1887
Volume 40, Issue 5
  • ISSN: 0263-5046
  • E-ISSN: 1365-2397
Preview this article:

There is no abstract available.

Loading

Article metrics loading...

/content/journals/10.3997/1365-2397.fb2022037
2022-05-01
2024-03-29
Loading full text...

Full text loading...

References

  1. Ali, M.Y., Fairhead, J.D., Green. C.M. and Noufal, A. [2017]. Basement structure of the United Arab Emirates derived from an analysis of regional gravity and aeromagnetic database:Tectonophysics, 712–713, 503–522, https://doi.org/10.1016/j.tecto.2017.06.006.
    [Google Scholar]
  2. Armstrong, H.A., Wagner, T., Herringshaw, L., Farnsworth, A.J., Lunt, D.J., Harland, M., Imber, J., Loptson, C. and Atar, E.F.L. [2016]. Hadley circulation and precipitation changes controlling black shale deposition in the Late Jurassic Boreal Seaway:Paleoceanography and Paleocli-matology, 31, 1041–1053, https://doi.org/10.1002/2015PA002911.
    [Google Scholar]
  3. Bonne, K.P.M. [2014]. Reconstruction of the evolution of the Niger River and implications for sediment supply to the Equatorial Atlantic margin of Africa during the Cretaceous and the Cenozoic: Geological Society of London Special Publication, 386, 327–349, https://doi.org/10.1144/SP386.20.
    [Google Scholar]
  4. Campbell, S., Mazur, S., Henshaw, N., Salem, A., Sebastiao, A., Saweka, J. and Oliveira, A. [2012]. Kwanza Basin; sub-salt basin structure and sediment thickness from integrated analysis of high resolution aeromagnetic data: Abstracts: American Association of Petroleum Geologists Search and Discovery Article #90142, https://www.search-anddiscovery.com/abstracts/html/2012/90142ace/abstracts/campb02.htm.
    [Google Scholar]
  5. Cascone, L., Green, C., Campbell, S., Salem, A. and Fairhead, D. [2017]. ACLAS - A method to define geologically significant lineaments from potential-field data:Geophysics, 82, G87–G100, https://doi.org/10.1190/geo2016-0337.1.
    [Google Scholar]
  6. Cheyney, S., Campbell, S. and Somerton, I. [2015]. A new global sediment thickness map of the world:GeoExPro, 12(5), 32–25. https://www.geoexpro.com/articles/2015/10/a-new-global-sediment-thickness-map-of-the-world.
    [Google Scholar]
  7. Cheyney, S., Green, C.M., Campbell, S.J. and De Lerma, D. [2016]. Applying magnetic magnitude transforms to aid structural mapping in areas where the RTP calculation is unreliable:78th EAGE Conference and Exhibition, 2016, 1–5, https://doi.org/10.3997/2214-4609.201600632.
    [Google Scholar]
  8. Drachev, S.S., Mazur, S., Campbell, S., Green, C., Shkarubo, S.I. and Tishchenko, A. [2018]. Crustal architecture of the Laptev rift system in the east Siberian arctic based on 2D long-offset seismic profiles and gravity modelling:Petroleum Geoscience, 24, 402–413, https://doi.org/10.1144/petgeo2016-143.
    [Google Scholar]
  9. Drachev, S.S., Mazur, S., Campbell, S., Green, C., Shkarubo, S.I. and Tishchenko, A. [2018]. Crustal architecture of the East Siberian Arctic Shelf and adjacent Arctic Ocean constrained by seismic data and gravity modeling results:Journal of Geodynamics, 119, 123–148, https://doi.org/10.1016/j.jog.2018.03.005.
    [Google Scholar]
  10. Fairhead, J.D., Salem, A., Cascone, L., Hammill, M., Masterton, S. and Samson, E. [2011]. New developments of the magnetic tilt-depth method to improve structural mapping of sedimentary basins:Geophysical Prospecting, 59, 1072–1086, https://doi.org/10.1111/j.1365-2478.2011.01001.x.
    [Google Scholar]
  11. Fairhead, J.D., Green, C.M., Masterton, S.M. and Guiraud, R. [2013]. The role that plate tectonics, inferred stress changes and stratigraphic unconformities have on the evolution of the West and Central African rift system and the Atlantic continental margins:Tectonophysics, 594, 118–127, https://doi.org/10.1016/j.tecto.2013.03.021.
    [Google Scholar]
  12. Farnsworth, A., Lunt, D.J., Robinson, S.A., Valdes, P.J., Roberts, W.H.G., Clift, P.D., Markwick, P., Tao, S., Wrobel, N., Bragg, F., Kelland, S.J. and Pancost, R.D. [2019]. Past East Asian monsoon evolution controlled by paleogeography, not CO2:Science Advances, 5, 13, DOI: 10.1126/sciadv.aax1697.
