1887
Volume 40, Issue 6
  • ISSN: 0263-5046
  • E-ISSN: 1365-2397

Abstract

Abstract

To determine the thickness of sedimentary cover overlying Proterozoic basement, an ambient-noise surface-wave tomo-graphic (ANSWT) survey was conducted in the Boulia region of the Mt Isa Province in Queensland, Australia. An array of 100 three-component seismic nodes was deployed along a 30 km section and ambient seismic noise was recorded for 19 days. In the resultant seismic model, the top-basement contact is resolved as a sharp, subhorizontal interface at a depth of about 700 m, where seismic velocity (Vs) increases downward from about 2500 to 3500 m/s. The accuracy of the retrieved top-basement contact was confirmed by comparison with drill hole intersections and with results from active seismic and magnetotelluric surveys. This study demonstrates that the ANSWT method can accurately and inexpensively map the thickness of sedimentary cover that obscures potentially mineralised regions globally.

Loading

Article metrics loading...

/content/journals/10.3997/1365-2397.fb2022052
2022-06-01
2022-06-27
Loading full text...

Full text loading...

References

  1. Afonin, N., Kozlovskaya, E., Heinonen, S. and Buske, S. [2021]. Nearsurface structure of the Sodankylä area in Finland, obtained by passive seismic interferometry. Solid Earth, 12, 1563–1579, doi:10.5194/se‑12‑1563‑2021.
    https://doi.org/10.5194/se-12-1563-2021 [Google Scholar]
  2. Arndt, N.T., Fontboté, L., Hedenquist, J.W., Kesler, S.E., Thompson, J.F. and Wood, D.G. [2017]. Future Global Mineral Resources. Geochemical Perspectives6, 1–171, doi:10.7185/geochempersp.6.1.
    https://doi.org/10.7185/geochempersp.6.1 [Google Scholar]
  3. Blewett, R. [2013]. Unlocking Australia’s hidden mineral resource potential. Technical Report. Geoscience Australia. Canberra, doi:http://pid.geoscience.gov.au/dataset/ga/77124.
    [Google Scholar]
  4. Brenguier, F., Boué, P., Ben-Zion, Y., Vernon, F., Johnson, C.W., Mordret, A., Coutant, O., Share, P.E., Beaucé, E., Hollis, D. and Lecocq, T. [2019]. Train Traffic as a Powerful Noise Source for Monitoring Active Faults With Seismic Interferometry. Geophysical Research Letters46, 9529–9536, doi:https://doi.org/10.1029/2019GL083438.
    [Google Scholar]
  5. Brenguier, F., Shapiro, N.M., Campillo, M., Nercessian, A. and Ferrazzini, V. [2007]. 3-D surface wave tomography of the Piton de la Fournaise volcano using seismic noise correlations. Geophysical Research Letters34.
    [Google Scholar]
  6. Campillo, M. [2006]. Phase and correlation inrandom’seismic fields and the reconstruction of the green function. Pure and Applied Geophysics, 163, 475–502.
    [Google Scholar]
  7. Casey, J.N., Reynolds, M.A., Dow, D.B., Pritchard, P.W., Vine, R.R. and Paten, R.J. [1960]. The geology of the Boulia area, western Queensland. Bur. Miner. Resour. Aust. Rec12.
    [Google Scholar]
  8. Chamarczuk, M., Malinowski, M., Draganov, D., Koivisto, E., Heinonen, S. and Juurela, S. [2018]. Seismic interferometry for mineral exploration: Passive seismic experiment over kylylahti mine area, Finland, in: 2nd Conference on Geophysics for Mineral Exploration and Mining, European Association of Geoscientists & Engineers. pp. 1–5.
    [Google Scholar]
  9. Chmiel, M., Mordret, A., Boué, P., Brenguier, F., Lecocq, T., Courbis, R., Hollis, D., Campman, X., Romijn, R. and Van der Veen, W. [2019]. Ambient noise multimode Rayleigh and Love wave tomography to determine the shear velocity structure above the Groningen gas field. Geophysical Journal International218, 1781–1795, doi:10.1093/gji/ggz237.
    https://doi.org/10.1093/gji/ggz237 [Google Scholar]
  10. Cook, A., Bryan, S. and Draper, J. [2013]. Post-orogenic Mesozoic basins and magmatism, in: Jell, P. (Ed.), Geology of Queensland. Geological Survey of Queensland, City East, pp. 515–575.
    [Google Scholar]
  11. Dales, P., Pinzon-Ricon, L., Brenguier, F., Boué, P., Arndt, N., McBride, J., Lavoué, F., Bean, C.J., Beaupretre, S., Fayjaloun, R. and Olivier, G. [2020]. Virtual Sources of Body Waves from Noise Correlations in a Mineral Exploration Context. Seismological Research Letters91, 2278–2286, doi:10.1785/0220200023.
