1887
Volume 40, Issue 4
  • ISSN: 0263-5046
  • E-ISSN: 1365-2397
PDF

Abstract

Abstract

Carbon capture and storage (CCS) is one of a number of mitigation options and a key component of some proposed negative emissions technologies that can be considered to stabilize atmospheric greenhouse gas concentrations in order to meet the targets set out in the Paris Agreement. CCS involves the capture of CO emissions produced from industrial and power generation sources, followed by transport to underground geological storage and long-term isolation from the atmospheric system. Here, we provide a brief introductory review of the steps involved with CCS developments, different options for geological storage, the potential role of CCS in the energy transition, and a discussion of some of the key associated risks and uncertainties. In short, CCS can provide an important avenue for mitigating the increase of greenhouse gases in the atmosphere, particularly during the energy transition.

Loading

Article metrics loading...

/content/journals/10.3997/1365-2397.fb2022028
2022-04-01
2025-06-21
Loading full text...

Full text loading...

/deliver/fulltext/fb/40/4/fb2022028.html?itemId=/content/journals/10.3997/1365-2397.fb2022028&mimeType=html&fmt=ahah

References

  1. Antonini, C., Treyer, K., Streb, A., van der Spek, M., Bauer, C. and Mazzotti, M. [2020]. Hydrogen production from natural gas and biomethane with carbon capture and storage – A techno-environmental analysis.Sustainable Energy Fuels, 4, 2967–2986. https://doi.org/10.1039/D0SE00222D.
    [Google Scholar]
  2. Azar, C., Lindgren, K., Obersteiner, M., Riahi, K., van Vuuren, D.P., den Elzen, K.M.G.J., Möllersten, K. and Larson, E.D. [2010]. The feasibility of low CO2 concentration targets and the role of bio-energy with carbon capture and storage (BECCS).Climatic Change, 100, 195–202. https://doi.org/10.1007/s10584-010-9832-7.
    [Google Scholar]
  3. Baklid, A., Korbol, R. and Owren, G. [1996]. Sleipner Vest CO2 disposal, CO2 injection into a shallow underground aquifer.SPE Annual Technical Conference and Exhibition, 6-9 October 1996, Denver, Colorado, USA.
    [Google Scholar]
  4. Benson, S.M. and Surles, T. [2006]. Carbon dioxide capture and storage: an overview with emphasis on capture and storage in deep geological formations.Proceedings of the IEEE, 94(10), 1795–1805. https://doi.org/10.1109/JPROC.2006.883718.
    [Google Scholar]
  5. Bentham, M. and Kirby, M. [2005]. CO2 storage in saline aquifers.Oil & Gas Science and Technology, 60(3), 559–567.
    [Google Scholar]
  6. Bowden, A.R., Pershke, D.F. and Chalaturnyk, R. [2013]. Biosphere risk assessment for CO2 storage projects.International Journal of Greenhouse Gas Control, 16, S291–S308. https://doi.org/10.1016/j.ijggc.2013.02.015.
    [Google Scholar]
  7. Brandl, P., Bui, M., Hallett, J.P. and MacDowell, N. [2021]. Beyond 90% capture: Possible, but at what cost?International Journal of Greenhouse Gas Control, 105, 103239. https://doi.org/10.1016/j.ijggc.2020.103239.
    [Google Scholar]
  8. Busch, A., Krooss, B.M., Gensterblum, Y., Van Bergen, F. and Pagnier, H.J.M. [2003]. High-pressure adsorption of methane, carbon dioxide and their mixtures on coals with a special focus on the preferential sorption behaviour.Journal of Geochemical Exploration, 78, 671–74. https://doi.org/10.1016/S0375-6742(03)00122-5.
    [Google Scholar]
  9. Cooper, C. [2009]. A technical basis for carbon dioxide storage. Chris Fowler International, London and New York.
    [Google Scholar]
  10. Directive 2009/31/EC of the European Parliament and of the Council of 23 April 2009 on the geological storage of carbon dioxide and amending Council Directive 85/337/EEC, European Parliament and Council Directives 2000/60/EC, 2001/80/EC, 2004/35/EC, 2006/12 /EC, 2008/1/EC and Regulation (EC) No 1013/2006 (1). Official Journal of the European Union2009; L140:114–35.
    [Google Scholar]
