1887
Volume 40, Issue 7
  • ISSN: 0263-5046
  • E-ISSN: 1365-2397

Abstract

Abstract

This paper is part one of a two-part series that introduces naturally fractured reservoirs. For the purposes of these papers, natural fractures are discontinuities formed from tectonic activity and other processes, such as diagenesis or cooling, that enhance fluid flow. The paper will cover their common characteristics, how they form, key issues to consider during appraisal and development and ways of mitigating some of the risks. The presence of natural fractures in the sub-surface is important for a number of different subsurface developments – e.g. hydrocarbon reservoirs, Carbon Capture and Storage (CCS), other gas storage, hydrogeology, geothermal and nuclear waste disposal. This article covers how fractures form and the different types created by different processes, their characteristics and distributions and the key parameters relevant to sub-surface fluid flow e.g. permeability. A follow up technical article will cover fracture network categories and concepts, recovery mechanisms of fluids from naturally fractured reservoirs, modelling techniques and approaches for developing and managing fractured reservoirs to maximise production and minimise risk.

Loading

Article metrics loading...

/content/journals/10.3997/1365-2397.fb2022054
2022-07-01
2024-04-25
Loading full text...

Full text loading...

References

  1. Agarwal, B., Hermansen, H., Sylte, J.E. and Thomas, L.K. [2000]. Reservoir Characterization of Ekofisk Field: A Giant, Fractured Chalk Reservoir in the Norwegian North Sea - History Match.SPE Reservoir Evaluation & Engineering, 3(6), SPE Paper 68096, 534–543. https://doi.org/10.2118/68096-PA.
    [Google Scholar]
  2. Aguilera, R. [2008]. Effect of Fracture Compressibility on Gas-in-Place Calculations of Stress Sensitive Naturally Fractured Reservoirs.SPE Gas Technology Symposium, Calgary, Alberta, Canada, May 2006, SPE Paper 100451, 307–310. https://doi.org/10.2118/100451-MS.
    [Google Scholar]
  3. Ali, E., Bergren, F.E., Saluja, J.A. and Sinani, I.S. [2005]. Well and Reservoir Management in a Giant Gas Oil Gravity Drainage Field: A Case History, SPE Middle East Oil and Gas Show and Conference, Kingdom of Bahrain, March 2005, SPE Paper 93065, 1–9. https://doi.org/10.2118/93065-MS.
    [Google Scholar]
  4. Al-Kindi, M.H.N. [2020]. Understanding the Relationship between Large-Scale Fold Structures and Small-Scale Fracture Patterns: A Case Study from the Oman Mountains.Geosciences, 10, 1–28. https://doi.org/10.3390/geosciences10120490.
    [Google Scholar]
  5. Bai, T. and Pollard, D.D. [2000]. Fracture spacing in layered rocks: a new explanation based on the stress transition.Journal of Structural Geology, 22(1), 43–57. https://doi.org/10.1016/S0191-8141(99)00137-6
    [Google Scholar]
  6. Baron, M. and Parnell, J. [2007]. Relationships between stylolites and cementation in sandstone reservoirs: Examples from the North Sea, U.K. and East Greenland.Sedimentary Geology, 194(1–2), 17–35, https://doi.org/10.1016/j.sedgeo.2006.04.007.
    [Google Scholar]
  7. Barr, D. [2007]. Conductive faults and sealing fractures in the West Sole gas fields, southern North Sea. From: Jolley, S. J., Barr, D., Walsh, J. J. and Knipe, R. J. (eds). Structurally Complex Reservoirs. Geological Society, London, Special Publications, 292, 431–451, https://doi.org/10.1144/SP292.23.
    [Google Scholar]
  8. Barr, D., Savory, K.E., Fowler, S.R., Arman, K. and McGarrity, J.P. [2007]. Pre-development fracture modelling in the Clair field, west of Shetland. From: Lonergan, L., Jolly, R.J.H., Rawnsley, K. and Anderson, D. J. (eds) Fractured Reservoirs. Geological Society, London, Special Publications, 270, 205–225. https://doi.org/10.1144/GSL.SP.2007.270.01.14.