    https://doi.org/10.1785/0220200023 [Google Scholar]
  12. Fomin, T. and Costelloe, R. , [2015]. L207 Boulia Region Deep Crustal Seismic Reflection Survey, QLD 2014–2015. Technical Report. Geoscience Australia. Canberra, doi:http://pid.geoscience.gov.au/dataset/ga/89801.
    [Google Scholar]
  13. Forrestal, P.J. [1990]. Mount Isa and Hilton silver-lead-zinc deposits. Technical Report.
    [Google Scholar]
  14. Frogtech Geoscience , [2018]. North West Queensland SEEBASE® Study and GIS. Queensland Geological Record 2018/03.
    [Google Scholar]
  15. Gil, A., Malehmir, A., Buske, S., Alcalde, J., Ayarza, P., Martínez, Y., Lindskog, L., Spicer, B., Carbonell, R., Orlowsky, D., Carriedo, J. and Hagerud, A. [2021]. Reflection seismic imaging to unravel subsurface geological structures of the Zinkgruvan mining area, central Sweden. Ore Geology Reviews137, 104306, doi:https://doi.org/10.1016/j.oregeorev.2021.104306.
    [Google Scholar]
  16. Gonzalez-Alvarez, I., Goncalves, M.A. and Carranza, E.J.M. [2020]. Challenges for Mineral Exploration in the 21st Century: Targeting Mineral Deposits Under Cover. Ore Geology Reviews, 103785.
    [Google Scholar]
  17. Green, D.C., Hamling, D.D. and Kyranis, N. [1963]. CR1065: AP 54P, PPC Elizabeth Springs 1, PPC Beantree 1, PPC Canary 1, PPC Black Mountain 1, stratigraphic drilling, Boulia area, well completion report.
    [Google Scholar]
  18. Guffey, S., Piercey, S., Ansdell, K., Kyser, K., Kotzer, T., Quirt, D. and Zaluski, G. [2018]. Geochemical footprint of the Millennium uncon-formitytype uranium deposit, Canada: implications for vectoring new targets. Geochemistry: Exploration, Environment, Analysis19, 395–413, doi:10.1144/geochem2018‑036.
    https://doi.org/10.1144/geochem2018-036 [Google Scholar]
  19. Hanssen, P. [2011]. Passive seismic methods for hydrocarbon exploration, in: Third EAGE Passive Seismic Workshop-Actively Passive 2011, European Association of Geoscientists & Engineers. pp. cp-225.
    [Google Scholar]
  20. Hillers, G., Campillo, M., Brenguier, F., Moreau, L., Agnew, D.C. and BenZion, Y. [2019]. Seismic Velocity Change Patterns Along the San Jacinto Fault Zone Following the 2010 M7.2 El Mayor-Cucapah and M5.4 Collins Valley Earthquakes. Journal of Geophysical Research: Solid Earth124, 7171–7192, doi:https://doi.org/10.1029/2018JB017143.
    [Google Scholar]
  21. HiSeis [2018]. 004Z-BOULIA-2DRePRO18, HiSeis Pty. Ltd. ReProcessing Report.
    [Google Scholar]
  22. Ji, S., Wang, Q. and Xia, B. [2002]. Handbook of seismic properties of minerals, rocks and ores. Presses inter Polytechnique.
    [Google Scholar]
  23. Kress, A. and Simeone, S. [1993]. CR24824: A-P 380P, PGA Todd 1, well completion report.
    [Google Scholar]
  24. Large, R.R., Bull, S.W., McGoldrick, P.J. and Walters, S.G. [2005]. Stratiform and strata-bound Zn-Pb-Ag deposits in Proterozoic sedimentary basins, northern Australia. Economic Geology100, 931–963.
    [Google Scholar]
  25. Lilly, R., Taylor, D. and Spanswick, N. [2017]. Mount Isa Cu-Pb-Zn deposit including George Fisher, in: Philips, G. (Ed.), Australian Ore Deposits. mono 32 ed. The Australasian Institute of Mining and Metallurgy, pp. 473–478.
    [Google Scholar]
  26. Malehmir, A., Urosevic, M., Bellefleur, G., Juhlin, C. and Milkereit, B. [2012]. Seismic methods in mineral exploration and mine planning — Introduction. Geophysics77, WC1–WC2, doi:10.1190/2012‑0724‑SPSEIN.1.
    https://doi.org/10.1190/2012-0724-SPSEIN.1 [Google Scholar]
  27. Milligan, P., Franklin, R., Minty, B., Richardson, L. and Percival, P. [2010]. Magnetic Anomaly Map of Australia (Fifth Edition), 1:5 000 000 scale. Technical Report. Geoscience Australia. Canberra.
    [Google Scholar]
  28. Milligan, P., Minty, B., Richardson, M. and Franklin, R. [2009]. The Australiawide airborne geophysical survey-accurate continental magnetic coverage. ASEG Extended Abstracts 2009, 1–9.
    [Google Scholar]
  29. Mitchell, M.A., White, R.S., Roecker, S. and Greenfield, T. [2013]. Tomographic image of melt storage beneath Askja Volcano, Iceland using local microseismicity. Geophysical Research Letters40, 5040–5046.