    [Google Scholar]
  13. Guy, A., Schulmann, K., Munschy, M., Miehe, J.M., Edel, J.B., Lexa, O. and Fairhead, D. [2014]. Geophysical constraints for terrane boundaries in southern Mongolia:Journal of Geophysical Research: Solid Earth, 119(10), 7966–7991, https://doi.org/10.1002/2014JB011026.
    [Google Scholar]
  14. Harland, M., Valdes, P., Lunt, D.J., Francis, J.E., Farnsworth, A., Loptson, C., Beerling, D.J. and Markwick, P.J. [2019]. Evaluating northern high-latitude paleoclimate model results using paleobotanical evidence from the Middle Cretaceous:Society for Sedimentary Geology Special Publication, 108, https://doi.org/10.2110/sepmsp.108.08.
    [Google Scholar]
  15. Heins, W.A. and Kairo, S. [2007]. Predicting sand character with integrated genetic analysis: Geological Society of America Special Paper, 420, 345–379. doi:10.1130/2006.2420(20).
    https://doi.org/10.1130/2006.2420(20) [Google Scholar]
  16. Herold, N., Buzan, J., Seton, M., Goldner, A., Green, J.A.M., Müller, R.D., Markwick, P. and Huber, M. [2014]. A suite of early Eocene (∼ 55 Ma) climate model boundary conditions:Geoscientific Model Development, 7, 2077–2090, https://doi.org/10.5194/gmd-7-2077-2014.
    [Google Scholar]
  17. Inglis, G.N., Farnsworth, A., Lunt, D., Foster, G.L., Hollis, C.J., Pagani, M., Jardine, P.E., Pearson, P.N., Markwick, P., Galsworthy, A.M.J., Raynham, L., Taylor, K.W.R. and Pancost, R.D. [2015]. Descent toward the icehouse; Eocene sea surface cooling inferred from GDGT distributions:Paleoceanography and Paleoclimatology, 30, 1000–1020, https://doi.org/10.1002/2014PA002723.
    [Google Scholar]
  18. Lander, R.H., Larese, R.H. and Bonnell, L.M. [2008]. Toward more accurate quartz cement models: the importance of euhedral versus noneuhedral growth rates:American Association of Petroleum Geologists Bulletin, 92, 1537–1563.
    [Google Scholar]
  19. Liu, W.N., Li, C.F., Li, J.B., Fairhead, D. and Zhou, Z.Y. [2014]. Deep structures of the Palawan and Sulu Sea and their implications for opening of the South China Sea:Marine and Petroleum Geology, 58B, 721–735, https://doi.org/10.1016/j.marpetgeo.2014.06.005.
    [Google Scholar]
  20. Markwick, P.J. and Valdes, P.J. [2004]. Palaeo-digital elevation models for use as boundary conditions in coupled ocean–atmosphere GCM experiments: a Maastrichtian (late Cretaceous) example.Palaeo-ge-ography, Palaeoclimatology, Palaeoecology, 213, 37–63, https://doi.org/10.1016/j.palaeo.2004.06.015.
    [Google Scholar]
  21. Markwick, P., Carey, P., Bonne, K., Wilson, K., Galsworthy, A., Raynham, L,, Eue, D., Masterton, S. and Baliff, R. [2012]. The evolution of East African rivers systems, tectonics and palaeogeography since the late Jurassic:Geological Society of London Conference East Africa Petroleum Province of the 21st Century, p.18–19.
    [Google Scholar]
  22. Niezgodzki, I., Knorr, G., Lohmann, G., Tyszka, J. and Markwick, P.J. , [2017]. Late Cretaceous climate simulations with different CO2 levels and subarctic gateway configurations; a model-data comparison:Pale-oceanography, 32, 980–998, https://doi.org/10.1002/2016PA003055.
    [Google Scholar]
  23. Redmile, A. [2021]. Prediction and risking of Jurassic source rocks, offshore Nova Scotia: Nova Scotia Offshore Energy Research Association Webinar Serieshttps://oera.ca/outreach/oera-webinar-series/prediction-and-risking-jurassic-source-rocks-offshore-nova-scotia.
    [Google Scholar]
  24. Robinson, S.A., Ruhl, M., Astley, D.L., Naafs, D.A., Farnsworth, A.J., Bown, P.R., Jenkyns, H.C., Lunt, D.J., O’Brien, C., Pancost, R.D. and Markwick, P.J. [2017]. Early Jurassic North Atlantic sea-surface temperatures from TEX86 palaeothermometry:Sedimentology, 64, 215–230, https://doi.org/10.1111/sed.12321.
    [Google Scholar]
  25. Sagi, D.A., Hill, C.J., Masterton, S.M., Henshaw, N.G., Tierney, D.S. and Sevastjanova, I. [2016]. A revised plate model for the Myanmar and Andaman Sea regions and its effects on petroleum systems: American Association of Petroleum Geologists, Search and Discovery Article #90259, https://www.searchanddiscovery.com/abstracts/html/2016/90259ace/abstracts/2382153.html.