    [Google Scholar]
  9. Barton, N. and de Quadros, E.F. [1997]. Joint aperture and roughness in the prediction of flow and groutability of rock masses.International Journal of Rock Mechanics & Mining Sciences, 34(3–4). https://doi.org/10.1016/S1365-1609(97)00081-6.
    [Google Scholar]
  10. Bazalgette, L., Petit, J-P., Amrhar, M. and Ouanaïmi, H. [2010]. Aspects and origins of fractured dip-domain boundaries in folded carbonate rocks.Journal of Structural Geology, 32(4), 523–536. https://doi.org/10.1016/j.jsg.2010.03.002.
    [Google Scholar]
  11. Bergbauer, S. and Martel, S.J. [1999]. Formation of joints in cooling plutons:Journal of Structural Geology, 21(7), 821–835, https://doi.org/10.1016/S0191-8141(99)00082-6.
    [Google Scholar]
  12. Bourdet, D. [2002]. Well Test Analysis: The use of Advanced Interpretation Models. Elsevier, Amsterdam. pp 438.
    [Google Scholar]
  13. Caine, J.S., Evans, J.P. and Forster C.B. [1996]. Fault zone architecture and permeability structure.Geology, 24(11), 1025–1028. https://doi.org/10.1130/0091-7613(1996)024<1025:FZAAPS>2.3.CO;2.
    [Google Scholar]
  14. Carrio-Schaffhauser, E., Raynaud, S., Latière, H.J. and Mazerolle, F. [1990]. Propagation and localization of stylolites in limestones. In Knipe, R.J. and Rutter, E.H. (eds), Deformation Mechanisms, Rheology and Tectonics. Geological Society, London, Special Publications, 54, 193–199. https://doi.org/10.1144/GSL.SP.1990.054.01.19.
    [Google Scholar]
  15. Chemenda, A.I., Lamarche, J., Matonti, C., Bazalgette, L. and Richard, P. [2021]. Origin of strong nonlinear dependence of fracture (joint) spacing on bed thickness in layered rocks: Mechanical analysis and modelling.Journal of Geophysical Research: Solid Earth, 126(3), 1–18. https://doi.org/10.1029/2020JB020656.
    [Google Scholar]
  16. Choi, J-H., Edwards, P., Ko, K. and Kim Y-S. [2016]. Definition and classification of fault damage zones: A review and a new methodological approach.Earth-Science Reviews, 152. 70–87. https://doi.org/10.1016/j.earscirev.2015.11.006.
    [Google Scholar]
  17. Cook, C.C., Andersen, M.A., Halle, G., Gislefoss, E. and Bowen, G.R. [2001]. An Approach to Simulating the Effects of Water Induced Compaction in a North Sea Reservoir.SPE Reservoir Evaluation & Engineering, 4(2), SPE Paper 71301, 121–127. https://doi.org/10.2118/71301-PA.
    [Google Scholar]
  18. Cooke, M.L. and Underwood, C.A. [2001]. Fracture termination and step-over at bedding interfaces due to frictional slip and interface opening.Journal of Structural Geology, 23(2–3). 223–238. https://doi.org/10.1016/S0191-8141(00)00092-4.
    [Google Scholar]
  19. Cooper, S.P., Goodwin, L.B. and Lorenz, J.C. [2006]. Fracture and fault patterns associated with basement-cored anticlines: The example of Teapot Dome, Wyoming.AAPG Bulletin, 90(12), 1903–1920. https://doi.org/10.1306/06020605197.
    [Google Scholar]
  20. Cosgrove, J.W. and Ameen, M.S. [1999]. A comparison of the geometry, spatial organization and fracture patterns associated with forced folds and buckle folds. In: Cosgrove, J.W. and Ameen, M.S. Forced folds and fractures. Geological Society, London, Special Publications, 169, 7–21, https://doi.org/10.1144/GSL.SP.2000.169.01.01.
    [Google Scholar]
  21. Cosgrove, J.W. and Engelder, T. (eds) [2004]. The Initiation, Propagation, and Arrest of Joints and Other Fractures. Geological Society, London, Special Publications, 231. https://doi.org/10.1144/GSL.SP.2004.231.01.20.