    [Google Scholar]
  30. Mond, A., Senior, B., Matveev, G. and Swoboda, R. , [1977]. Geology of the Northwestern Eromanga Basin, Queensland, Northern Territory, Scale 1:1 000 000. Technical Report. Bureau of Mineral Resources Geology and Geophysics.
    [Google Scholar]
  31. Mordret, A., Landès, M., Shapiro, N.M., Singh, S.C. and Roux, P. [2014]. Ambient noise surface wave tomography to determine the shallow shear velocity structure at Valhall: depth inversion with a Neighbourhood Algorithm. Geophysical Journal International198, 1514–1525.
    [Google Scholar]
  32. Mordret, A., Landès, M., Shapiro, N.M., Singh, S.C., Roux, P. and Barkved, O.I. [2013]. Near-surface study at the Valhall oil field from ambient noise surface wave tomography. Geophysical Journal International193, 1627–1643.
    [Google Scholar]
  33. Nakata, N. and Nishida, K. [2019]. Body wave exploration, in: Nakata, N., Gualtieri, L., Fichtner, A. (Eds.), Seismic Ambient Noise. Cambridge University PressCambridge, England, Cambridge, U.K. chapter 8, pp. 239–268.
    [Google Scholar]
  34. Olivier, G., Brenguier, F., Campillo, M., Lynch, R. and Roux, P. [2015]. Body-wave reconstruction from ambient seismic noise correlations in an underground mine. Geophysics80, KS11–KS25.
    [Google Scholar]
  35. Polychronopoulou, K. [2018]. Passive Seismic: The Exploitation of Low Frequencies in Seismic Exploration. GeoExPro18.
    [Google Scholar]
  36. Ramm, N., de Wit, T. and Olivier, G. [2019]. Passive Seismic Imaging for Mineral Exploration. ASEG Extended Abstracts 2019, 1–3, doi:10.1080/22020586.2019.12073177.
    https://doi.org/10.1080/22020586.2019.12073177 [Google Scholar]
  37. Sabra, K.G., Roux, P. and Kuperman, W.A. [2005]. Emergence rate of the timedomain Green’s function from the ambient noise cross-correlation function. The Journal of the Acoustical Society of America118, 3524–3531.
    [Google Scholar]
  38. Salisbury, M. and Snyder, D. [2007]. Application of seismic methods to mineral exploration, in: Goodfellow, W. (Ed.), Mineral deposits of Canada: A synthesis of major deposit types, district metallogeny, the evolution of geological provinces, and exploration methods. Geological Association of Canada, Mineral Deposits Division, Special Publication. volume 5, pp. 971–982.
    [Google Scholar]
  39. Sambridge, M. [1999]. Geophysical inversion with a neighbourhood algorithm — I. Searching a parameter space. Geophysical Journal International138, 479–494.
    [Google Scholar]
  40. Sandwell, D.T., Müller, R.D., Smith, W.H.F., Garcia, E. and Francis, R. [2014]. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science346, 65–67.
    [Google Scholar]
  41. Schodde, R. [2017]. Recent trends and outlook for global exploration, in: PDAC International Convention, Trade Show & Investors Exchange.
    [Google Scholar]
  42. Shapiro, N.M. and Campillo, M. [2004]. Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophysical Research Letters31.
    [Google Scholar]
  43. Simpson, J.M. and Heinson, G. [2020]. Synthetic modelling of down-hole resistivity data to improve interpretation of basin morphology from magnetotelluric inversion. Earth, Planets and Space72, 1–21.
    [Google Scholar]
  44. Vanorio, T., Virieux, J., Capuano, P. and Russo, G. [2005]. Three-dimensional seismic tomography from P wave and S wave microearthquake travel times and rock physics characterization of the Campi Flegrei Caldera. Journal of Geophysical Research: Solid Earth110, doi:https://doi.org/10.1029/2004JB003102.
    [Google Scholar]
  45. Withnall, I.W., Hutton, L.J., Armit, R.J., Betts, P.G., Blewett, R.S., Champion, D.C. and Jell, P.A. [2013]. North Australian Craton, in: Jell, P.A. (Ed.), Geology of Queensland. Geological Survey of Queensland, City East, pp. 23–112.
    [Google Scholar]
  46. Xu, Y., Lebedev, S., Meier, T., Bonadio, R. and Bean, C.J. [2021]. Optimized workflows for high-frequency seismic interferometry using dense arrays. Geophysical Journal International227, 875–897.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1365-2397.fb2022052
Loading
/content/journals/10.3997/1365-2397.fb2022052
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error