1887
Volume 40, Issue 6
  • ISSN: 0263-5046
  • E-ISSN: 1365-2397

Abstract

Abstract

Glaciogenic reservoirs host important hydrocarbon resources across the globe. Examples such as the Peon and Aviat discoveries in the North Sea show that Quaternary and Neogene reservoirs can be prospective in the region. In this study, we interpret 2D and 3D reflection seismic data combined with borehole information to document unconventional play models from the shallow subsurface of the Norwegian Continental Shelf and the Faroe-Shetland Basin. These plays include (i) glacial sands in ice-marginal outwash fans, sealed by stiff subglacial tills (the Peon discovery), (ii) meltwater turbidites, (iii) contouritic fine-grained glacimarine sands sealed by gas hydrates, (iv) remobilized oozes above large evacuation craters which are sealed by megaslides and glacial muds, and (v) Neogene sand injectites. The hydrocarbon reservoirs are characterized by negative-polarity reflections with anomalously high amplitudes in the reflection seismic data as well as density and velocity decreases in the borehole data. Extensive new 3D reflection seismic data are crucial to correctly interpret glacial processes and distinguish shallow reservoirs from shallow seals. These data document a variety of play models with the potential for gas in large quantities and enable the identification of optimal drilling targets at stratigraphic levels which have so far been overlooked.

Loading

Article metrics loading...

/content/journals/10.3997/1365-2397.fb2022045
2022-06-01
2024-04-25
Loading full text...

Full text loading...