    [Google Scholar]
  22. Couples, G.D., Lewis, H. and Tanner, P.W.G. [1998]. Strain partitioning during flexural-slip folding. From: Coward, M. P., Daltaban, T. S. and Johnson, H. (eds) Structural Geology in Reservoir Characterization. Geological Society, London, Special Publications, 127, 149–165. https://doi.org/10.1144/GSL.SP.1998.127.01.12.
    [Google Scholar]
  23. Eckert, A., Connolly, P. and Liu, X. [2014]. Large-scale mechanical buckle fold development and the initiation of tensile fractures, Geochemistry, Geophysics, Geosystems., 15(11), 4570–4587, https://doi.org/10.1002/2014GC005502.
    [Google Scholar]
  24. Edwards, C.W. [1991]. The Buchan Field, Blocks 20/5a and 21/1a, UK North Sea. In: AbbotsI.L. (ed.) United Kingdom Oil and Gas Fields, 25 Years Commemorative Volume. Geological Society, London Memoir, 14, 253–259. https://doi.org/10.1144/GSL.MEM.1991.014.01.31.
    [Google Scholar]
  25. Engelder, T. [1985]. Loading paths to joint propagation during a tectonic cycle: an example from the Appalachian Plateau, U.S.A.Journal of Structural Geology, 7(3–4), 459–476. https://doi.org/10.1016/0191-8141(85)90049-5.
    [Google Scholar]
  26. Farrell, N.J.C., Healy, D. and Taylor, C.W. [2014]. Anisotropy of permeability in faulted porous sandstones.Journal of Structural Geology, 63, 50–67. http://dx.doi.org/10.1016/j.jsg.2014.02.008.
    [Google Scholar]
  27. Faulkner, D.R., Jackson, C.A.L., Lunn, R.J., Schlische, R.W., Shipton, Z.K., Wibberley, C.A.J. and Withjack, M.O. [2010]. A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones.Journal of Structural Geology, 32(11), 1557–1575. https://doi.org/10.1016/j.jsg.2010.06.009.
    [Google Scholar]
  28. Ferrill, D.A., Morris, A.P., McGinnis, R.N., Smart, K.J., Wigginton, S.S. and Hill, N.J. [2017]. Mechanical stratigraphy and normal faulting, Journal of Structural Geology, 94, 275–302, https://doi.org/10.1016/j.jsg.2016.11.010.
    [Google Scholar]
  29. Gholipour, A.M., Cosgrove, J.W. and Ala, M. [2016]. New theoretical model for predicting and modelling fractures in folded fractured reservoirs.Petroleum Geoscience, 22(3), 257–280. https://doi.org/10.1144/petgeo2013-055.
    [Google Scholar]
  30. Gutmanis, J.C., Lanyon, G.W., Wynn, T.J. and Watson, C.R. [1998]. Fluid flow in faults: a study of fault hydrogeology in Triassic sandstone and Ordovician volcaniclastic rocks at Sellafield, north-west England.Proceedings of the Yorkshire Geological Society, 52(2), 159–175. https://doi.org/10.1144/pygs.52.2.159.
    [Google Scholar]
  31. Guiton, M.L.E., Sassi, W., Leroy, Y.M. and Gauthier, B.D.M. [2003]. Mechanical constraints on the chronology of fracture activation in folded Devonian sandstone of the western Moroccan Anti-Atlas.Journal of Structural Geology, 25(8), 1317–1330. https://doi.org/10.1016/S0191-8141(02)00155-4.
    [Google Scholar]
  32. Hanks, C.L., Lorenz, J., Teufel, L. and Krumhardt, A.P. [1997]. Lithologic and Structural Controls on Natural Fracture Distribution and Behavior Within the Lisburne Group, Northeastern Brooks Range and North Slope Subsurface, Alaska.AAPG Bulletin, 81(10), 1700–1720. https://doi.org/10.1306/3B05C424-172A-11D7-8645000102C1865D.