  11. Eide, L.I., Batum, M., Dixon, T., Elamin, Z., Graue, A., Hagen, S., Hovorka, S., Nazarian, B., Nøkleby, P.H., Olsen, G.I., Ringrose, P. and Vieira, R.A.M. [2019]. Enabling large-scale carbon capture, utilisation, and storage (CCUS) using offshore carbon dioxide (CO2) infrastructure developments – a review.Energies, 12(10), 1945. https://doi.org/10.3390/en12101945.
    [Google Scholar]
  12. Eiken, O., Ringrose, P., Hermanrud, C., Nazarian, B., Torp, T.A. and Høier, L. [2011]. Lessons learned from 14 years of CCS operations: Sleipner, In Salah and Snøhvit.Energy Procedia, 4, 5541–5548. https://doi.org/10.1016/j.egypro.2011.02.541.
    [Google Scholar]
  13. Feron, P.H.M. and Hendriks, C.A. [2005]. CO2 capture process principles and costs.Oil & Gas Science and Technology, 60(3), 451–459. https://doi.org/10.2516/ogst:2005027.
    [Google Scholar]
  14. Godec, M., Kuuskraa, V. , Van Leeuwen, T., Melzer, T.L. and Wildgust, N. [2011]. CO2 storage in depleted oil fields: the worldwide potential for carbon dioxide enhanced oil recovery.Energy Procedia, 4, 2162–2169. https://doi.org/10.1016/j.egypro.2011.02.102.
    [Google Scholar]
  15. Godec, M., Koperna, G., Petrusak, R. and Oudinot, A. [2014]. Enhanced gas recovery and CO2 storage in gas shales: a summary review of its status and potential.Energy Procedia, 63, 5849–5857. https://doi.org/10.1016/j.egypro.2014.11.618.
    [Google Scholar]
  16. Gibbins, J. and Chalmers, H. [2008]. Carbon capture and storage.Energy Policy, 36, 4317–4322. https://doi.org/10.1016/j.enpol.2008.09.058.
    [Google Scholar]
  17. Gislason, S.R. and Oelkers, E.H. [2014]. Carbon storage in basalt.Science, 344(6182), 373–374. https://doi.org/10.1126/science.1250828.
    [Google Scholar]
  18. Global CCS Institute [2020]. Global status of CCS 2020, Australia.
    [Google Scholar]
  19. Harrison, B. and Falcone, G. [2014]. Carbon capture and sequestration versus carbon capture utilisation and storage for enhanced oil recovery.Acta Geotechnica, 9, 29–38. https://doi.org/10.1007/s11440-013-0235-6.
    [Google Scholar]
  20. Haszeldine, R.S. [2009]. Carbon capture and storage: how green can black be?Science, 325, 1647–1652. https://doi.org/10.1126/science.1172246.
    [Google Scholar]
  21. Herzog, H., Drake, E. and Adams, E. [1997]. CO2 capture, reuse, and storage technologies for mitigating global climate change: a white paper.Massachusetts Institute of Technology Energy Laboratory, Cambridge.
    [Google Scholar]
  22. Holloway, S. [1997]. An overview of the underground disposal of carbon dioxide.Energy Conversion and Management, 38, S193–S198. https://doi.org/10.1016/S0196-8904(96)00268-3.
    [Google Scholar]
  23. IPCC [2005]. IPCC Special Report Carbon Dioxide Capture and Storage.Cambridge University Press, UK.
    [Google Scholar]
  24. IPCC [2014]. Climate change 2014: mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge University Press, UK.
    [Google Scholar]
  25. IPCC [2018]. Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. World Meteorological Organization, Geneva, Switzerland.
    [Google Scholar]
  26. IPCC [2021]. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge University Press, UK.
    [Google Scholar]
  27. Jenkins, C.R., Cook, P.J., Ennis-King, J., Undershultz, J., Boreham, C., Dance, T., de Caritat, P. , Etheridge, D.M., Freifeld, B.M., Hortle, A., Kirste, D., Paterson, L., Pevzner, R., Schacht, U., Sharma, S., Stalker, L. and Urosevic, M. [2012]. Safe storage and effective monitoring of CO2 in depleted gas fields.PNAS, 109(2), E35–E41. https://doi.org/10.1073/pnas.1107255108.
    [Google Scholar]
  28. Keating, E., Hakala, J., Viswanathan, H., Carey, J., Pawar, R., Guthrie, G. and Fessenden-Rahn, J. [2013]. CO2 leakage impacts on shallow groundwater: Field-scale reactive transport simulations informed by observations at a natural analog site.Applied Geochemistry, 30, 136–147. https://doi.org/10.1016/j.apgeochem.2012.08.007.
    [Google Scholar]