References

  1. Ahlbrandt, T.S., Charpentier, R.R., Klett, T.R., Schmoker, J.W., Schenk, C.J. and Ulmishek, G.F. [2005]. Global Resource Estimates from Total Petroleum Systems. AAPG Memoir, 86, AAPG.
    [Google Scholar]
  2. Bache, F., Moreau, J., Rubino, J.L., Gorini, C. and Lanoë, B.V.V. [2012]. The subsurface record of the Late Palaeozoic glaciation in the Chaco Basin, Bolivia. Geological Society, London, Special Publications, 368(1), 257–274.
    [Google Scholar]
  3. Bai, G.P. and Cao, B. [2014]. Characteristics and distribution patterns of deep petroleum accumulations in the world. Oil Gas Geol, 35(1), 19–25.
    [Google Scholar]
  4. Batchelor, C.L., Bellwald, B., Planke, S., Ottesen, D., Henriksen, S., Myklebust, R. and Dowdeswell, J.A. [2021]. Glacial, fluvial and contour-current-derived sedimentation along the northern North Sea margin through the Quaternary. Earth and Planetary Science Letters, 566, 116966.
    [Google Scholar]
  5. Batchelor, C.L., Ottesen, D. and Dowdeswell, J.A. [2017]. Quaternary evolution of the northern North Sea margin through glacigenic debris-flow and contourite deposition. Journal of Quaternary Science, 32(3), 416–426.
    [Google Scholar]
  6. Bellwald, B., Planke, S., Becker, L.W. and Myklebust, R. [2020]. Melt-water sediment transport as the dominating process in mid-latitude trough mouth fan formation. Nature communications, 11(1), 1–10.
    [Google Scholar]
  7. Bellwald, B., Urlaub, M., Hjelstuen, B.O., Sejrup, H.P., Sørensen, M.B., Forsberg, C.F. and Vanneste, M. [2019]. NE Atlantic continental slope stability from a numerical modeling perspective. Quaternary Science Reviews, 203, 248–265.
    [Google Scholar]
  8. Berndt, C. [2005]. Focused fluid flow in passive continental margins. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 363(1837), 2855–2871.
    [Google Scholar]
  9. Berndt, C., Bünz, S., Clayton, T., Mienert, J. and Saunders, M. [2004]. Seismic character of bottom simulating reflectors: examples from the mid-Norwegian margin. Marine and Petroleum Geology, 21(6), 723–733.
    [Google Scholar]
  10. Brekke, H. [2000]. The tectonic evolution of the Norwegian Sea continental margin, with emphasis on the Voring and More basins. Special Publication-Geological Society of London, 167, 327–378.
    [Google Scholar]
  11. Buenz, S., Mienert, J., Vanneste, M. and Andreassen, K. [2005]. Gas hydrates at the Storegga Slide: Constraints from an analysis of multicomponent, wide-angle seismic data. Geophysics, 70(5), B19–B34.
    [Google Scholar]
  12. Buenz, S., Mienert, J. and Berndt, C. [2003]. Geological controls on the Storegga gas-hydrate system of the mid-Norwegian continental margin. Earth and Planetary Science Letters, 209(3–4), 291–307.
    [Google Scholar]
  13. Bureau, D., Mourgues, R., Cartwright, J., Foschi, M., and Abdelmalak, M.M. [2013]. Characterisation of interactions between a pre-existing polygonal fault system and sandstone intrusions and the determination of paleo-stresses in the Faroe-Shetland basin. Journal of Structural Geology, 46, 186–199.
    [Google Scholar]
  14. Cartwright, J. [2010]. Regionally extensive emplacement of sandstone intrusions: a brief review. Basin Research, 22(4), 502–516.
    [Google Scholar]
  15. Cartwright, J., Huuse, M. and Aplin, A. [2007]. Seal bypass systems. AAPG Bulletin, 91(8), 1141–1166.
    [Google Scholar]
  16. Douillet, G., Ghienne, J.F., Géraud, Y., Abueladas, A., Diraison, M. and Al-Zoubi, A. [2012]. Late Ordovician tunnel valleys in southern Jordan. Geological Society, London, Special Publications, 368(1), 275–292.
    [Google Scholar]
  17. Eidvin, T., Bugge, T. and Smelror, M. [2007]. The Molo Formation, deposited by coastal progradation on the inner Mid-Norwegian continental shelf, coeval with the Kai Formation to the west and the Utsira Formation in the North Sea. Norwegian Journal of Geology/Norsk Geologisk Forening, 87.
    [Google Scholar]
  18. Girard, F., Ghienne, J.F. and Rubino, J.L. [2012]. Channelized sandstone bodies (‘cordons’) in the Tassili N’Ajjer (Algeria & Libya): snapshots of a Late Ordovician proglacial outwash plain. Geological Society, London, Special Publications, 368(1), 355–379.
    [Google Scholar]
  19. Heggland, R. [2004]. Definition of geohazards in exploration 3-D seismic data using attributes and neural-network analysis. AAPG bulletin, 88(6), 857–868.
    [Google Scholar]
  20. Hesse, R., Khodabakhsh, S., Klaucke, I. and Ryan, W.B. [1997]. Asymmetrical turbid surface-plume deposition near ice-outlets of the Pleistocene Laurentide ice sheet in the Labrador Sea. Geo-Marine Letters, 17(3), 179–187.
    [Google Scholar]
  21. Hjelstuen, B.O., Haflidason, H., Sejrup, H.P. and Nygård, A. [2010]. Sedimentary and structural control on pockmark development—evidence from the Nyegga pockmark field, NW European margin. Geo-Marine Letters, 30(3), 221–230.
    [Google Scholar]
  22. Hurst, A., Cartwright, J.A., Duranti, D., Huuse, M. and Nelson, M. [2005]. Sand injectites: an emerging global play in deep-water clastic environments. In Geological Society, London, Petroleum Geology Conference series, 6(1), 133–144.
    [Google Scholar]
  23. Huuse, M., Le Heron, D.P., Dixon, R., Redfern, J., Moscariello, A. and Craig, J. [2012]. Glaciogenic reservoirs and hydrocarbon systems: an introduction. Geological Society, London, Special Publications, 368(1), 1–28.
    [Google Scholar]
  24. Jolly, R.J. and Lonergan, L. [2002]. Mechanisms and controls on the formation of sand intrusions. Journal of the Geological Society, 159(5), 605–617.
    [Google Scholar]
  25. Knutz, P.C. and Cartwright, J. [2003]. Seismic stratigraphy of the West Shetland Drift: Implications for late Neogene paleocirculation in the Faeroe-Shetland gateway. Paleoceanography, 18(4).
    [Google Scholar]