    [Google Scholar]
  33. Heffer, K. [2002]. Geomechanical Influences in Water Injection Projects: An Overview.Oil & Gas Science and Technology - Rev. IFP, 57(5), 415–422. https://doi.org/10.2516/ogst:2002027.
    [Google Scholar]
  34. Hennings, P. [2009]. AAPG-SPE-SEG Hedberg research conference on “The Geologic Occurrence and Hydraulic Significance of Fractures in Reservoirs”.AAPG Bulletin, 93(11), 1407–1412. https://doi.org/10.1306/intro931109.
    [Google Scholar]
  35. Hoek, E. and Martin, C.D. [2014]. Fracture initiation and propagation in intact rock – A review.Journal of Rock Mechanics and Geotechnical Engineering, 6(4), 287–300. http://dx.doi.org/10.1016/j.jrmge.2014.06.001.
    [Google Scholar]
  36. Isaac, K., Copestake, P., Dunford, G., Ford, J., Garnham, J., Lister, C., Oxtoby, N., Rogers, S., Silcock, S. and Timperley, H. [2008]. Evaluation of a UKCS fractured granite discovery.DEVEX Conference, Aberdeen, 2008. https://www.devex-conference.org/pdf/Presentations_2008/2008Presentations.zip.
    [Google Scholar]
  37. Jaeger, J.C. and Cook, N.G.W. [1969]. Fundamentals of Rock Mechanics. First Edition. Chapman & Hall Science Paperbacks. pp 515.
    [Google Scholar]
  38. Joussineau, G. and Petit, J-P. [2021]. Mechanical insights into the development of fracture corridors in layered rocks.Journal of Structural Geology, 144, 1–19. https://doi.org/10.1016/j.jsg.2021.104278.
    [Google Scholar]
  39. Kim, Y.S. and Sanderson, D.J. [2004]. Similarities between strike-slip faults at different scales and a simple age determining method for active faults, The Island Arc, 13(1), 128–143. https://doi.org/10.1111/j.1440-1738.2003.00410.x.
    [Google Scholar]
  40. Kim, Y.S. and Sanderson, D.J. [2005]. The relationship between displacement and length of faults: a review.Earth-Science Reviews, 68(3–4), 317–334. https://doi.org/10.1016/j.earscirev.2004.06.003.
    [Google Scholar]
  41. Laubach, S.E., Olson, J.E. and Gross, M.R. [2009]. Mechanical and fracture stratigraphy.AAPG Bulletin, 93(11), 1413–1426. https://doi.org/10.1306/07270909094.
    [Google Scholar]
  42. Laubach, S.E., Lamarche, J., Gauthier, D.M., Dunne, W.M. and Sanderson, D.J. [2018]. Spatial arrangement of faults and opening-mode fractures.Journal of Structural Geology. 108, 2–15. https://doi.org/10.1016/j.jsg.2017.08.008.
    [Google Scholar]
  43. Martel, S.J. [2006]. Effect of topographic curvature on near-surface stresses and application to sheeting joints.Geophysical Research Letters, 33(1), 1–5. https://doi.org/10.1029/2005GL024710.
    [Google Scholar]
  44. Martel, S.J. [2017]. Review article: Progress in understanding sheeting joints over the past two centuries.Journal of Structural Geology, 94(11), 68–86. http://dx.doi.org/10.1016/j.jsg.2016.11.003.
    [Google Scholar]
  45. Milligan, G. et al. (Hill of Banchory Geothermal Energy Consortium) [2016]. Hill of Banchory Geothermal Energy Project Feasibility Study. The Scottish Government Report ISBN: 978-1-78652-075-3. https://www.gov.scot/binaries/content/documents/govscot/publications/research-and-analysis/2016/03/hill-banchory-geothermal-energy-project-feasibility-study-report/documents/00497700-pdf/00497700-pdf/govscot%3Adocument/00497700.pdf.
    [Google Scholar]
  46. Nelson, R.A. [1981]. Significance of Fracture Sets Associated with Stylolite Zones.AAPG Bulletin, 65(11), 2417–2425. https://doi.org/10.1306/03B599AE-16D1-11D7-8645000102C1865D.