  29. Kemper, J. [2015]. Biomass and carbon dioxide capture and storage: A review.International Journal of Greenhouse Gas Control, 40, 401–430. https://doi.org/10.1016/j.ijggc.2015.06.012.
    [Google Scholar]
  30. MacDowell, N., Florin, N., Buchard, A., Hallett, J., Galindo, A., Jackson, G., Adjiman, C.S., Williams, C.K., Shah, N. and Fennell, P. [2010]. An overview of CO2 capture technologies.Energy and Environmental Science, 3(11), 1645–1669. https://doi.org/10.1039/C004106H.
    [Google Scholar]
  31. NETL [2009]. Monitoring, verification, and accounting of CO2 stored in deep geologic formations. National Energy Technology Laboratory.
    [Google Scholar]
  32. OSPAR, 2007/1. OSPAR decision 2007/1 to prohibit the storage of carbon dioxide streams in the water column or on the sea bed, Annex 5, OSPAR Convention for the Protection of the Marine Environment of the NorthEast Atlantic.
    [Google Scholar]
  33. Pacala, S. and Socolow, R. [2004]. Stabilization wedges: solving the climate problem for the next 50 years with current technologies.Science, 305, 968–972. https://doi.org/10.1126/science.1100103.
    [Google Scholar]
  34. Parmiter, P. and Bell, R. [2020]. Public perception of CCS: A Review of Public Engagement for CCS Projects. EU CCUS Projects Network.
    [Google Scholar]
  35. Pawar, R.J., Bromhal, G.S., Carey, J.W., Foxall, W., Korre, A., Ringrose, P.S., Tucker, O., Watson, M.N. and White, J.A. [2015]. Recent advances in risk assessment and risk management of geologic CO2 storage.International Journal of Greenhouse Gas Control, 40, 292–311. https://doi.org/10.1016/j.ijggc.2015.06.014.
    [Google Scholar]
  36. Peters, G.P., Andrew, R.M., Canadell, J.G., Fuss, S., Jackson, R.B., Korsbakken, J.I., Le Quéré, C. and Nakicenovic, N. [2017]. Key indicators to track current progress and future ambition of the Paris Agreement.Nature Climate Change, 7(2), 118–122. https://doi.org/10.1038/nclimate3202.
    [Google Scholar]
  37. Rani, S., Padmanabhan, E. and Prusty, B.K. [2019]. Review of gas adsorption in shales for enhanced methane recovery and CO2 storage.Journal of Petroleum Science and Engineering, 175, 634–643. https://doi.org/10.1016/j.petrol.2018.12.081.
    [Google Scholar]
  38. Ringrose, P.S. [2017]. Principles of sustainability and physics as a basis for the low-carbon energy transition.Petroleum Geoscience, 23(3), 287–297. https://doi.org/10.1144/petgeo2016-060.
    [Google Scholar]
  39. Ringrose, P.S. [2018]. The CCS hub in Norway: some insights from 22 years of saline aquifer storage.Energy Procedia, 146, 166–172. https://doi.org/10.1016/j.egypro.2018.07.021.
    [Google Scholar]
  40. Ringrose, P.S. [2020]. How to Store CO2 Underground: Insights from early-mover CCS Projects. Springer International Publishing.
    [Google Scholar]
  41. Ringrose, P.S. and Meckel, T.A. [2019]. Maturing global CO2 storage resources on offshore continental margins to achieve 2DS emissions reductions.Scientific Reports, 9, 17944. https://doi.org/10.1038/s41598-019-54363-z.
    [Google Scholar]
  42. Ringrose, P.S., Furre, A.-K., Gilfillan, S.M.V., Krevor, S., Landrø, M., Leslie, R., Meckel, T., Nazarian, B. and Zahid, A. [2021]. Storage of carbon dioxide in saline aquifers: Physicochemical processes, key constraints, and scale-up potential.Annual Review of Chemical and Biomolecular Engineering, 12, 471–494. https://doi.org/10.1146/annurev-chembio-eng-093020-091447.
    [Google Scholar]
  43. Wu, L., Thorsen, R., Ottesen, S., Meneguolo, R., Hartvedt, K., Ringrose, P.S. and Nazarian, B. [2021]. Significance of fault seal in assessing CO2 storage capacity and containment risks – an example from the Horda Platform, northern North Sea.Petroleum Geoscience, 27, pet-geo2020-102. http://dx.doi.org/10.1144/petgeo2020-102.
    [Google Scholar]
/content/journals/10.3997/1365-2397.fb2022028
Loading
/content/journals/10.3997/1365-2397.fb2022028
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error