Shale, Clearfield County, Pennsylvania: Implications for Gas Recovery Efficiency and Risk Assessment Using 3D Seismic Attribute Analysis: Masters Thesis, West Virginia University, UMI Number: 1549777.
    [Google Scholar]
  20. Rutledge, J. et al.
    , [2015]. Microseismic Shearing Driven by Hydraulic-Fracture Opening: An Interpretation of Source-Mechanism Trends, The Leading Edge, vol. 34(8), https://doi.org/10.1190/tle34080926.1.
    [Google Scholar]
  21. Sondergeld, C. et al.
    , [2010]. Elastic Anisotropy of Shales, The Leading Edge, vol. 30(3).
    [Google Scholar]
  22. Suroso, T. et al.
    , [2017]. Estimating Anisotropy Parameter by Shear Wave Splitting of Crosswell Seismic Data: A Case Study on Inter-bedded Sand-Shale Layers, Southeast Asian Conference on Geophysics, IOP Conf. Series: Earth and Environmental Science, vol. 62, doi:10.1088/1755‑1315/62/1/012019.
    https://doi.org/10.1088/1755-1315/62/1/012019 [Google Scholar]
  23. Thomsen, L.
    [1986]. Weak Anisotropy, Geophysics, vol. 51(10).
    [Google Scholar]
  24. Vernik, L. and Liu, X.
    [1997]. Velocity anisotropy in shales: A petrophysical study, Geophysics, vol. 62(2).
    [Google Scholar]
  25. Vernik, L. and Milovac, J.
    [2011]. Rock physics of organic shales:The Leading Edge, vol. 30(3).
    [Google Scholar]
  26. Warpinski, N.R. and Teufel, L.W.
    [1987]. Influence of Geologic Discontinuities on Hydraulic Fracture Propagation:Journal of Petroleum Technology, SPE 13224, vol. 39(2).
    [Google Scholar]
  27. White, M.C.A., Fang, H., Nakata, N. and Ben-Zion, Y.
    [2020]. PyKonal: A Python Package for Solving the Eikonal Equation in Spherical and Cartesian Coordinates Using the Fast Marching Method, Seismological Research Letters, vol. 91(4), pp. 2378–2389, doi:10.1785/0220190318.
    https://doi.org/10.1785/0220190318 [Google Scholar]
  28. Zhang, Z. et al.
    , [2015]. Improving Microseismic Event Location Accuracy with Head Wave Arrival Time: Case Study Using Marcellus Shale, SEG Technical Program Extended Abstracts, http://dx.doi.org/10.1190/segam2015-5919420.1.
    [Google Scholar]
  29. Zorn, Erich
    , AbhashKumar, WilliamHarbert, and RichardHammack et al. , [2017]. Geomechanical lithology-based analysis of microseismicity in organic shale sequences: A Pennsylvania Marcellus Shale example:The Leading Edge, vol. 36(10).
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1365-2397.fb2022005
Loading
/content/journals/10.3997/1365-2397.fb2022005
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error