    [Google Scholar]
  47. Nelson, R.A. [2001]. Geologic Analysis of Naturally Fractured Reservoirs. 2nd Edition. Gulf Professional Publishing. pp 332.
    [Google Scholar]
  48. Oron, A.P. and Berkowitz, B. [1998]. Flow in rock fractures: The local cubic law assumption reexamined.Water Resources Research, 34(11), 2811–2825. https://doi.org/10.1029/98WR02285.
    [Google Scholar]
  49. Parsons, R.W. [1966]. Permeability of Idealized Fractured Rock.SPE Paper 1289. Society of Petroleum Engineering Journal, 6(2), 126–136. https://doi.org/10.2118/1289-PA.
    [Google Scholar]
  50. Peacock, D.C.P. [2001]. The temporal relationship between joints and faults.Journal of Structural Geology, 23(2–3), 329–341. https://doi.org/10.1016/S0191-8141(00)00099-7.
    [Google Scholar]
  51. Peacock, D.C.P. [2004]. Differences between veins and joints using the example of the Jurassic limestones of Somerset.From: CosgroveJ. W. and EngelderT. (eds) 2004. The Initiation, Propagation, and Arrest of Joints and Other Fractures. Geological Society, London, Special Publications, 231, 209–221. https://doi.org/10.1144/GSL.SP.2004.231.01.12.
    [Google Scholar]
  52. Peacock, D.C.P. and Sanderson, D.J. [2018]. Structural analyses and fracture network characterisation: Seven pillars of wisdom.Earth-Science Reviews, 184, p13–28. https://doi.org/10.1016/j.ear-scirev.2018.06.006.
    [Google Scholar]
  53. Pollard, D.D. and Aydin, A. [1988]. Progress in understanding jointing over the past century.Geological Society of America, Bulletin, 100(8), 1181–1204. https://doi.org/10.1130/0016-7606(1988)100<1181:PIUJOT>2.3.CO;2.
    [Google Scholar]
  54. Price, N.J. and Cosgrove, J.W. [1990]. Analysis of Geological Structures. Cambridge University Press. pp 502.
    [Google Scholar]
  55. Riber, L., Dypvik, H. and Sørlie, R. [2015]. Altered basement rocks on the Utsira High and its surroundings, Norwegian North Sea, Norwegian Journal of Geology, 95(1), 57–89. http://dx.doi.org/10.17850/njg95-1-04.
    [Google Scholar]
  56. Riley, P., Goodwin, L.B. and Lewis, C.J. [2010]. Controls on fault damage zone width, structure, and symmetry in the Bandelier Tuff, New Mexico, Journal of Structural Geology, 32(6), 766–780. https://doi.org/10.1016/j.jsg.2010.05.005.
    [Google Scholar]
  57. Rogers, S., Enachescu, C., Trice, R. and Buer, K. [2007]. Integrating discrete fracture network models and pressure transient data for testing conceptual fracture models of the Valhall chalk reservoir, Norwegian North Sea. From: Lonergan, L., Jolly, R.J.H., Rawnsley, K. and Sanderson, D.J. (eds), Fractured Reservoirs. Geological Society, London, Special Publications, 270, 193–204. https://doi.org/10.1144/GSL.SP.2007.270.01.13.
    [Google Scholar]
  58. Safaricz, M. and Davison, I. [2005]. Pressure solution in chalk.AAPG Bulletin, 89(3), 383–401. https://doi.org/10.1306/10250404015.
    [Google Scholar]
  59. Sausse, J. and Genter, A. [2005]. Types of permeable fractures in granite. From: Harvey, P. K., Brewer, T. S., Pezard, P. A. and Petrov, V. A. (eds). Petrophysical Properties of Crystalline Rocks. Geological Society, London, Special Publications, 240, 1–14, https://doi.org/10.1144/GSL.SP.2005.240.01.01.
    [Google Scholar]
  60. Savalli, L. and Engelder, T. [2005]. Mechanisms controlling rupture shape during subcritical growth of joints in layered rocks.Geological Society America, Bulletin. 117(3–4), 436–449. https://doi.org/10.1130/B25368.1.