  26. Kurjanski, B., Rea, B.R., Spagnolo, M., Cornwell, D.G., Howell, J. and Archer, S. [2020]. A conceptual model for glaciogenic reservoirs: from landsystems to reservoir architecture. Marine and Petroleum Geology, 115, 104205.
    [Google Scholar]
  27. Kvalstad, T.J., Andresen, L., Forsberg, C.F., Berg, K., Bryn, P. and Wangen, M. [2005]. The Storegga slide: evaluation of triggering sources and slide mechanics. Marine and Petroleum Geology, 22, 245–256.
    [Google Scholar]
  28. Kvenvolden, K.A. [1993]. Gas hydrates—geological perspective and global change. Reviews of geophysics, 31(2), 173–187.
    [Google Scholar]
  29. Lawrence, G.W.M. and Cartwright, J.A. , [2010]. The stratigraphic and geographic distribution of giant craters and remobilised sediment mounds on the mid Norway margin, and their relation to long term fluid flow. Marine and Petroleum Geology, 27(4), 733–747.
    [Google Scholar]
  30. Lawrence, G.W. and Cartwright, J.A. [2009]. The initiation of sliding on the mid Norway margin in the Møre Basin. Marine Geology, 259(1–4), 21–35.
    [Google Scholar]
  31. Løseth, H., Raulline, B. and Nygård, A. [2013]. Late Cenozoic geological evolution of the northern North Sea: development of a Miocene unconformity reshaped by large-scale Pleistocene sand intrusion. Journal of the Geological Society, 170(1), 133–145.
    [Google Scholar]
  32. Mazzini, A., Svensen, H.H., Planke, S., Forsberg, C.F. and Tjelta, T.I. [2016]. Pockmarks and methanogenic carbonates above the giant Troll gas field in the Norwegian North Sea. Marine Geology, 373, 26–38.
    [Google Scholar]
  33. Millett, J.M., Manton, B.M., Zastrozhnov, D., Planke, S., Maharjan, D., Bellwald, B. and Birch-Hawkins, A. [2020]. Basin structure and prospectivity of the NE Atlantic volcanic rifted margin: cross-border examples from the Faroe–Shetland, Møre and Southern Vøring basins. Geological Society, London, Special Publications, 495.
    [Google Scholar]
  34. Neagu, R.C., Cartwright, J., Davies, R. and Jensen, L. [2010]. Fossilisation of a silica diagenesis reaction front on the mid-Norwegian margin. Marine and Petroleum Geology, 27(10), 2141–2155.
    [Google Scholar]
  35. Nygård, A., Sejrup, H.P., Haflidason, H. and Bryn, P. [2005]. The glacial North Sea Fan, southern Norwegian Margin: architecture and evolution from the upper continental slope to the deep-sea basin. Marine and Petroleum Geology, 22(1–2), 71–84.
    [Google Scholar]
  36. Ottesen, D., Rise, L., Sletten Andersen, E., Bugge, T. and Eidvin, T. [2009]. Geological evolution of the Norwegian continental shelf between 61° N and 68° N during the last 3 million years. Norwegian Journal of Geology/Norsk Geologisk Forening, 89(4).
    [Google Scholar]
  37. Plaza-Faverola, A., Bünz, S. and Mienert, J. [2010]. Fluid distributions inferred from P-wave velocity and reflection seismic amplitude anomalies beneath the Nyegga pockmark field of the mid-Norwegian margin. Marine and Petroleum Geology, 27(1), 46–60.
    [Google Scholar]
  38. Polteau, S., Mazzini, A., Galland, O., Planke, S. and Malthe-Sørenssen, A. [2008]. Saucer-shaped intrusions: Occurrences, emplacement and implications. Earth and Planetary Science Letters, 266(1–2), 195–204.
    [Google Scholar]
  39. Riis, F., Berg, K., Cartwright, J., Eidvin, T. and Hansch, K. [2005]. Formation of large, crater-like evacuation structures in ooze sediments in the Norwegian Sea. Possible implications for the development of the Storegga Slide. Marine and Petroleum Geology, 22, 257–273.
    [Google Scholar]
  40. Rise, L., Ottesen, D., Berg, K. and Lundin, E. [2005]. Large-scale development of the mid-Norwegian margin during the last 3 million years. Marine and Petroleum Geology, 22(1–2), 33–44.
    [Google Scholar]
  41. Schofield, N., Holford, S., Millett, J., Brown, D., Jolley, D., Passey, S.R., Muirhead, D., Grove, C., Magee, C., Murray, J. and Hole, M. [2017]. Regional magma plumbing and emplacement mechanisms of the Faroe-Shetland Sill Complex: Implications for magma transport and petroleum systems within sedimentary basins. Basin Research, 29(1), 41–63.
    [Google Scholar]
  42. Sejrup, H.P., Haflidason, H., Aarseth, I., King, E., Forsberg, C.F., Long, D. and Rokoengen, K. [1994]. Late Weichselian glaciation history of the northern North Sea. Boreas, 23(1), 1–13.
    [Google Scholar]
  43. Skjærpe, I., Tøllefsen, I. and Endresen, T. [2018]. Developing Viper-Kobra: maximizing recovery by exploiting the unique characteristics of the sand injectite environment. In 80th EAGE Conference and Exhibition 2018, 1, 1–5.
    [Google Scholar]
  44. Stoker, M.S., Holford, S.P. and Hillis, R.R. [2018]. A rift-to-drift record of vertical crustal motions in the Faroe–Shetland Basin, NW European margin: establishing constraints on NE Atlantic evolution. Journal of the Geological Society, 175(2), 263–274.
    [Google Scholar]
  45. Tasianas, A., Bünz, S., Bellwald, B., Hammer, Ø., Planke, S., Lebedeva-Ivanova, N. and Krassakis, P. [2018]. High-resolution 3D seismic study of pockmarks and shallow fluid flow systems at the Snøhvit hydrocarbon field in the SW Barents Sea. Marine Geology, 403, 247–261.
    [Google Scholar]
  46. Vétel, W. and Cartwright, J. [2010]. Emplacement mechanics of sandstone intrusions: insights from the Panoche Giant Injection Complex, California. Basin Research, 22(5), 783–807.
    [Google Scholar]
  47. Viana, A.R., Almeida, W., Nunes, M.C.V., & Bulhões, E.M. [2007]. The economic importance of contourites. Geological Society, London, Special Publications, 276(1), 1–23.
    [Google Scholar]
  48. www.npd.no , Norwegian Petroleum Directorate (NPD), Stavanger, Norway, 01.02.2022. Factpages of exploration wellbores, online. http://factpages.npd.no/factpages.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1365-2397.fb2022045
Loading
/content/journals/10.3997/1365-2397.fb2022045
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error