    [Google Scholar]
  26. Sagi, D.A., Webb, P., Henshaw, N., Franklin, B. and Cheyney . [2015]. The opening history of the Gulf of Mexico; testing plate models in a global context: American Association of Petroleum Geologists Search and Discovery Article #90216, https://www.searchanddiscovery.com/abstracts/html/2015/90216ace/abstracts/2102964.html.
    [Google Scholar]
  27. Salem, A.A. and Mohammed, Y. [2015]. Mapping basement structures in the northwestern offshore of Abu Dhabi from high-resolution aeromagnetic data:Geophysical Prospecting, 726–740, https://doi.org/10.1111/1365-2478.12266.
    [Google Scholar]
  28. Salem, A., Green, C., Cheyney, S., Fairhead, D.J., Aboud, E. and Campbell, S. [2014a]. Mapping the depth to magnetic basement using inversion of pseudogravity: Application to the Bishop model and the Stord Basin, northern Red Sea:Interpretation, 2(2), T69–T78, https://doi.org/10.1190/INT-2013-0105.1.
    [Google Scholar]
  29. Salem, A., Blakely, R., Green, C., Fairhead, D. and Ravat, D. [2014b]. Estimation of depth to top of magnetic sources using the local-wave-number approach in an area of shallow Moho and Curie depth –The Red Sea: Interpretation, 2(4), SJ1–SJ8, https://doi.org/10.1190/INT-2013-0196.1.
    [Google Scholar]
  30. Stein, C.A. and Stein, S. [1992]. A model for the global variation in oceanic depth and heat flow with lithospheric age:Nature, 359, 123–129, https://www.nature.com/articles/359123a0.
    [Google Scholar]
  31. Stewart, M.G., Mazur, S., Mantilla-Pimiento, A., Olaiz, A.J. and Hermoza, W. [2018]. Integrated geophysical investigations of the Pre-Andean Basins in Peru and Bolivia – A search for depocenters concealed beneath a foreland basin:American Association of Petroleum Geologists Memoir, 117, 63–90, https://doi.org/10.1306/13622117M1173766.
    [Google Scholar]
  32. Sutcliffe, E. and Malan, J.A. [2017]. Southern Natal Valley Basin: Integrating gravity with seismic for Basin location and prediction of petroleum systems:Conference Proceedings, Third EAGE Eastern Africa Petroleum Geoscience Forum, Volume 2017, 1–4, https://doi.org/10.3997/2214-4609.201702424.
    [Google Scholar]
  33. Tabor, C.R., Poulsen, C.J., Lunt, D.J., Rosenbloom, N.A., Otto-Bliesner, B.L., Markwick, P.J., Brady, E.C., Farnsworth, A. and Feng, R. [2016]. The cause of Late Cretaceous cooling: A multimodel-proxy comparison:Geology, 44, 963–966, https://doi.org/10.1130/G38363.1.
    [Google Scholar]
  34. Vincent, S.J., Braham, W., Lavrishchev, V.A., Maynard, J.R. and Harland, M. [2016]. The formation and inversion of the western Greater Caucasus Basin and the uplift of the western Greater Caucasus: Implications for the wider Black Sea region:Tectonics, 35, 2948–2962, https://doi.org/10.1002/2016TC004204.
    [Google Scholar]
  35. Wareham, H., Hagan, L., Duthie, L., Galsworthy, A., Wiggins, T., Martin, J., Redmile, A., Howe, R., Benny, K., Sagi, D., Eue, D. and Phillips, P. [2016]. New high-resolution geodynamic and landscape evolution models from the Permian to the present day for North America:Society of Exploration Geophysicists International Conference and Exhibition, https://doi.org/10.1190/ice2016-6493784.1.
    [Google Scholar]
  36. Wells, M.R., Allison, P.A., Piggott, M.D., Hampson, G.J., Pain, C.C. and Gorman, G.J. [2010]. Tidal modeling of an ancient tide-dominated seaway, part 1: model validation and application to global early Cretaceous (Aptian) tides, Journal of Sedimentary Research, 80, 393–410, https://doi.org/10.2110/jsr.2010.044
    [Google Scholar]
  37. Wilson, K. [2012]. The late Oligocene palaeogeography, palaeolandscape and palaeodrainage of Indochina and southeast China: American Association of Petroleum Geologists Search and Discovery Article #90155, https://www.searchanddiscovery.com/abstracts/html/2012/90155ice/abstracts/wils.htm.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1365-2397.fb2022037
Loading
/content/journals/10.3997/1365-2397.fb2022037
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error