    [Google Scholar]
  61. Sayer, Z., Edit, J., Gooder, R. and Love, A. [2020]. The Machar Field, Block 23/26a, UK North Sea. In: Goffey, G. and Gluyas, J. (eds.) United Kingdom Oil and Gas Fields: 50th Anniversary Commemorative Volume. Geological Society, London, Memoirs52, 523–536. https://doi.org/10.1144/M52-2018-45.
    [Google Scholar]
  62. Schulz, R.A. [2019]. Geologic Fracture Mechanics. Cambridge University Press. pp 592. https://doi.org/10.1017/9781316996737.
    [Google Scholar]
  63. Shaosheng, C., Kun, X., Yun, H. and Yuzhe, C. [2003]. Study on Characteristics and Development Law of Fractured Basement Reservoirs: A Case Study of Fractured Basement Reservoirs in Damintun Depression of Liaohe Basin.SPE Asia Pacific Oil and Gas Conference and Exhibition, Jakarta, Indonesia, September 2003, SPE Paper 80541, 1–9. https://doi.org/10.2118/80541-MS.
    [Google Scholar]
  64. Souque, C., Knipe, R.J., Davies, R.K., Jones, P, Welch, M.J. and Lorenz, J. [2019]. Fracture corridors and fault reactivation: Example from the Chalk, Isle of Thanet, Kent, England.Journal of Structural Geology, 122, 11–46. https://doi.org/10.1016/j.jsg.2018.12.004.
    [Google Scholar]
  65. Tang, C.A., Liang, Z.Z. Zhang, Y.B., Chang, X., Tao, X., Wang, D.G., Zhang, J.X., Liu, J.S., Zhu, W.C. and Elsworth, D. [2008]. Fracture spacing in layered materials: A new explanation based on two-dimensional failure process modelling.American Journal of Science, 308(1), 49–72, https://doi.org/10.2475/01.2008.02.
    [Google Scholar]
  66. Terzaghi, K. [1936]. The shearing resistance of saturated soils and the angle between the planes of shear.First Int. Conf. Soil Mech. Foundn. Engng, Harvard University, 1, 54–56.
    [Google Scholar]
  67. Trewin, N.H. and Bramwell, M.G. [1991]. The Auk Field, Block 30/16, UK North Sea. From: Abbotts, I. L. (ed.), United Kingdom Oil and Gas Fields, 25 Years Commemorative Volume, Geological Society Memoir, 14, 227–236. https://doi.org/10.1144/GSL.MEM.1991.014.01.28.
    [Google Scholar]
  68. Van Golf-Racht, T.D. [1982]. Fundamentals of fractured reservoir engineering. Developments in Petroleum Geoscience 12. Elsevier, Amsterdam. pp 710.
    [Google Scholar]
  69. Watkins, H., Butler, R.W.H., Bond, C.E. and Healy, D. [2015]. Influence of structural position on fracture networks in the Torridon Group, Achnashellach fold and thrust belt, NW Scotland.Journal of Structural Geology, 74, 64–80. https://doi.org/10.1016/j.jsg.2015.03.001.
    [Google Scholar]
  70. Watkins, H., Healy, D., Bond, C.E. and Butler, R.W.H. [2018]. Implications of heterogeneous fracture distribution on reservoir quality; an analogue from the Torridon Group sandstone, Moine Thrust Belt, NW Scotland, Journal of Structural Geology, 108, 180–197https://doi.org/10.1016/j.jsg.2017.06.002.
    [Google Scholar]
  71. Wynn, T. and Saundry, E. [2020]. The Buchan Field, Blocks 20/5a and 21/1a, UK North Sea. In: Goffey, G. and Gluyas, J. (eds.) United Kingdom Oil and Gas Fields: 50th Anniversary Commemorative Volume. Geological Society, London, Memoirs, 52, 679–690. https://doi.org/10.1144/M52-2018-11.
    [Google Scholar]
  72. Zoback, M.D. [2007]. Reservoir Geomechanics. Cambridge University Press, pp 449.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1365-2397.fb2022054
Loading
/content/journals/10.3997/1365-2397.fb2022054
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error